Table of Contents Author Guidelines Submit a Manuscript
Modelling and Simulation in Engineering
Volume 2011 (2011), Article ID 274947, 15 pages
http://dx.doi.org/10.1155/2011/274947
Research Article

Computation of Ice Shedding Trajectories Using Cartesian Grids, Penalization, and Level Sets

1IPB, Université de Bordeaux, INRIA Bordeaux Sud-Ouest, Equipe-Projet MC2, IMB UMR 5251, 351 Cours de la Libération, 33405 Talence, France
2Département de Génie Mécanique, École de Technologie Supérieure, 1100 Rue Notre-Dame Ouest, Montréal, QC, Canada H3C 1K3
3Optimad Engineering s.r.l., Via Giacinto Collegno, 18, 10143 Turin, Italy
4Université de Bordeaux, INRIA Bordeaux Sud-Ouest, Equipe-Projet MC2, IMB UMR 5251, 351 Cours de la Libération, 33405 Talence, France

Received 16 November 2010; Accepted 25 January 2011

Academic Editor: Guan Yeoh

Copyright © 2011 Héloïse Beaugendre et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

We propose to model ice shedding trajectories by an innovative paradigm that is based on cartesian grids, penalization and level sets. The use of cartesian grids bypasses the meshing issue, and penalization is an efficient alternative to explicitly impose boundary conditions so that the body-fitted meshes can be avoided, making multifluid/multiphysics flows easy to set up and simulate. Level sets describe the geometry in a nonparametric way so that geometrical and topological changes due to physics and in particular shed ice pieces are straight forward to follow. The model results are verified against the case of a free falling sphere. The capabilities of the proposed model are demonstrated on ice trajectories calculations for flow around iced cylinder and airfoil.