Table of Contents Author Guidelines Submit a Manuscript
Malaria Research and Treatment
Volume 2010 (2010), Article ID 973094, 9 pages
http://dx.doi.org/10.4061/2010/973094
Review Article

The Survival Strategies of Malaria Parasite in the Red Blood Cell and Host Cell Polymorphisms

Regional Medical Research Centre, Indian Council of Medical Research, Chandrasekharpur, Bhubaneswar 751023, India

Received 4 May 2010; Accepted 7 July 2010

Academic Editor: Mats Wahlgren

Copyright © 2010 Gunanidhi Dhangadamajhi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. E. Wellems, K. Hayton, and R. M. Fairhurst, “The impact of malaria parasitism: from corpuscles to communities,” Journal of Clinical Investigation, vol. 119, no. 9, pp. 2496–2505, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. N. J. White, “Plasmodium knowlesi: the fifth human malaria parasite,” Clinical Infectious Diseases, vol. 46, no. 2, pp. 172–173, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. A. M. Gero and K. Kirk, “Nutrient transport pathways in Plasmodium-infected erythrocytes: what and where are they?” Parasitology Today, vol. 10, no. 10, pp. 395–399, 1994. View at Publisher · View at Google Scholar · View at Scopus
  4. P. R. Gilson and B. S. Crabb, “Morphology and kinetics of the three distinct phases of red blood cell invasion by Plasmodium falciparum merozoites,” International Journal for Parasitology, vol. 39, no. 1, pp. 91–96, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. V. L. Lew and T. Tiffert, “Is invasion efficiency in malaria controlled by pre-invasion events?” Trends in Parasitology, vol. 23, no. 10, pp. 481–484, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. A. Vaid, D. C. Thomas, and P. Sharma, “Role of Ca2+/calmodulin-PfPKB signaling pathway in erythrocyte invasion by Plasmodium falciparum,” Journal of Biological Chemistry, vol. 283, no. 9, pp. 5589–5597, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. S. C. Murphy, T. Harrison, H. E. Hamm, J. W. Lomasney, N. Mohandas, and K. Haldar, “Erythrocyte G protein as a novel target for malarial chemotherapy,” PLoS Medicine, vol. 3, no. 12, pp. 2403–2415, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. M. T. Duraisingh, A. G. Maier, T. Triglia, and A. F. Cowman, “Erythrocyte-binding antigen 175 mediates invasion in Plasmodium falciparum utilizing sialic acid-dependent and -independent pathways,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 8, pp. 4796–4801, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. A. F. Cowman and B. S. Crabb, “Invasion of red blood cells by malaria parasites,” Cell, vol. 124, no. 4, pp. 755–766, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. K. Lingelbach and K. A. Joiner, “The parasitophorous vacuole membrane surrounding Plasmodium and Toxoplasma: an unusual compartment in infected cells,” Journal of Cell Science, vol. 111, no. 11, pp. 1467–1475, 1998. View at Google Scholar · View at Scopus
  11. P. Preiser, M. Kaviratne, S. Khan, L. Bannister, and W. Jarra, “The apical organelles of malaria merozoites: host cell selection, invasion, host immunity and immune evasion,” Microbes and Infection, vol. 2, no. 12, pp. 1461–1477, 2000. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Bietz, I. Montilla, S. Külzer, J. M. Przyborski, and K. Lingelbach, “Recruitment of human aquaporin 3 to internal membranes in the Plasmodium falciparum infected erythrocyte,” Molecular and Biochemical Parasitology, vol. 167, no. 1, pp. 48–53, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. V. L. Lew, T. Tiffert, and H. Ginsburg, “Excess hemoglobin digestion and the osmotic stability of Plasmodium falciparum-infected red blood cells,” Blood, vol. 101, no. 10, pp. 4189–4194, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. D. A. Elliott, M. T. McIntosh, H. D. Hosgood III et al., “Four distinct pathways of hemoglobin uptake in the