Table of Contents Author Guidelines Submit a Manuscript
Multiple Sclerosis International
Volume 2014, Article ID 609694, 9 pages
http://dx.doi.org/10.1155/2014/609694
Review Article

Gray Matters in Multiple Sclerosis: Cognitive Impairment and Structural MRI

Department G.F. Ingrassia, Section of Neurosciences, University of Catania, Via S. Sofia 78, 95123 Catania, Italy

Received 6 April 2013; Revised 30 September 2013; Accepted 29 October 2013; Published 22 January 2014

Academic Editor: Rob Bermel

Copyright © 2014 Silvia Messina and Francesco Patti. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. L. Weiner, “Multiple sclerosis is an inflammatory T-cell-mediated autoimmune disease,” Archives of Neurology, vol. 61, no. 10, pp. 1613–1615, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. A. Ascherio and K. L. Munger, “Environmental risk factors for multiple sclerosis. Part I: the role of infection,” Annals of Neurology, vol. 61, no. 4, pp. 288–299, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. J. W. Dawson, “The histology of Multiple Sclerosis,” Philosophical Transactions of the Royal Society, vol. 50, pp. 517–740, 1916. View at Google Scholar
  4. L. Bö, J. J. G. Geurts, P. van der Valk, C. Polman, and F. Barkhof, “Lack of correlation between cortical demyelination and white matter pathologic changes in multiple sclerosis,” Archives of Neurology, vol. 64, no. 1, pp. 76–80, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. M. P. Amato, V. Zipoli, and E. Portaccio, “Multiple sclerosis-related cognitive changes: a review of cross-sectional and longitudinal studies,” Journal of the Neurological Sciences, vol. 245, no. 1-2, pp. 41–46, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. F. Patti, “Cognitive impairment in multiple sclerosis,” Multiple Sclerosis, vol. 15, no. 1, pp. 2–8, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. S. G. Lynch, B. A. Parmenter, and D. R. Denney, “The association between cognitive impairment and physical disability in multiple sclerosis,” Multiple Sclerosis, vol. 11, no. 4, pp. 469–476, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Rovaris, G. Comi, and M. Filippi, “MRI markers of destructive pathology in multiple sclerosis-related cognitive dysfunction,” Journal of the Neurological Sciences, vol. 245, no. 1-2, pp. 111–116, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. R. Zivadinov, J. Sepcic, D. Nasuelli et al., “A longitudinal study of brain atrophy and cognitive disturbances in the early phase of relapsing-remitting multiple sclerosis,” Journal of Neurology Neurosurgery and Psychiatry, vol. 70, no. 6, pp. 773–780, 2001. View at Publisher · View at Google Scholar · View at Scopus
  10. F. Bagnato, J. A. Butman, S. Gupta et al., “In vivo detection of cortical plaques by MR imaging in patients with multiple sclerosis,” American Journal of Neuroradiology, vol. 27, no. 10, pp. 2161–2167, 2006. View at Google Scholar · View at Scopus
  11. L. K. Fisniku, D. T. Chard, J. S. Jackson et al., “Gray matter atrophy is related to long-term disability in multiple sclerosis,” Annals of Neurology, vol. 64, no. 3, pp. 247–254, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Calabrese, F. Agosta, F. Rinaldi et al., “Cortical lesions and atrophy associated with cognitive impairment in relapsing-remitting multiple sclerosis,” Archives of Neurology, vol. 66, no. 9, pp. 1144–1150, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. L. Feuillet, F. Reuter, B. Audoin et al., “Early cognitive impairment in patients with clinically isolated syndrome suggestive of multiple sclerosis,” Multiple Sclerosis, vol. 13, no. 1, pp. 124–127, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Zarei, “Clinical characteristics of cortical multiple sclerosis,” Journal of the Neurological Sciences, vol. 245, no. 1-2, pp. 53–58, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. E. Portaccio, M. L. Stromillo, B. Goretti et al., “Neuropsychological and MRI measures predict short-term evolution in benign multiple sclerosis,” Neurology, vol. 73, no. 7, pp. 498–503, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. M. P. Amato, G. Ponziani, G. Siracusa, and S. Sorbi, “Cognitive dysfunction in early-onset multiple sclerosis: a reappraisal after 10 years,” Archives of Neurology, vol. 58, no. 10, pp. 1602–1606, 2001. View at Google Scholar · View at Scopus
