Modelling and Simulation in Engineering

Modelling and Simulation in Engineering / 2021 / Article

Research Article | Open Access

Volume 2021 |Article ID 9944565 | https://doi.org/10.1155/2021/9944565

Phu Tran Tin, Van-Duc Phan, Phu X. Nguyen, Thanh-Long Nguyen, Dong-Si Thien Chau, Tan N. Nguyen, "Outage Analysis in SWIPT-Based Decode-and-Forward Relay Networks with Partial Relay Selection", Modelling and Simulation in Engineering, vol. 2021, Article ID 9944565, 7 pages, 2021. https://doi.org/10.1155/2021/9944565

Outage Analysis in SWIPT-Based Decode-and-Forward Relay Networks with Partial Relay Selection

Academic Editor: Dimitrios E. Manolakos
Received22 Mar 2021
Revised10 May 2021
Accepted11 Jun 2021
Published28 Jun 2021

Abstract

This work studies the SWIPT-based half-duplex (HD) decode-and-forward (DF) relay network, wherein the relay user can scavenge power from the source’s radio-frequency (RF) signals and then utilize it to convey the information to the destination. Specifically, two SWIPT-based relaying schemes, termed static power splitting- (SPS-) based relaying (SPSR) and optimal dynamic power splitting- (DPS-) based relaying (ODPSR), are proposed to investigate the benefits of each one fully. Based on the above discussions, the relaying system’s performance for outage probability (OP) is studied. Concretely, we derive the analytical expressions for both SPSR and DPSR methods. Finally, the numerical simulations are executed to corroborate the analysis and simulation results.

1. Introduction

With the unprecedented growth of wireless data traffic and IoT devices (IoTDs), energy consumption in wireless communications has increased significantly in the last few decades [14]. As reported in [57], the number of IoT users is estimated to reach 11.6 billion and 25 billion by 2021 and 2025, respectively. Nevertheless, IoTDs often have battery capacity limitations, which restrict the total operation time. Moreover, battery recharging and/or replacement can be expensive and even impossible such as inside human bodies or toxic environments. Fortunately, energy harvesting (EH) has emerged as a promising technique to overcome these issues [8]. In particular, radio frequency (RF) EH has received significant attention from both industry and academia recently because it does not depend on natural weather, i.e., solar [9], wind [10], and water [8], and is controllable [1127]. Notably, RF signals can bring both information and energy to the receiver simultaneously, termed SWIPT. Varshney is a pioneer of the SWIPT concept [23]. Then, Zhang and Ho [13] proposed practical system models for SWIPT, namely, time-switching (TS) and power-splitting (PS) methods. Based on TS and PS in [13], Nasir et al. [16] proposed two relaying protocols, termed time switching-based relaying (TSR) protocol and power splitting-based relaying (PSR) protocol, to introduce EH and data transmission at the relay node in cooperative wireless networks. In [24, 25], the authors investigated the dynamic PS-based SWIPT with dual-hop decode-and-forward (DF) relaying in the presence of a direct link. Specifically, they derived the exact closed-form expressions for outage probability (OP) and ergodic capacity (EC). Besides, they derived the optimal value of PS to minimize the OP at a given threshold rate. Shi et al. [26] studied a SWIPT-based three-step two-way DF relay network with a nonlinear energy harvester equipped at a relay. Specifically, they derived the closed-form expressions for OP and network capacity, where the PS ratio is dynamically changed according to the instantaneous channel state information (CSI). Ye et al. [27] designed optimal static and dynamic transmission schemes in SWIPT-based DF relay networks. Concretely, they obtained the optimal values of time allocation (TA) and PS ratios via solving two optimization problems, namely, outage probability minimization and instantaneous channel capacity maximization.

This work analyzed the performance of the SWIPT-based half-duplex (HD) DF relay system, whereas the relay user scavenges power from the source RF signals and then uses it to transmit data to the destination. This research’s contributions are given as follows: (i)We propose a novel system model of a SWIPT-enabled DF relaying network with the PSR protocol. Moreover, we propose two SWIPT-based relaying schemes, namely, SPS-based relaying (SPSR) and optimal DPS-based relaying (ODPSR), to study each one’s advantages fully(ii)Based on the proposed system model, we derive the analysis expressions of outage probability for SPSR and ODPSR schemes(iii)The Monte Carlo simulations are presented to corroborate the mathematic analysis. Specifically, we also present an insightful analysis of the effectiveness of different system parameters on the system performance, i.e., source transmit power, number of relay nodes, energy harvesting coefficient, and rate threshold

The remainder of this paper is structured. The system model of the SWIPT-assisted DF relay system is presented in Section 2. Then, the OP analysis is given in Section 3. Simulation results are described in Section 4.