malaria parasite Plasmodium falciparum,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 7, pp. 2463–2468, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. R. E. Martin and K. Kirk, “Transport of the essential nutrient isoleucine in human erythrocytes infected with the malaria parasite Plasmodium falciparum,” Blood, vol. 109, no. 5, pp. 2217–2224, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. K. Kirk and K. J. Saliba, “Targeting nutrient uptake mechanisms in Plasmodium,” Current Drug Targets, vol. 8, no. 1, pp. 75–88, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Baumeister, M. Winterberg, J. M. Przyborski, and K. Lingelbach, “The malaria parasite Plasmodium falciparum: cell biological peculiarities and nutritional consequences,” Protoplasma, vol. 240, no. 1–4, pp. 3–12, 2010. View at Publisher · View at Google Scholar
  18. S. M. Huber, A.-C. Uhlemann, N. L. Gamper, C. Duranton, P. G. Kremsner, and F. Lang, “Plasmodium falciparum activates endogenous Cl channels of human erythrocytes by membrane oxidation,” EMBO Journal, vol. 21, no. 1-2, pp. 22–30, 2002. View at Publisher · View at Google Scholar · View at Scopus
  19. S. Baumeister, M. Winterberg, C. Duranton et al., “Evidence for the involvement of Plasmodium falciparum proteins in the formation of new permeability pathways in the erythrocyte membrane,” Molecular Microbiology, vol. 60, no. 2, pp. 493–504, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. A. Merckx, G. Bouyer, S. L. Y. Thomas, G. Langsley, and S. Egée, “Anion channels in Plasmodium-falciparum-infected erythrocytes and protein kinase A,” Trends in Parasitology, vol. 25, no. 3, pp. 139–144, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. M. L. Gazarini, A. P. Thomas, T. Pozzan, and C. R. S. Garcia, “Calcium signaling in a low calcium environment: how the intracellular malaria parasite solves the problem,” Journal of Cell Biology, vol. 161, no. 1, pp. 103–110, 2003. View at Publisher · View at Google Scholar · View at Scopus
  22. B. M. Cooke, K. Lingelbach, L. H. Bannister, and L. Tilley, “Protein trafficking in Plasmodium falciparum-infected red blood cells,” Trends in Parasitology, vol. 20, no. 12, pp. 581–589, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. C. Van Ooij, P. Tamez, S. Bhattacharjee et al., “The malaria secretome: from algorithms to essential function in blood stage infection,” PLoS Pathogens, vol. 4, no. 6, Article ID e1000084, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. A. G. Maier, M. Rug, M. T. O'Neill et al., “Exported proteins required for virulence and rigidity of Plasmodium falciparum-infected human erythrocytes,” Cell, vol. 134, no. 1, pp. 48–61, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. G. L. Starnes and A. P. Waters, “Home improvements: how the malaria parasite makes the red blood cell home sweet home,” Journal of Molecular Cell Biology, vol. 2, no. 1, pp. 11–13, 2010. View at Google Scholar
  26. S. Charpian and J. M. Przyborski, “Protein transport across the parasitophorous vacuole of Plasmodium falciparum: into the great wide open,” Traffic, vol. 9, no. 2, pp. 157–165, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. J. A. Boddey, R. L. Moritz, R. J. Simpson, and A. F. Cowman, “Role of the Plasmodium export element in trafficking parasite proteins to the infected erythrocyte,” Traffic, vol. 10, no. 3, pp. 285–299, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. T. F. de Koning-Ward, P. R. Gilson, J. A. Boddey et al., “A newly discovered protein export machine in malaria parasites,” Nature, vol. 459, no. 7249, pp. 945–949, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. T. Spielmann and T.