  17. A. Achiron, M. Polliack, S. M. Rao et al., “Cognitive patterns and progression in multiple sclerosis: construction and validation of percentile curves,” Journal of Neurology, Neurosurgery and Psychiatry, vol. 76, no. 5, pp. 744–749, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. J. M. Rogers and P. K. Panegyres, “Cognitive impairment in multiple sclerosis: evidence-based analysis and recommendations,” Journal of Clinical Neuroscience, vol. 14, no. 10, pp. 919–927, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. J. A. Bobholz and S. M. Rao, “Cognitive dysfunction in multiple sclerosis: a review of recent developments,” Current Opinion in Neurology, vol. 16, no. 3, pp. 283–288, 2003. View at Publisher · View at Google Scholar · View at Scopus
  20. N. D. Chiaravalloti and J. DeLuca, “Cognitive impairment in multiple sclerosis,” The Lancet Neurology, vol. 7, no. 12, pp. 1139–1151, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. R. H. Benedict, J. S. Fischer, C. J. Archibald et al., “Minimal neuropsychological assessment of MS patients: a consensus approach,” Clinical Neuropsychology, vol. 16, no. 3, pp. 381–397, 2002. View at Publisher · View at Google Scholar
  22. S. M. Rao, G. J. Leo, L. Bernardin, and F. Unverzagt, “Cognitive dysfunction in multiple sclerosis. I: frequency, patterns, and prediction,” Neurology, vol. 41, no. 5, pp. 685–691, 1991. View at Google Scholar · View at Scopus
  23. M. Filippi, M. A. Rocca, R. H. B. Benedict et al., “The contribution of MRI in assessing cognitive impairment in multiple sclerosiss,” Neurology, vol. 75, no. 23, pp. 2121–2128, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. D. W. Langdon, “Cognition in multiple sclerosis,” Current Opinion in Neurology, vol. 24, no. 3, pp. 244–249, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. A. S. Drake, B. Weinstock-Guttman, S. A. Morrow, D. Hojnacki, F. E. Munschauer, and R. H. B. Benedict, “Psychometrics and normative data for the multiple sclerosis functional composite: replacing the PASAT with the symbol digit modalities test,” Multiple Sclerosis, vol. 16, no. 2, pp. 228–237, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. B. A. Parmenter, B. Weinstock-Guttman, N. Garg, F. Munschauer, and R. H. B. Benedict, “Screening for cognitive impairment in multiple sclerosis using the symbol digit modalities test,” Multiple Sclerosis, vol. 13, no. 1, pp. 52–57, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. M. Filippi, M. A. Rocca, N. de Stefano et al., “Magnetic resonance techniques in multiple sclerosis: the present and the future,” Archives of Neurology, vol. 68, no. 12, pp. 1514–1520, 2011. View at Google Scholar · View at Scopus
  28. C. H. Polman, S. C. Reingold, B. Banwell et al., “Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria,” Annals of Neurology, vol. 69, no. 2, pp. 292–302, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. À. Rovira and A. León, “MR in the diagnosis and monitoring of multiple sclerosis: an overview,” European Journal of Radiology, vol. 67, no. 3, pp. 409–414, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. W. Brück, A. Bitsch, H. Kolenda, Y. Brück, M. Stiefel, and H. Lassmann, “Inflammatory central nervous system demyelination: correlation of magnetic resonance imaging findings with lesion pathology,” Annals of Neurology, vol. 42, no. 5, pp. 783–793, 1997. View at Publisher · View at Google Scholar · View at Scopus
