Table of Contents Author Guidelines Submit a Manuscript
Modelling and Simulation in Engineering
Volume 2012, Article ID 264213, 11 pages
http://dx.doi.org/10.1155/2012/264213
Research Article

Design of Wideband MIMO Car-to-Car Channel Models Based on the Geometrical Street Scattering Model

Faculty of Engineering and Science, University of Agder, P.O. Box 509, 4898 Grimstad, Norway

Received 2 May 2012; Revised 28 August 2012; Accepted 5 September 2012

Academic Editor: Neji Youssef

Copyright © 2012 Nurilla Avazov and Matthias Pätzold. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

We propose a wideband multiple-input multiple-output (MIMO) car-to-car (C2C) channel model based on the geometrical street scattering model. Starting from the geometrical model, a MIMO reference channel model is derived under the assumption of single-bounce scattering in line-of-sight (LOS) and non-LOS (NLOS) propagation environments. The proposed channel model assumes an infinite number of scatterers, which are uniformly distributed in two rectangular areas located on both sides of the street. Analytical solutions are presented for the space-time-frequency cross-correlation function (STF-CCF), the two-dimensional (2D) space CCF, the time-frequency CCF (TF-CCF), the temporal autocorrelation function (ACF), and the frequency correlation function (FCF). An efficient sum-of-cisoids (SOCs) channel simulator is derived from the reference model. It is shown that the temporal ACF and the FCF of the SOC channel simulator fit very well to the corresponding correlation functions of the reference model. To validate the proposed channel model, the mean Doppler shift and the Doppler spread of the reference model have been matched to real-world measurement data. The comparison results demonstrate an excellent agreement between theory and measurements, which confirms the validity of the derived reference model. The proposed geometry-based channel simulator allows us to study the effect of nearby street scatterers on the performance of C2C communication systems.