-W. Gilberger, “Protein export in malaria parasites: do multiple export motifs add up to multiple export pathways?” Trends in Parasitology, vol. 26, no. 1, pp. 6–10, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. L. Tilley, R. Sougrat, T. Lithgow, and E. Hanssen, “The twists and turns of Maurer's cleft trafficking in P. falciparum-infected erythrocytes,” Traffic, vol. 9, no. 2, pp. 187–197, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. S. Bhattacharjee, C. Van Ooij, B. Balu, J. H. Adams, and K. Haldar, “Maurer's clefts of Plasmodium falciparum are secretory organelles that concentrate virulence protein reporters for delivery to the host erythrocyte,” Blood, vol. 111, no. 4, pp. 2418–2426, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. T. Y. Sam-Yellowe, “The role of the Maurer's clefts in protein transport in Plasmodium falciparum,” Trends in Parasitology, vol. 25, no. 6, pp. 277–284, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. H. Wickert and G. Krohne, “The complex morphology of Maurer's clefts: from discovery to three-dimensional reconstructions,” Trends in Parasitology, vol. 23, no. 10, pp. 502–509, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. P. A. Tamez, S. Bhattacharjee, C. Van Ooij et al., “An erythrocyte vesicle protein exported by the malaria parasite promotes tubovesicular lipid import from the host cell surface,” PLoS Pathogens, vol. 4, no. 8, Article ID e1000118, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. S. Arastu-Kapur, E. L. Ponder, U. P. Fonović et al., “Identification of proteases that regulate erythrocyte rupture by the malaria parasite Plasmodium falciparum,” Nature Chemical Biology, vol. 4, no. 3, pp. 203–213, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. M. C. S. Lee and D. A. Fidock, “Arresting malaria parasite egress from infected red blood cells,” Nature Chemical Biology, vol. 4, no. 3, pp. 161–162, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. M. Klemba, I. Gluzman, and D. E. Goldberg, “A Plasmodium falciparum dipeptidyl aminopeptidase I participates in vacuolar hemoglobin degradation,” Journal of Biological Chemistry, vol. 279, no. 41, pp. 43000–43007, 2004. View at Publisher · View at Google Scholar · View at Scopus
  38. L. H. Miller, M. F. Good, and G. Milon, “Malaria pathogenesis,” Science, vol. 264, no. 5167, pp. 1878–1883, 1994. View at Google Scholar · View at Scopus
  39. A. M. Dondorp, S. J. Lee, M. A. Faiz et al., “The relationship between age and the manifestations of and mortality associated with severe malaria,” Clinical Infectious Diseases, vol. 47, no. 2, pp. 151–157, 2008. View at Publisher · View at Google Scholar · View at Scopus
  40. K. Marsh, D. Forster, C. Waruiru et al., “Indicators of life-threatening malaria in African children,” New England Journal of Medicine, vol. 332, no. 21, pp. 1399–1404, 1995. View at Publisher · View at Google Scholar · View at Scopus
  41. J. A. Rowe, A. Claessens, R. A. Corrigan, and M. Arman, “Adhesion of Plasmodium falciparum-infected erythrocytes to human cells: molecular mechanisms and therapeutic implications,” Expert Reviews in Molecular Medicine, vol. 11, p. e16, 2009. View at Publisher · View at Google Scholar · View at Scopus
  42. L. H. Miller, D. I. Baruch, K. Marsh, and O. K. Doumbo, “The pathogenic basis of malaria,” Nature, vol. 415, no. 6872, pp. 673–679, 2002. View at Publisher · View at Google Scholar · View at Scopus
  43. D. J. Roberts, A. G. Craig, A. R. Berendt et al., “Rapid switching to multiple antigenic and adhesive phenotypes in malaria,” Nature, vol. 357, no. 6380, pp. 689–692, 1992. View at Publisher · View at Google Scholar · View at Scopus
  44. J. D. Smith, G. Subramanian, B. Gamain, D. I. Baruch, and L. H. Miller, “Classification of adhesive domains in the Plasmodium falciparum erythrocyte membrane protein 1 family,” Molecular and Biochemical Parasitology, vol. 110, no. 2, pp. 293–310, 2000. View at Publisher · View at Google Scholar · View at Scopus