  31. E. Waubant, “Biomarkers indicative of blood-brain barrier disruption in multiple sclerosis,” Disease Markers, vol. 22, no. 4, pp. 235–244, 2006. View at Google Scholar · View at Scopus
  32. J. H. T. M. Van Waesberghe, M. A. A. Van Walderveen, J. A. Castelijns et al., “Patterns of lesion development in multiple sclerosis: longitudinal observations with T1-weighted spin-echo and magnetization transfer MR,” American Journal of Neuroradiology, vol. 19, no. 4, pp. 675–683, 1998. View at Google Scholar · View at Scopus
  33. D. H. Miller, F. Barkhof, J. A. Frank, G. J. M. Parker, and A. J. Thompson, “Measurement of atrophy in multiple sclerosis: pathological basis, methodological aspects and clinical relevance,” Brain, vol. 125, part 8, pp. 1676–1695, 2002. View at Google Scholar · View at Scopus
  34. M. A. Rocca, R. Messina, and M. Filippi, “Multiple sclerosis imaging: recent advances,” Journal of Neurology, vol. 260, no. 3, pp. 929–935, 2013. View at Publisher · View at Google Scholar
  35. J. J. G. Geurts, P. J. W. Pouwels, B. M. J. Uitdehaag, C. H. Polman, F. Barkhof, and J. A. Castelijns, “Intracortical lesions in multiple sclerosis: improved detection with 3D double inversion-recovery MR imaging,” Radiology, vol. 236, no. 1, pp. 254–260, 2005. View at Publisher · View at Google Scholar · View at Scopus
  36. P. J. W. Pouwels, J. P. A. Kuijer, J. P. Mugler III, C. R. G. Guttmann, and F. Barkhof, “Human gray matter: feasibility of single-slab 3D double inversion-recovery high-spatial-resolution MR imaging,” Radiology, vol. 241, no. 3, pp. 873–879, 2006. View at Publisher · View at Google Scholar · View at Scopus
  37. S. Ropele and F. Fazekas, “Magnetization transfer MR imaging in multiple sclerosis,” Neuroimaging Clinics of North America, vol. 19, no. 1, pp. 27–36, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. M. Rovaris, F. Agosta, E. Pagani, and M. Filippi, “Diffusion tensor MR imaging,” Neuroimaging Clinics of North America, vol. 19, no. 1, pp. 37–43, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. O. Ciccarelli, M. Catani, H. Johansen-Berg, C. Clark, and A. Thompson, “Diffusion-based tractography in neurological disorders: concepts, applications, and future developments,” The Lancet Neurology, vol. 7, no. 8, pp. 715–727, 2008. View at Publisher · View at Google Scholar · View at Scopus
  40. N. de Stefano and M. Filippi, “MR spectroscopy in multiple sclerosis,” Journal of Neuroimaging, vol. 17, supplement 1, pp. 31S–35S, 2007. View at Publisher · View at Google Scholar · View at Scopus
  41. B. R. Sajja, J. S. Wolinsky, and P. A. Narayana, “Proton magnetic resonance spectroscopy in multiple sclerosis,” Neuroimaging Clinics of North America, vol. 19, no. 1, pp. 45–58, 2009. View at Publisher · View at Google Scholar · View at Scopus
  42. M. Khalil, C. Langkammer, S. Ropele et al., “Determinants of brain iron in multiple sclerosis: a quantitative 3T MRI study,” Neurology, vol. 77, no. 18, pp. 1691–1697, 2011. View at Publisher · View at Google Scholar · View at Scopus
  43. J. Hagemeier, B. Weinstock-Guttman, N. Bergsland et al., “Iron deposition on SWI-filtered phase in the subcortical deep gray matter of patients with clinically isolated syndrome may precede structure-specific atrophy,” American Journal of Neuroradiology, vol. 33, no. 8, pp. 1596–1601, 2012. View at Publisher · View at Google Scholar
  44. K. E. Hammond, M. Metcalf, L. Carvajal et al., “Quantitative in vivo magnetic resonance imaging of multiple sclerosis at 7 Tesla with sensitivity to iron,” Annals of Neurology, vol. 64, no. 6, pp. 707–713, 2008. View at Publisher · View at Google Scholar · View at Scopus
  45. R. Srinivasan, H. Ratiney, K. E. Hammond-Rosenbluth, D. Pelletier, and S. J. Nelson, “MR spectroscopic imaging of glutathione in the white and gray matter at 7 T with an application to multiple sclerosis,” Magnetic Resonance Imaging, vol. 28, no. 2, pp. 163–170, 2010. View at Publisher · View at Google Scholar · View at Scopus
