Table of Contents
New Journal of Science
Volume 2014 (2014), Article ID 479015, 7 pages
http://dx.doi.org/10.1155/2014/479015
Review Article

Programmed Cell Death in Neurospora crassa

1Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
2Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal

Received 21 November 2013; Revised 29 January 2014; Accepted 30 January 2014; Published 2 March 2014

Academic Editor: Paula Ludovico

Copyright © 2014 A. Pedro Gonçalves and Arnaldo Videira. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. J. Vogel, “A convenient growth medium for Neurospora (medium N),” Microbial Genetics Bulletin, vol. 13, pp. 42–43, 1956. View at Google Scholar
  2. D. J. Jacobson, J. R. Dettman, R. I. Adams et al., “New findings of Neurospora in Europe and comparisons of diversity in temperate climates on continental scales,” Mycologia, vol. 98, no. 4, pp. 550–559, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. A. Payen, “Extrain d'un rapport addressé à M. Le Maréchal Duc de Dalmatie, Ministre de la Guerre, Président du Conseil, sur une altération extraordinaire du pain de munition,” Annales de Chimie et de Physique, vol. 9, pp. 5–21, 1843. View at Google Scholar
  4. C. L. Shear and B. O. Dodge, “Life histories and heterothallism of the red bread-mold fungi of the Monilia sitophila group,” Journal of Agricultural Research, vol. 34, pp. 1019–1042, 1927. View at Google Scholar
  5. G. W. Beadle and E. L. Tatum, “Genetic control of biochemical reactions in Neurospora,” Proceedings of the National Academy of Sciences of the United States of America, vol. 27, no. 11, pp. 499–506, 1941. View at Publisher · View at Google Scholar
  6. A. M. Srb and N. H. Horowitz, “The ornithine cycle in Neurospora and its genetic control,” The Journal of Biological Chemistry, vol. 154, no. 1, pp. 129–139, 1944. View at Google Scholar
  7. R. H. Davis and D. D. Perkins, “Neurospora: a model of model microbes,” Nature Reviews Genetics, vol. 3, no. 5, pp. 397–403, 2002. View at Publisher · View at Google Scholar · View at Scopus
  8. J. E. Galagan, S. E. Calvo, K. A. Borkovich et al., “The genome sequence of the filamentous fungus Neurospora crassa,” Nature, vol. 422, no. 6934, pp. 859–868, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. K. McCluskey, A. Wiest, and M. Plamann, “The Fungal Genetics Stock Center: a repository for 50 years of fungal genetics research,” Journal of Biosciences, vol. 35, no. 1, pp. 119–126, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Videira, “Complex I from the fungus Neurospora crassa,” Biochimica et Biophysica Acta, vol. 1364, no. 2, pp. 89–100, 1998. View at Publisher · View at Google Scholar · View at Scopus
  11. A. Videira and M. Duarte, “On complex I and other NADH: ubiquinone reductases of Neurospora crassa mitochondria,” Journal of Bioenergetics and Biomembranes, vol. 33, no. 3, pp. 197–203, 2001. View at Publisher · View at Google Scholar · View at Scopus
  12. A. Videira and M. Duarte, “From NADH to ubiquinone in Neurospora mitochondria,” Biochimica et Biophysica Acta, vol. 1555, no. 1–3, pp. 187–191, 2002. View at Publisher · View at Google Scholar · View at Scopus
  13. P. Carneiro, M. Duarte, and A. Videira, “Characterization of apoptosis-related oxidoreductases from Neurospora crassa,” PLoS ONE, vol. 7, no. 3, Article ID e34270, 2012. View at Publisher · View at Google Scholar · View at Scopus
  14. P. Carneiro, M. Duarte, and A. Videira, “Disruption of alternative NAD(P)H dehydrogenases leads to decreased mitochondrial ROS in Neurospora crassa,” Free Radical Biology and Medicine, vol. 52, no. 2, pp. 402–409, 2012. View at Publisher · View at Google Scholar · View at Scopus
