Table of Contents Author Guidelines Submit a Manuscript
Modelling and Simulation in Engineering
Volume 2016 (2016), Article ID 8543616, 6 pages
http://dx.doi.org/10.1155/2016/8543616
Research Article

Numerical Investigation of Pull-In Instability in a Micro-Switch MEMS Device through the Pseudo-Spectral Method

Dipartimento di Scienze e Metodi dell’Ingegneria (DISMI), Universitá degli Studi di Modena e Reggio Emilia, Via G. Amendola 2, 42122 Reggio Emilia, Italy

Received 4 December 2015; Revised 10 May 2016; Accepted 5 October 2016

Academic Editor: Julius Kaplunov

Copyright © 2016 P. Di Maida and G. Bianchi. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. V. A. Salomoni, C. E. Majorana, G. M. Giannuzzi, and A. Miliozzi, “Thermal-fluid flow within innovative heat storage concrete systems for solar power plants,” International Journal of Numerical Methods for Heat and Fluid Flow, vol. 18, no. 7-8, pp. 969–999, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. A. Nobili, L. Lanzoni, and A. M. Tarantino, “Experimental investigation and monitoring of a polypropylene-based fiber reinforced concrete road pavement,” Construction and Building Materials, vol. 47, pp. 888–895, 2013. View at Publisher · View at Google Scholar · View at Scopus
  3. V. A. Salomoni, C. E. Majorana, B. Pomaro, G. Xotta, and F. Gramegna, “Macroscale and mesoscale analysis of concrete as a multiphase material for biological shields against nuclear radiation,” International Journal for Numerical and Analytical Methods in Geomechanics, vol. 38, no. 5, pp. 518–535, 2014. View at Publisher · View at Google Scholar · View at Scopus
  4. G. Dinelli, G. Belz, C. E. Majorana, and B. A. Schrefler, “Experimental investigation on the use of fly ash for lightweight precast structural elements,” Materials and Structures, vol. 29, no. 194, pp. 632–638, 1996. View at Google Scholar · View at Scopus
  5. P. Bisegna and R. Luciano, “Bounds on the overall properties of composites with debonded frictionless interfaces,” Mechanics of Materials, vol. 28, no. 1–4, pp. 23–32, 1998. View at Publisher · View at Google Scholar · View at Scopus
  6. A. Nobili and A. M. Tarantino, “Magnetostriction of a hard ferromagnetic and elastic thin-film structure,” Mathematics and Mechanics of Solids, vol. 13, no. 2, pp. 95–123, 2008. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  7. A. Kudaibergenov, A. Nobili, and L. Prikazchikova, “On low-frequency vibrations of a composite string with contrast properties for energy scavenging fabric devices,” Journal of Mechanics of Materials and Structures, vol. 11, no. 3, pp. 231–243, 2016. View at Publisher · View at Google Scholar
  8. J. Kaplunov and A. Nobili, “Multi-parametric analysis of strongly inhomogeneous periodic waveguideswith internal cutoff frequencies,” Mathematical Methods in the Applied Sciences, 2016. View at Publisher · View at Google Scholar
  9. W.-M. Zhang, H. Yan, Z.-K. Peng, and G. Meng, “Electrostatic pull-in instability in MEMS/NEMS: a review,” Sensors and Actuators A: Physical, vol. 214, pp. 187–218, 2014. View at Publisher · View at Google Scholar · View at Scopus
  10. Y. Zhang and Y.-P. Zhao, “Static study of cantilever beam stiction under electrostatic force influence,” Acta Mechanica Solida Sinica, vol. 17, no. 2, pp. 104–112, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. L. C. Wei, A. B. Mohammad, and N. M. Kassim, “Analytical modeling for determination of pull-in voltage for an electrostatic actuated MEMS cantilever beam,” in Proceedings of the 5th IEEE International Conference on Semiconductor Electronics (ICSE '02), pp. 233–238, IEEE, Penang, Malaysia, December 2002. View at Scopus
  12. S. Chowdhury, M. Ahmadi, and W. C. Miller, “A closed-form model for the pull-in voltage of electrostatically actuated cantilever beams,” Journal of Micromechanics and Microengineering, vol. 15, no. 4, pp. 756–763, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. H. Sadeghian, G. Rezazadeh, and P. M. Osterberg, “Application of the generalized differential quadrature method to the study of pull-in phenomena of MEMS switches,” Journal of Microelectromechanical Systems, vol. 16, no. 6, pp. 1334–1340, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. A. Ramezani, A. Alasty, and J. Akbari, “Closed-form solutions of the pull-in instability in nano-cantilevers under electrostatic and intermolecular surface forces,” International Journal of Solids and Structures, vol. 44, no. 14-15, pp. 4925–4941, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. A. M. Tarantino, “On the finite motions generated by a mode I propagating crack,” Journal of Elasticity, vol. 57, no. 2, pp. 85–103, 1999. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  16. A. M. Tarantino, “Nonlinear fracture mechanics for an elastic Bell material,” The Quarterly Journal of Mechanics and Applied Mathematics, vol. 50, no. 3, pp. 435–456, 1997. View at Publisher · View at Google Scholar · View at MathSciNet
  17. R. Luciano and J. R. Willis, “Hashin-Shtrikman based FE analysis of the elastic behaviour of finite random composite bodies,” International Journal of Fracture, vol. 137, no. 1–4, pp. 261–273, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Nobili, E. Radi, and L. Lanzoni, “A cracked infinite Kirchhoff plate supported by a two-parameter elastic foundation,” Journal of the European Ceramic Society, vol. 34, no. 11, pp. 2737–2744, 2014. View at Publisher · View at Google Scholar · View at Scopus