  46. I. Pirko, C. F. Lucchinetti, S. Sriram, and R. Bakshi, “Gray matter involvement in multiple sclerosis,” Neurology, vol. 68, no. 9, pp. 634–642, 2007. View at Publisher · View at Google Scholar · View at Scopus
  47. E. Fisher, J.-C. Lee, K. Nakamura, and R. A. Rudick, “Gray matter atrophy in multiple sclerosis: a longitudinal study,” Annals of Neurology, vol. 64, no. 3, pp. 255–265, 2008. View at Publisher · View at Google Scholar · View at Scopus
  48. M. Calabrese, M. A. Rocca, M. Atzori et al., “A 3-year magnetic resonance imaging study of cortical lesions in relapse-onset multiple sclerosis,” Annals of Neurology, vol. 67, no. 3, pp. 376–383, 2010. View at Publisher · View at Google Scholar · View at Scopus
  49. A. Kutzelnigg, C. F. Lucchinetti, C. Stadelmann et al., “Cortical demyelination and diffuse white matter injury in multiple sclerosis,” Brain, vol. 128, part 11, pp. 2705–2712, 2005. View at Publisher · View at Google Scholar · View at Scopus
  50. L. Bø, C. A. Vedeler, H. I. Nyland, B. D. Trapp, and S. J. Mørk, “Subpial demyelination in the cerebral cortex of multiple sclerosis patients,” Journal of Neuropathology and Experimental Neurology, vol. 62, no. 7, pp. 723–732, 2003. View at Google Scholar · View at Scopus
  51. J. J. Geurts and F. Barkhof, “Grey matter pathology in multiple sclerosis,” The Lancet Neurology, vol. 7, no. 9, pp. 841–851, 2008. View at Publisher · View at Google Scholar · View at Scopus
  52. D. Horakova, J. L. Cox, E. Havrdova et al., “Evolution of different MRI measures in patients with active relapsing-remitting multiple sclerosis over 2 and 5 years: a case-control study,” Journal of Neurology, Neurosurgery and Psychiatry, vol. 79, no. 4, pp. 407–414, 2008. View at Publisher · View at Google Scholar · View at Scopus
  53. M. P. Sanfilipo, R. H. B. Benedict, B. Weinstock-Guttman, and R. Bakshi, “Gray and white matter brain atrophy and neuropsychological impairment in multiple sclerosis,” Neurology, vol. 66, no. 5, pp. 685–692, 2006. View at Publisher · View at Google Scholar · View at Scopus
  54. M. P. Sánchez, A. Nieto, J. Barroso, V. Martín, and M. A. Hernández, “Brain atrophy as a marker of cognitive impairment in mildly disabling relapsing-remitting multiple sclerosis,” European Journal of Neurology, vol. 15, no. 10, pp. 1091–1099, 2008. View at Publisher · View at Google Scholar · View at Scopus
  55. S. M. Staugaitis, A. Chang, and B. D. Trapp, “Cortical pathology in multiple sclerosis: experimental approaches to studies on the mechanisms of demyelination and remyelination,” Acta Neurologica Scandinavica, no. 195, pp. 97–102, 2012. View at Google Scholar
  56. D. Kidd, F. Barkhof, R. McConnell, P. R. Algra, I. V. Allen, and T. Revesz, “Cortical lesions in multiple sclerosis,” Brain, vol. 122, part 1, pp. 17–26, 1999. View at Publisher · View at Google Scholar · View at Scopus
  57. M. Calabrese, N. de Stefano, M. Atzori et al., “Detection of cortical inflammatory lesions by double inversion recovery magnetic resonance imaging in patients with multiple sclerosis,” Archives of Neurology, vol. 64, no. 10, pp. 1416–1422, 2007. View at Publisher · View at Google Scholar · View at Scopus
  58. A. Giorgio, M. L. Stromillo, F. Rossi et al., “Cortical lesions in radiologically isolated syndrome,” Neurology, vol. 77, no. 21, pp. 1896–1899, 2011. View at Publisher · View at Google Scholar · View at Scopus
  59. C. F. Lucchinetti, B. F. G. Popescu, R. F. Bunyan et al., “Inflammatory cortical demyelination in early multiple sclerosis,” New England Journal of Medicine, vol. 365, no. 23, pp. 2188–2197, 2011. View at Google Scholar · View at Scopus
  60. M. Filippi, M. A. Rocca, M. Calabrese et al., “Intracortical lesions: relevance for new MRI diagnostic criteria for multiple sclerosis,” Neurology, vol. 75, no. 22, pp. 1988–1994, 2010. View at Publisher · View at Google Scholar · View at Scopus