2. System Model

2.1. Energy Harvesting and Transmission Model

We consider a SWIPT-assisted DF relaying network as in Figure 1, with one source ; multiple relays, denoted by with ; and one destination . Furthermore, the direct transmission link from is missing due to heavy obstacles. Further, , relays, and are equipped with one antenna and operate on the HD mode. Notably, the relay node can harvest energy from the source’s RF signals. Then, the selected relay uses the harvested energy for relaying the source’s data to the destination. As shown in Figure 2, the total operation time is divided into two equal parts, i.e., . In the first half of the time, the relay node harvests energy from a part of the source’s signals, i.e., , using the power-splitting method, where denotes the power-switching factor. The remained power, i.e., is used for information decoding. In the remaining half of the time, the selected relay uses all harvested energy for relaying information to the destination . Further, we assume that the channel between two arbitrary nodes is a block Rayleigh fading.

Let us denote and as the channel coefficients of the and links, respectively.

Assume that all of the channels are Rayleigh fading. Hence, the channel gains and are exponential random variables (RVs) whose CDF are given as

To take the path-loss model into account, we have where and are link distances of the and links, respectively.

Then, the PDFs of , are given, respectively, as

The received signal at the relay -th can be expressed as where is the energy symbol with which denotes the expectation operation. is the zero mean additive white Gaussian noise (AWGN) with variance .

The transmit power at relay can be computed as [12] where is the transmit power at the source .

The received signal at the destination can be given as where is the zero mean AWGN with variance .

From (4), the signal-to-noise ratio (SNR) at the relay -th node can be derived by where

From (6), the SNR at the destination can be obtained as

Finally, the overall SNR and capacity of the system and can be, respectively, given by

2.2. Partial Relay Selection (PRS)

In this paper, we apply the partial relay selection (PRS) method to improve communication performance. Specifically, the best relay can be selected among relay nodes as follows:

From (10), the relay with the best channel from the source node to itself is selected as the best relay.

The CDF can be given by

By considering the independent and identical distributed (i.i.d.) random variables (RVs), i.e., , equation (11) can be rewritten as where

3. Outage Probability (OP) Analysis

3.1. Case 1: Static Power Splitting-Based Relaying

The OP at the destination can be defined as where , and is the deterministic threshold rate.

By combining with (7) and (8), (13) can be rewritten as where

By applying (12), (14) can be obtained as

3.2. Case 2: Optimal Dynamic Power Splitting-Based Relaying

From (9), in order to enhance the system quality, we will try to find the optimal value to maximize . Because we consider the DF protocol in our model, the can be calculated by solving the following equation [28]:

Substituting (16) into (7), the OP in this case can be expressed by

By applying (12), (17) can be reformulated as

Finally, with the help of ([29], 3.324.1), can be claimed by where is the modified Bessel function of the second kind and -th order.

4. Simulation Results

This part presents the numerical results to show the impacts of various parameters on the outage performance for the proposed SWIPT-enabled DF relaying network with PSR using Monte Carlo simulations [28, 3034]. Without loss of generality, we assume that the distances between and are equal to the unit value. The mean values of channel gain coefficients and , respectively, equal to 0.5 and 1; value varies from -5 to 15 dB; and the energy harvesting coefficient is . The simulation results for outage probability are obtained by averaging it over 106 samples for each Rayleigh fading channel.

Figure 3 depicts the outage of the proposed system for varying (dB). It can be seen that the performance of the optimal DPS-based relaying (ODPSR) is better than that of SPS-based relaying (SPSR) with equals 0.25 and 0.75. Further, when the value of is less than 6 dB, the OP of the SPSR with is better than that of the SPSR with . Nevertheless, when the value of is higher than 6 dB, the outage performance of the SPSR with is worse than that of the SPSR with Further, the increasing of the value significantly influences the OP of all schemes. It is expected because the value of is defined as the ratio between the source’s transmit power and noise power. Therefore, the higher the value is, the more the source’s transmit power. As a result, the destination can obtain a larger data rate, which reduces the outage value.