  45. S. A. Kyes, S. M. Kraemer, and J. D. Smith, “Antigenic variation in Plasmodium falciparum: gene organization and regulation of the var multigene family,” Eukaryotic Cell, vol. 6, no. 9, pp. 1511–1520, 2007. View at Publisher · View at Google Scholar · View at Scopus
  46. P. E. Duffy, “Plasmodium in the placenta: parasites, parity, protection, prevention and possibly preeclampsia,” Parasitology, vol. 134, no. 13, pp. 1877–1881, 2007. View at Publisher · View at Google Scholar · View at Scopus
  47. S. J. Rogerson and P. Boeuf, “New approaches to pathogenesis of malaria in pregnancy,” Parasitology, vol. 134, no. 13, pp. 1883–1893, 2007. View at Publisher · View at Google Scholar · View at Scopus
  48. T. N. Williams, “Red blood cell defects and malaria,” Molecular and Biochemical Parasitology, vol. 149, no. 2, pp. 121–127, 2006. View at Publisher · View at Google Scholar · View at Scopus
  49. A. G. Maier, M. T. Duraisingh, J. C. Reeder et al., “Plasmodium falciparum erythrocyte invasion through glycophorin C and selection for Gerbich negativity in human populations,” Nature Medicine, vol. 9, no. 1, pp. 87–92, 2003. View at Publisher · View at Google Scholar · View at Scopus
  50. J. A. Stoute, “Complement-regulatory proteins in severe malaria: too little or too much of a good thing?” Trends in Parasitology, vol. 21, no. 5, pp. 218–223, 2005. View at Publisher · View at Google Scholar · View at Scopus
  51. A. E. Fry, M. J. Griffiths, S. Auburn et al., “Common variation in the ABO glycosyltransferase is associated with susceptibility to severe Plasmodium falciparum malaria,” Human Molecular Genetics, vol. 17, no. 4, pp. 567–576, 2008. View at Publisher · View at Google Scholar · View at Scopus
  52. M. Cappellini and G. Fiorelli, “Glucose-6-phosphate dehydrogenase deficiency,” The Lancet, vol. 371, no. 9606, pp. 64–74, 2008. View at Publisher · View at Google Scholar · View at Scopus
  53. K. Ayi, G. Min-Oo, L. Serghides et al., “Pyruvate kinase deficiency and malaria,” New England Journal of Medicine, vol. 358, no. 17, pp. 1805–1810, 2008. View at Publisher · View at Google Scholar · View at Scopus
  54. R. Cholera, N. J. Brittain, M. R. Gillrie et al., “Impaired cytoadherence of Plasmodium falciparum-infected erythrocytes containing sickle hemoglobin,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 3, pp. 991–996, 2008. View at Publisher · View at Google Scholar · View at Scopus
  55. R. M. Fairhurst, D. I. Baruch, N. J. Brittain et al., “Abnormal display of PfEMP-1 on erythrocytes carrying haemoglobin C may protect against malaria,” Nature, vol. 435, no. 7045, pp. 1117–1121, 2005. View at Publisher · View at Google Scholar · View at Scopus
  56. N. F. Olivieri, G. M. Muraca, A. O'Donnell, A. Premawardhena, C. Fisher, and D. J. Weatherall, “Studies in haemoglobin E beta-thalassaemia,” British Journal of Haematology, vol. 141, no. 3, pp. 388–397, 2008. View at Publisher · View at Google Scholar · View at Scopus
  57. S. E. Bongfen, A. Laroque, J. Berghout, and P. Gros, “Genetic and genomic analyses of host-pathogen interactions in malaria,” Trends in Parasitology, vol. 25, no. 9, pp. 417–422, 2009. View at Publisher · View at Google Scholar · View at Scopus
  58. A. C. Allison, “Genetic control of resistance to human malaria,” Current Opinion in Immunology, vol. 21, no. 5, pp. 499–505, 2009. View at Publisher · View at Google Scholar · View at Scopus
  59. T. N. Williams, T. W. Mwangi, S. Wambua et al., “Negative epistasis between the malaria-protective effects of α+-thalassemia and the sickle cell trait,” Nature Genetics, vol. 37, no. 11, pp. 1253–1257, 2005. View at Publisher · View at Google Scholar · View at Scopus
  60. I. A. Cockburn, M. J. Mackinnon, A. O'Donnell et al., “A human complement receptor 1 polymorphism that reduces Plasmodium falciparum rosetting confers protection against severe malaria,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 1, pp. 272–277, 2004. View at Publisher · View at Google Scholar · View at Scopus