  61. J. W. Peterson, L. Bö, S. Mörk, A. Chang, and B. D. Trapp, “Transected neurites, apoptotic neurons, and reduced inflammation in cortical multiple sclerosis lesions,” Annals of Neurology, vol. 50, no. 3, pp. 389–400, 2001. View at Publisher · View at Google Scholar · View at Scopus
  62. A. Seewann, H. Vrenken, E.-J. Kooi et al., “Imaging the tip of the iceberg: visualization of cortical lesions in multiple sclerosis,” Multiple Sclerosis, vol. 17, no. 10, pp. 1202–1210, 2011. View at Publisher · View at Google Scholar · View at Scopus
  63. F. Nelson, S. Datta, N. Garcia et al., “Intracortical lesions by 3T magnetic resonance imaging and correlation with cognitive impairment in multiple sclerosis,” Multiple Sclerosis, vol. 17, no. 9, pp. 1122–1129, 2011. View at Publisher · View at Google Scholar · View at Scopus
  64. S. D. Roosendaal, B. Moraal, P. J. W. Pouwels et al., “Accumulation of cortical lesions in MS: relation with cognitive impairment,” Multiple Sclerosis, vol. 15, no. 6, pp. 708–714, 2009. View at Publisher · View at Google Scholar · View at Scopus
  65. A. Mike, B. I. Glanz, P. Hildenbrand et al., “Identification and clinical impact of multiple sclerosis cortical lesions as assessed by routine 3T MR imaging,” American Journal of Neuroradiology, vol. 32, no. 3, pp. 515–521, 2011. View at Publisher · View at Google Scholar · View at Scopus
  66. A. Papadopoulou, N. Muller-Lenke, Y. Naegelin et al., “Contribution of cortical and white matter lesions to cognitive impairment in multiple sclerosis,” Multiple Sclerosis, vol. 19, no. 10, pp. 1290–1296, 2013. View at Publisher · View at Google Scholar
  67. M. Filippi and M. A. Rocca, “MR imaging of gray matter involvement in multiple sclerosis: implications for understanding disease pathophysiology and monitoring treatment efficacy,” American Journal of Neuroradiology, vol. 31, no. 7, pp. 1171–1177, 2010. View at Publisher · View at Google Scholar · View at Scopus
  68. J. J. G. Geurts, P. K. Stys, A. Minagar, S. Amor, and R. Zivadinov, “Gray matter pathology in (chronic) MS: modern views on an early observation,” Journal of the Neurological Sciences, vol. 282, no. 1-2, pp. 12–20, 2009. View at Publisher · View at Google Scholar · View at Scopus
  69. M. P. Amato, E. Portaccio, B. Goretti et al., “Association of neocortical volume changes with cognitive deterioration in relapsing-remitting multiple sclerosis,” Archives of Neurology, vol. 64, no. 8, pp. 1157–1161, 2007. View at Publisher · View at Google Scholar · View at Scopus
  70. R. H. B. Benedict, J. M. Bruce, M. G. Dwyer et al., “Neocortical atrophy, third ventricular width, and cognitive dysfunction in multiple sclerosis,” Archives of Neurology, vol. 63, no. 9, pp. 1301–1306, 2006. View at Publisher · View at Google Scholar · View at Scopus
  71. A. Tekok-Kilic, R. H. B. Benedict, B. Weinstock-Guttman et al., “Independent contributions of cortical gray matter atrophy and ventricle enlargement for predicting neuropsychological impairment in multiple sclerosis,” NeuroImage, vol. 36, no. 4, pp. 1294–1300, 2007. View at Publisher · View at Google Scholar · View at Scopus
  72. M. C. Gioia, A. Cerasa, M. Liguori et al., “Impact of individual cognitive profile on visuo-motor reorganization in relapsing-remitting multiple sclerosis,” Brain Research, vol. 1167, no. 1, pp. 71–79, 2007. View at Publisher · View at Google Scholar · View at Scopus
  73. M. Calabrese, F. Rinaldi, I. Mattisi et al., “Widespread cortical thinning characterizes patients with MS with mild cognitive impairment,” Neurology, vol. 74, no. 4, pp. 321–328, 2010. View at Publisher · View at Google Scholar · View at Scopus
  74. R. H. B. Benedict, R. Zivadinov, D. A. Carone et al., “Regional lobar atrophy predicts memory impairment in multiple sclerosis,” American Journal of Neuroradiology, vol. 26, no. 7, pp. 1824–1831, 2005. View at Google Scholar · View at Scopus