In Figure 4, we study the outage probability as a function of the number of relay nodes (). As expected, the performance of the ODPSR method obtains the best results as compared with that of the SPS methods, i.e., SPSR with equals 0.45 and 0.65. This is due to the fact that the ODPSR scheme is aimed at finding the optimal value of to maximize the received capacity at the destination. Another interesting point is that when the number of relays is less than 8, the SPSR with equal to 0.45 achieves a lower outage value than the SPSR with equal to 0.65. Otherwise, when the number of relays is higher than or equals 8, the SPSR with equal to 0.45 attains a higher OP value than the SPSR with equal to 0.65.

Figure 5 illustrates the OP of ODPSR and SPSR versus energy harvesting efficiency with , and . From Figure 5, we see that there is good agreement between the mathematical analysis and numerical results. As is shown in this figure, when increases, the OP decreases because the harvested energy at the relay is proportional to the energy harvesting efficiency. Moreover, this can be interpreted by its expression in equations (5) and (8). Specifically, the higher the value is, the larger the destination’s data rate that can be obtained. Thus, the outage performance can be improved.

Figure 6 shows the OP as a function of , with , and . As shown in Figure 6, the value of significantly influences the outage performance. Specifically, the higher the value of is, the worse is the performance obtained. This can be explained that the higher the value ofis, the larger the transmission rate that is needed to decode the received signals at the destination successfully. However, the received rate is unchanged due to the limited transmit power at the source. Further, it is also observed that the OP value converges to a saturation value when the is large enough, i.e.,  bps/Hz.

5. Conclusions and Future Directions

This work proposed a new PSR protocol for a SWIPT-enabled relaying network over DF-based Rayleigh fading channels. The system model included one source, multiple relays, and one destination for the data transmission from source to destination . To find the best relay node, we proposed one partial relay selection protocol. Based on the proposed system model, we derive the analytical expressions of outage probability for both SPSR and ODPSR schemes. Then, we investigated the influence of all designed parameters on the system performance by using a Monte Carlo simulation. Numerical results showed that the ODPSR was better compared with SPSR schemes. This work can be extended in future work by considering satellite communications, hardware impairment, or NOMA. Another promising direction is to consider the nonlinear energy harvesting model or jointly consider time allocation and the PS ratio that can boost the performance for the DF relaying network, which requires many challenges.

Data Availability

There is no available data in our work.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Authors’ Contributions

The main contribution of Phu Tran Tin (phutrantin@iuh.edu.vn) was to execute performance evaluations by theoretical analysis and simulations, while Phan Van-Duc (duc.pv@vlu.edu.vn.), Phu X. Nguyen (phunx4@fpt.edu.vn, phunx4@fe.edu.vn), and Tan N. Nguyen (nguyennhattan@tdtu.edu.vn) worked as the supervisors of Phu Tran Tin. Thanh-Long Nguyen and Dong-Si Thien Chau (dongsithienchau@tdtu.edu.vn) helped us to improve the manuscript in a revised version.

Acknowledgments

This research was supported by the Industrial University of Ho Chi Minh City (IUH), Vietnam, under grant No. 72/HD-DHCN.