  15. A. Castro, C. Lemos, A. Falcão, A. S. Fernandes, N. Louise Glass, and A. Videira, “Rotenone enhances the antifungal properties of staurosporine,” Eukaryotic Cell, vol. 9, no. 6, pp. 906–914, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. A. Castro, C. Lemos, A. Falcão, N. L. Glass, and A. Videira, “Increased resistance of complex I mutants to phytosphingosine-induced programmed cell death,” The Journal of Biological Chemistry, vol. 283, no. 28, pp. 19314–19321, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. A. S. Fernandes, A. Castro, and A. Videira, “Reduced glutathione export during programmed cell death of Neurospora crassa,” Apoptosis, vol. 18, no. 8, pp. 940–948, 2013. View at Publisher · View at Google Scholar
  18. A. S. Fernandes, A. P. Gonçalves, A. Castro et al., “Modulation of fungal sensitivity to staurosporine by targeting proteins identified by transcriptional profiling,” Fungal Genetics and Biology, vol. 48, no. 12, pp. 1130–1138, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. A. P. Gonçalves, V. Máximo, J. Lima, K. K. Singh, P. Soares, and A. Videira, “Involvement of p53 in cell death following cell cycle arrest and mitotic catastrophe induced by rotenone,” Biochimica et Biophysica Acta, vol. 1813, no. 3, pp. 492–499, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. A. P. Gonçalves, A. Videira, V. Máximo, and P. Soares, “Synergistic growth inhibition of cancer cells harboring the RET/PTC1 oncogene by staurosporine and rotenone involves enhanced cell death,” Journal of Biosciences, vol. 36, no. 4, pp. 639–648, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. A. P. Gonçalves, A. Videira, P. Soares, and V. Máximo, “Orthovanadate-induced cell death in RET/PTC1-harboring cancer cells involves the activation of caspases and altered signaling through PI3K/Akt/mTOR,” Life Sciences, vol. 89, no. 11-12, pp. 371–377, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. A. Videira, T. Kasuga, C. Tian, C. Lemos, A. Castro, and N. L. Glass, “Transcriptional analysis of the response of Neurospora crassa to phytosphingosine reveals links to mitochondrial function,” Microbiology, vol. 155, no. 9, pp. 3134–3141, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. Y. Fuchs and H. Steller, “Programmed cell death in animal development and disease,” Cell, vol. 147, no. 4, pp. 742–758, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. L. Galluzzi, I. Vitale, J. M. Abrams et al., “Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012,” Cell Death and Differentiation, vol. 19, no. 1, pp. 107–120, 2012. View at Publisher · View at Google Scholar · View at Scopus
  25. N. D. Fedorova, J. H. Badger, G. D. Robson, J. R. Wortman, and W. C. Nierman, “Comparative analysis of programmed cell death pathways in filamentous fungi,” BMC Genomics, vol. 6, article 177, 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. B. S. Strauss, “Cell death and ‘unbalanced growth’ in Neurospora,” Microbiology, vol. 18, no. 3, pp. 658–669, 1958. View at Publisher · View at Google Scholar
  27. N. S. Plesofsky, S. B. Levery, S. A. Castle, and R. Brambl, “Stress-induced cell death is mediated by ceramide synthesis in Neurospora crassa,” Eukaryotic Cell, vol. 7, no. 12, pp. 2147–2159, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. J. Palma-Guerrero, I.-C. Huang, H.-B. Jansson, J. Salinas, L. V. Lopez-Llorca, and N. D. Read, “Chitosan permeabilizes the plasma membrane and kills cells of Neurospora crassa in an energy dependent manner,” Fungal Genetics and Biology, vol. 46, no. 8, pp. 585–594, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. A. Munoz, J. F. Marcos, and N. D. Read, “Concentration-dependent mechanisms of cell penetration and killing by the de novo designed antifungal hexapeptide PAF26,” Molecular Microbiology, vol. 85, no. 1, pp. 89–106, 2012. View at Publisher · View at Google Scholar