  75. N. L. Sicotte, K. C. Kern, B. S. Giesser et al., “Regional hippocampal atrophy in multiple sclerosis,” Brain, vol. 131, part 4, pp. 1134–1141, 2008. View at Publisher · View at Google Scholar · View at Scopus
  76. A. Ceccarelli, R. Bakshi, and M. Neema, “MRI in multiple sclerosis: a review of the current literature,” Current Opinion in Neurology, vol. 25, no. 4, pp. 402–409, 2012. View at Publisher · View at Google Scholar
  77. C. D. Good, I. S. Johnsrude, J. Ashburner, R. N. A. Henson, K. J. Friston, and R. S. J. Frackowiak, “A voxel-based morphometric study of ageing in 465 normal adult human brains,” NeuroImage, vol. 14, no. 1, part 1, pp. 21–36, 2001. View at Publisher · View at Google Scholar · View at Scopus
  78. K. Morgen, G. Sammer, S. M. Courtney et al., “Evidence for a direct association between cortical atrophy and cognitive impairment in relapsing-remitting MS,” NeuroImage, vol. 30, no. 3, pp. 891–898, 2006. View at Publisher · View at Google Scholar · View at Scopus
  79. E. Sbardella, N. Petsas, F. Tona et al., “Assessing the correlation between grey and white matter damage with motor and cognitive impairment in multiple sclerosis patients,” PLoS ONE, vol. 8, no. 5, Article ID e63250, 2013. View at Publisher · View at Google Scholar
  80. S. Mesaros, M. Rovaris, E. Pagani et al., “A magnetic resonance imaging voxel-based morphometry study of regional gray matter atrophy in patients with benign multiple sclerosis,” Archives of Neurology, vol. 65, no. 9, pp. 1223–1230, 2008. View at Publisher · View at Google Scholar · View at Scopus
  81. G. Riccitelli, M. A. Rocca, E. Pagani et al., “Cognitive impairment in multiple sclerosis is associated to different patterns of gray matter atrophy according to clinical phenotype,” Human Brain Mapping, vol. 32, no. 10, pp. 1535–1543, 2011. View at Publisher · View at Google Scholar · View at Scopus
  82. A. Minagar, M. H. Barnett, R. H. Benedict et al., “The thalamus and multiple sclerosis: modern views on pathologic, imaging, and clinical aspects,” Neurology, vol. 80, no. 2, pp. 210–219, 2013. View at Publisher · View at Google Scholar
  83. B. D. Trapp, R. Ransohoff, and R. Rudick, “Axonal pathology in multiple sclerosis: relationship to neurologic disability,” Current Opinion in Neurology, vol. 12, no. 3, pp. 295–302, 1999. View at Publisher · View at Google Scholar · View at Scopus
  84. J. Sepulcre, J. Sastre-Garriga, M. Cercignani, G. T. Ingle, D. H. Miller, and A. J. Thompson, “Regional gray matter atrophy in early primary progressive multiple sclerosis: a voxel-based morphometry study,” Archives of Neurology, vol. 63, no. 8, pp. 1175–1180, 2006. View at Publisher · View at Google Scholar · View at Scopus
  85. N. Bergsland, D. Horakova, M. G. Dwyer et al., “Subcortical and cortical gray matter atrophy in a large sample of patients with clinically isolated syndrome and early relapsing-remitting multiple sclerosis,” American Journal of Neuroradiology, vol. 33, no. 8, pp. 1573–1578, 2012. View at Publisher · View at Google Scholar
  86. C. Till, R. Ghassemi, B. Aubert-Broche et al., “MRI correlates of cognitive impairment in childhood-onset multiple sclerosis,” Neuropsychology, vol. 25, no. 3, pp. 319–332, 2011. View at Publisher · View at Google Scholar · View at Scopus
  87. M. K. Houtchens, R. H. B. Benedict, R. Killiany et al., “Thalamic atrophy and cognition in multiple sclerosis,” Neurology, vol. 69, no. 12, pp. 1213–1223, 2007. View at Publisher · View at Google Scholar · View at Scopus
  88. S. Batista, R. Zivadinov, M. Hoogs et al., “Basal ganglia, thalamus and neocortical atrophy predicting slowed cognitive processing in multiple sclerosis,” Journal of Neurology, vol. 259, no. 1, pp. 139–146, 2012. View at Publisher · View at Google Scholar · View at Scopus
  89. C. Pellicano, R. L. Kane, A. Gallo et al., “Cognitive impairment and its relation to imaging measures in multiple sclerosis: a study using a computerized battery,” Journal of Neuroimaging, vol. 23, no. 3, pp. 445–452, 2012. View at Publisher · View at Google Scholar