References

  1. W. Lu, P. Si, G. Huang et al., “SWIPT cooperative spectrum sharing for 6G-enabled cognitive IoT network,” IEEE Internet of Things Journal, 2020. View at: Publisher Site | Google Scholar
  2. P. X. Nguyen, D.-H. Tran, O. Onireti et al., “Backscatter-assisted data offloading in OFDMA-based wireless powered mobile edge computing for IoT networks,” IEEE Internet of Things Journal, vol. 8, no. 11, pp. 9233–9243, 2021. View at: Publisher Site | Google Scholar
  3. Y. Hu, Y. Zhu, M. C. Gursoy, and A. Schmeink, “SWIPT-enabled relaying in IoT networks operating with finite blocklength codes,” IEEE Journal on Selected Areas in Communications, vol. 37, no. 1, pp. 74–88, 2019. View at: Publisher Site | Google Scholar
  4. Z. Hasan, H. Boostanimehr, and V. K. Bhargava, “Green cellular networks: a survey, some research issues and challenges,” IEEE Communications Surveys & Tutorials, vol. 13, no. 4, pp. 524–540, 2011. View at: Publisher Site | Google Scholar
  5. Cisco, Cisco visual networking index: global mobile data traffic forecast update, 2016-2021, white paper, Cisco, San Jose, CA, USA, 2017.
  6. D.-H. Tran, V.-D. Nguyen, S. Gautam, S. Chatzinotas, T. X. Vu, and B. Ottersten, “Resource allocation for UAV relay-assisted IoT communication networks,” in 2020 IEEE Globecom Workshops (GC Workshops), pp. 1–7, Taipei, Taiwan, 2020. View at: Publisher Site | Google Scholar
  7. Ericsson, Ericsson mobility report: November 2019, Ericsson, Stockholm, Sweden, 2019.
  8. D. Fooladivanda, A. D. Domínguez-García, and P. W. Sauer, “Utilization of water supply networks for harvesting renewable energy,” IEEE Transactions on Control of Network Systems, vol. 6, no. 2, pp. 763–774, 2019. View at: Publisher Site | Google Scholar
  9. T. Hieu, L. Dung, and B. S. Kim, “Stability-aware geographic routing in energy harvesting wireless sensor networks,” Sensors, vol. 16, no. 5, p. 696, 2016. View at: Publisher Site | Google Scholar
  10. L. Zhao, L. Tang, J. Liang, and Y. Yang, “Synergy of wind energy harvesting and synchronized switch harvesting interface circuit,” IEEE/ASME Transactions on Mechatronics, vol. 22, no. 2, pp. 1093–1103, 2017. View at: Publisher Site | Google Scholar
  11. T. N. Nguyen, P. T. Tran, and M. Voznak, “Wireless energy harvesting meets receiver diversity: a successful approach for two-way half-duplex relay networks over block Rayleigh fading channel,” Computer Networks, vol. 172, p. 107176, 2020. View at: Publisher Site | Google Scholar
  12. D. H. Ha, C. Dong, T. N. Nguyen, T. T. Trang, and M. Voznak, “Half-duplex energy harvesting relay network over different fading environment: system performance with effect of hardware impairment,” Applied Sciences, vol. 9, no. 11, p. 2283, 2019. View at: Publisher Site | Google Scholar
  13. R. Zhang and C. K. Ho, “MIMO broadcasting for simultaneous wireless information and power transfer,” IEEE Transactions on Wireless Communications, vol. 12, no. 5, pp. 1989–2001, 2013. View at: Publisher Site | Google Scholar
  14. T. D. Hieu, T. T. Duy, and B. S. Kim, “Performance enhancement for multi-hop harvest-to-transmit WSNs with path-selection methods in presence of eavesdroppers and hardware noises,” IEEE Sensors Journal, vol. 18, no. 12, pp. 5173–5186, 2018. View at: Publisher Site | Google Scholar
  15. P. T. Tin, B. H. Dinh, T. N. Nguyen, D. H. Ha, and T. T. Trang, “Power beacon-assisted energy harvesting wireless physical layer cooperative relaying networks: performance analysis,” Symmetry, vol. 12, no. 1, p. 106, 2020. View at: Publisher Site | Google Scholar
  16. A. A. Nasir, X. Zhou, S. Durrani, and R. A. Kennedy, “Relaying protocols for wireless energy harvesting and information processing,” IEEE Transactions on Wireless Communications, vol. 12, no. 7, pp. 3622–3636, 2013. View at: Publisher Site | Google Scholar
  17. T. Hieu, T. Duy, L. Dung, and S. Choi, “Performance evaluation of relay selection schemes in beacon-assisted dual-hop cognitive radio wireless sensor networks under impact of hardware noises,” Sensors, vol. 18, no. 6, p. 1843, 2018. View at: Publisher Site | Google Scholar
  18. S. Atapattu and J. Evans, “Optimal energy harvesting protocols for wireless relay networks,” IEEE Transactions on Wireless Communications, vol. 15, no. 8, pp. 5789–5803, 2016. View at: Publisher Site | Google Scholar
  19. P. T. Tin, P. Van-Duc, T. N. Nguyen, and L. A. Vu, “Performance analysis for exact and upper bound capacity in DF energy harvesting full-duplex with hybrid TPSR protocol,” Journal of Electrical and Computer Engineering, vol. 2021, Article ID 6610107, 9 pages, 2021. View at: Publisher Site | Google Scholar