  19. L. Lanzoni and E. Radi, “Thermally induced deformations in a partially coated elastic layer,” International Journal of Solids and Structures, vol. 46, no. 6, pp. 1402–1412, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. V. Guidi, L. Lanzoni, and A. Mazzolari, “Patterning and modeling of mechanically bent silicon plates deformed through coactive stresses,” Thin Solid Films, vol. 520, no. 3, pp. 1074–1079, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. N. Tullini, A. Tralli, and L. Lanzoni, “Intefacial shear stress analysis of bar and thin film bonded to 2D elastic substrate using a coupled FE-BIE method,” Finite Elements in Analysis and Design, vol. 55, pp. 42–51, 2012. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  22. C. H. Mastrangelo, Suppression of Stiction in MEMS, vol. 605 of MRS Proceedings, Cambridge University Press, Cambridge, UK, 1999.
  23. W. Merlijn Van Spengen, R. Puers, and I. De Wolf, “A physical model to predict stiction in MEMS,” Journal of Micromechanics and Microengineering, vol. 12, no. 5, pp. 702–713, 2002. View at Publisher · View at Google Scholar · View at Scopus
  24. Z. Yapu, “Stiction and anti-stiction in MEMS and NEMS,” Acta Mechanica Sinica, vol. 19, no. 1, pp. 1–10, 2003. View at Publisher · View at Google Scholar · View at Scopus
  25. G. Xotta, G. Mazzucco, V. A. Salomoni, C. E. Majorana, and K. J. Willam, “Composite behavior of concrete materials under high temperatures,” International Journal of Solids and Structures, vol. 64, pp. 86–99, 2015. View at Publisher · View at Google Scholar · View at Scopus
  26. F. Marotti de Sciarra and M. Salerno, “On thermodynamic functions in thermoelasticity without energy dissipation,” European Journal of Mechanics—A: Solids, vol. 46, pp. 84–95, 2014. View at Google Scholar
  27. A. Nobili, “On the generalization of the Timoshenko beam model based on the micropolar linear theory: static case,” Mathematical Problems in Engineering, vol. 2015, Article ID 914357, 8 pages, 2015. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  28. G. Napoli and A. Nobili, “Mechanically induced Helfrich-Hurault effect in lamellar systems,” Physical Review E, vol. 80, no. 3, Article ID 031710, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. J. P. Boyd, Chebyshev and Fourier Spectral Methods, Dover Publications, 2nd edition, 2000.
  30. F. Greco and R. Luciano, “A theoretical and numerical stability analysis for composite micro-structures by using homogenization theory,” Composites—Part B: Engineering, vol. 42, no. 3, pp. 382–401, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. A. D. Polyanin and V. F. Zaitsev, Handbook of Exact Solutions for Ordinary Differential Equations, CRC Press, Boca Raton, Fla, USA, 1st edition, 1995.
  32. P. L. Sachdev, Nonlinear Ordinary Differential Equations and Their Applications, Marcel Dekker, 1991. View at MathSciNet
  33. D. Funaro, Polynomial Approximation of Differential Equations, vol. 8 of Lecture Notes in Physics, Springer, 1992. View at MathSciNet
  34. R. Barretta, L. Feo, R. Luciano, and F. Marotti de Sciarra, “Variational formulations for functionally graded nonlocal Bernoulli-Euler nanobeams,” Composite Structures, vol. 129, pp. 80–89, 2015. View at Publisher · View at Google Scholar · View at Scopus
  35. R. Barretta, L. Feo, R. Luciano, and F. Marotti de Sciarra, “A gradient Eringen model for functionally graded nanorods,” Composite Structures, vol. 131, pp. 1124–1131, 2015. View at Publisher · View at Google Scholar · View at Scopus
  36. R. Barretta, L. Feo, and R. Luciano, “Some closed-form solutions of functionally graded beams undergoing nonuniform torsion,” Composite Structures, vol. 123, pp. 132–136, 2015. View at Publisher · View at Google Scholar · View at Scopus
  37. R. Barretta and R. Luciano, “Exact solutions of isotropic viscoelastic functionally graded Kirchhoff plates,” Composite Structures, vol. 118, no. 1, pp. 448–454, 2014. View at Publisher · View at Google Scholar · View at Scopus
  38. A. Apuzzo, R. Barretta, and R. Luciano, “Some analytical solutions of functionally graded Kirchhoff plates,” Composites Part B: Engineering, vol. 68, pp. 266–269, 2015. View at Publisher · View at Google Scholar · View at Scopus
  39. L. Dezi, G. Menditto, and A. M. Tarantino, “Homogeneous structures subjected to repeated structural system changes,” Journal of Engineering Mechanics, vol. 116, no. 8, pp. 1723–1732, 1990. View at Publisher · View at Google Scholar · View at Scopus
  40. L. Dezi and A. M. Tarantino, “Time-dependent analysis of concrete structures with a variable structural system,” ACI Materials Journal, vol. 88, no. 3, pp. 320–324, 1991. View at Google Scholar · View at Scopus
  41. L. Dezi, G. Menditto, and A. M. Tarantino, “Viscoelastic heterogeneous structures with variable structural system,” Journal of Engineering Mechanics, vol. 119, no. 2, pp. 238–250, 1993. View at Publisher · View at Google Scholar · View at Scopus
  42. R. Barretta, L. Feo, and R. Luciano, “Torsion of functionally graded nonlocal viscoelastic circular nanobeams,” Composites Part B: Engineering, vol. 72, pp. 217–222, 2015. View at Publisher · View at Google Scholar · View at Scopus