  90. M. M. Schoonheim, V. Popescu, F. C. Rueda Lopes et al., “Subcortical atrophy and cognition: sex effects in multiple sclerosis,” Neurology, vol. 79, no. 17, pp. 1754–1761, 2012. View at Publisher · View at Google Scholar
  91. J.-P. Ranjeva, B. Audoin, M. Van Au Duong et al., “Local tissue damage assessed with statistical mapping analysis of brain magnetization transfer ratio: relationship with functional status of patients in the earliest stage of multiple sclerosis,” American Journal of Neuroradiology, vol. 26, no. 1, pp. 119–127, 2005. View at Google Scholar · View at Scopus
  92. M. Khalil, C. Enzinger, C. Langkammer et al., “Cognitive impairment in relation to MRI metrics in patients with clinically isolated syndrome,” Multiple Sclerosis, vol. 17, no. 2, pp. 173–180, 2011. View at Publisher · View at Google Scholar · View at Scopus
  93. C. Tur, S. Penny, Z. Khaleeli et al., “Grey matter damage and overall cognitive impairment in primary progressive multiple sclerosis,” Multiple Sclerosis, vol. 17, no. 11, pp. 1324–1332, 2011. View at Publisher · View at Google Scholar · View at Scopus
  94. Z. Khaleeli, M. Cercignani, B. Audoin, O. Ciccarelli, D. H. Miller, and A. J. Thompson, “Localized grey matter damage in early primary progressive multiple sclerosis contributes to disability,” NeuroImage, vol. 37, no. 1, pp. 253–261, 2007. View at Publisher · View at Google Scholar · View at Scopus
  95. M. Filippi, P. Preziosa, M. Copetti et al., “Gray matter damage predicts the accumulation of disability 13 years later in MS,” vol. 81, no. 20, pp. 1759–1767, 2013. View at Publisher · View at Google Scholar
  96. M. Rovaris, G. Iannucci, M. Falautano et al., “Cognitive dysfunction in patients with mildly disabling relapsing-remitting multiple sclerosis: an exploratory study with diffusion tensor MR imaging,” Journal of the Neurological Sciences, vol. 195, no. 2, pp. 103–109, 2002. View at Google Scholar · View at Scopus
  97. A. Ceccarelli, M. A. Rocca, P. Valsasina et al., “A multiparametric evaluation of regional brain damage in patients with primary progressive multiple sclerosis,” Human Brain Mapping, vol. 30, no. 9, pp. 3009–3019, 2009. View at Publisher · View at Google Scholar · View at Scopus
  98. M. Bester, M. Lazar, M. Petracca et al., “Tract-specific white matter correlates of fatigue and cognitive impairment in benign multiple sclerosis,” Journal of the Neurological Sciences, vol. 330, no. 1-2, pp. 61–66, 2013. View at Publisher · View at Google Scholar
  99. W. Staffen, H. Zauner, A. Mair et al., “Magnetic resonance spectroscopy of memory and frontal brain region in early multiple sclerosis,” Journal of Neuropsychiatry and Clinical Neurosciences, vol. 17, no. 3, pp. 357–363, 2005. View at Publisher · View at Google Scholar · View at Scopus
  100. D. T. Chard, C. M. Griffin, M. A. McLean et al., “Brain metabolite changes in cortical grey and normal-appearing white matter in clinically early relapsing-remitting multiple sclerosis,” Brain, vol. 125, part 10, pp. 2342–2352, 2002. View at Google Scholar · View at Scopus
  101. M. Neema, J. Stankiewicz, A. Arora et al., “T1- and T2-based MRI measures of diffuse gray matter and white matter damage in patients with multiple sclerosis,” Journal of Neuroimaging, vol. 17, supplement 1, pp. 16S–21S, 2007. View at Publisher · View at Google Scholar · View at Scopus
  102. S. D. Brass, R. H. B. Benedict, B. Weinstock-Guttman, F. Munschauer, and R. Bakshi, “Cognitive impairment is associated with subcortical magnetic resonance imaging grey matter T2 hypointensity in multiple sclerosis,” Multiple Sclerosis, vol. 12, no. 4, pp. 437–444, 2006. View at Publisher · View at Google Scholar · View at Scopus
  103. J. Charcot, “Disseminated sclerosis: pathological anatomy,” in Lectures on the Diseases of Nervous System, lecture VI, pp. 157–181, 1887. View at Google Scholar