  20. T. N. Nguyen, T. Minh, P. T. Tran, and M. Voznak, “Adaptive energy harvesting relaying protocol for two-way half-duplex system network over Rician fading channels,” Wireless Communications and Mobile Computing, vol. 2018, Article ID 7693016, 10 pages, 2018. View at: Publisher Site | Google Scholar
  21. P. T. Tin, T. N. Nguyen, M. Tran, T. T. Trang, and L. Sevcik, “Exploiting direct link in two-way half-duplex sensor network over block Rayleigh fading channel: upper bound ergodic capacity and exact SER analysis,” Sensors, vol. 20, no. 4, p. 1165, 2020. View at: Publisher Site | Google Scholar
  22. D. H. Ha, T. N. Nguyen, M. H. Q. Tran, X. Li, P. T. Tran, and M. Voznak, “Security and reliability analysis of a two-way half-duplex wireless relaying network using partial relay selection and hybrid TPSR energy harvesting at relay nodes,” IEEE Access, vol. 8, pp. 187165–187181, 2020. View at: Publisher Site | Google Scholar
  23. L. R. Varshney, “Transporting information and energy simultaneously,” in 2008 IEEE International Symposium on Information Theory, pp. 1612–1616, Toronto, ON, Canada, 2008. View at: Publisher Site | Google Scholar
  24. Y. Ye, Y. Li, F. Zhou, N. Al-Dhahir, and H. Zhang, “Power splitting-based SWIPT with dual-hop DF relaying in the presence of a direct link,” IEEE Systems Journal, vol. 13, no. 2, pp. 1316–1319, 2019. View at: Publisher Site | Google Scholar
  25. Y. Liu, Y. Ye, and H. Ding, “Dynamic power splitting scheme for DF relaying-based SWIPT networks with direct link,” Electronics Letters, vol. 55, no. 25, pp. 1340–1343, 2019. View at: Publisher Site | Google Scholar
  26. L. Shi, W. Cheng, Y. Ye, H. Zhang, and R. Q. Hu, “Heterogeneous power-splitting based two-way DF relaying with non-linear energy harvesting,” in 2018 IEEE Global Communications Conference (GLOBECOM), pp. 1–7, Abu Dhabi, United Arab Emirates, 2018. View at: Publisher Site | Google Scholar
  27. Y. Ye, Y. Li, D. Wang, F. Zhou, R. Q. Hu, and H. Zhang, “Optimal transmission schemes for DF relaying networks using SWIPT,” IEEE Transactions on Vehicular Technology, vol. 67, no. 8, pp. 7062–7072, 2018. View at: Publisher Site | Google Scholar
  28. D. Le, D. H. Tran, S. Choi, B. Kim, and B. An, “Impact of beamforming on the path connectivity in cognitive radio ad-hoc networks,” Sensors, vol. 17, 2017. View at: Publisher Site | Google Scholar
  29. A. Jeffrey and D. Zwillinger, Table of Integrals, Series, and Products, Elsevier, Amsterdam, Netherlands, 2015.
  30. T. N. Nguyen, T. H. Quang Minh, P. T. Tran et al., “Performance enhancement for energy harvesting based two-way relay protocols in wireless ad-hoc networks with partial and full relay selection methods,” Ad Hoc Networks, vol. 84, pp. 178–187, 2019. View at: Publisher Site | Google Scholar
  31. H. Dinh Tran, D. Trung Tran, and S. G. Choi, “Secrecy performance of a generalized partial relay selection protocol in underlay cognitive networks,” International Journal of Communication Systems, vol. 31, no. 17, 2018. View at: Publisher Site | Google Scholar
  32. D. H. Ha, T. N. Nguyen, D. V. Phan, T. Phu, M. Tran, and M. Voznak, “Non-linear energy harvesting based power splitting relaying in full-duplex AF and DF relaying networks: system performance analysis,” Proceedings of the Estonian Academy of Sciences, vol. 69, no. 4, pp. 368–381, 2020. View at: Publisher Site | Google Scholar
  33. T. D. Hieu, T. T. Duy, and S. G. Choi, “Performance enhancement for harvest-to-transmit cognitive multi-hop networks with best path selection method under presence of eavesdropper,” in 2018 20th International Conference on Advanced Communication Technology (ICACT), pp. 1-2, Chuncheon, Korea (South), 2018. View at: Publisher Site | Google Scholar
  34. M. Ashraf, J. Jang, J. Han, and K. G. Lee, “Capacity maximizing adaptive power splitting protocol for cooperative energy harvesting communication systems,” IEEE Communications Letters, vol. 22, no. 5, pp. 902–905, 2018. View at: Publisher Site | Google Scholar

Copyright © 2021 Phu Tran Tin et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


More related articles

 PDF Download Citation Citation
 Download other formatsMore
 Order printed copiesOrder
Views110
Downloads108
Citations

Related articles

Article of the Year Award: Outstanding research contributions of 2020, as selected by our Chief Editors. Read the winning articles.