  30. N. L. Glass and I. Kaneko, “Fatal attraction: nonself recognition and heterokaryon incompatibility in filamentous fungi,” Eukaryotic Cell, vol. 2, no. 1, pp. 1–8, 2003. View at Publisher · View at Google Scholar · View at Scopus
  31. N. L. Glass and K. Dementhon, “Non-self recognition and programmed cell death in filamentous fungi,” Current Opinion in Microbiology, vol. 9, no. 6, pp. 553–558, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. K. Dementhon, G. Iyer, and N. L. Glass, “VIB-1 is required for expression of genes necessary for programmed cell death in Neurospora crassa,” Eukaryotic Cell, vol. 5, no. 12, pp. 2161–2173, 2006. View at Publisher · View at Google Scholar · View at Scopus
  33. E. A. Hutchison, J. A. Bueche, and N. L. Glass, “Diversification of a protein kinase cascade: IME-2 is involved in nonself recognition and programmed cell death in Neurospora crassa,” Genetics, vol. 192, no. 2, pp. 467–482, 2012. View at Publisher · View at Google Scholar
  34. E. Hutchison, S. Brown, C. Tian, and N. L. Glass, “Transcriptional profiling and functional analysis of heterokaryon incompatibility in Neurospora crassa reveals that reactive oxygen species, but not metacaspases, are associated with programmed cell death,” Microbiology, vol. 155, no. 12, pp. 3957–3970, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. G. Wichmann, J. Sun, K. Dementhon, N. L. Glass, and S. E. Lindow, “A novel gene, phcA from Pseudomonas syringae induces programmed cell death in the filamentous fungus Neurospora crassa,” Molecular Microbiology, vol. 68, no. 3, pp. 672–689, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. S. M. Marek, J. Wu, N. L. Glass, D. G. Gilchrist, and R. M. Bostock, “Nuclear DNA degradation during heterokaryon incompatibility in Neurospora crassa,” Fungal Genetics and Biology, vol. 40, no. 2, pp. 126–137, 2003. View at Publisher · View at Google Scholar · View at Scopus
  37. A. Morales, H. Lee, F. M. Goñi, R. Kolesnick, and J. C. Fernandez-Checa, “Sphingolipids and cell death,” Apoptosis, vol. 12, no. 5, pp. 923–939, 2007. View at Publisher · View at Google Scholar · View at Scopus
  38. J. Cheng, T.-S. Park, L.-C. Chio, A. S. Fischl, and X. S. Ye, “Induction of apoptosis by sphingoid long-chain bases in Aspergillus nidulans,” Molecular and Cellular Biology, vol. 23, no. 1, pp. 163–177, 2003. View at Publisher · View at Google Scholar · View at Scopus
  39. L. Li, W. Gu, C. Liang, Q. Liu, C. C. Mello, and Y. Liu, “The translin-TRAX complex (C3PO) is a ribonuclease in tRNA processing,” Nature Structural & Molecular Biology, vol. 19, no. 8, pp. 824–830, 2012. View at Publisher · View at Google Scholar
  40. G. M. Jenkins, A. Richards, T. Wahl, C. Mao, L. Obeid, and Y. Hannun, “Involvement of yeast sphingolipids in the heat stress response of Saccharomyces cerevisiae,” The Journal of Biological Chemistry, vol. 272, no. 51, pp. 32566–32572, 1997. View at Publisher · View at Google Scholar · View at Scopus
  41. M. Yamagata, K. Obara, and A. Kihara, “Unperverted synthesis of complex sphingolipids is essential for cell survival under nitrogen starvation,” Genes to Cells, vol. 18, no. 8, pp. 650–659, 2013. View at Publisher · View at Google Scholar
  42. M. M. Nagiec, E. E. Nagiec, J. A. Baltisberger, G. B. Wells, R. L. Lester, and R. C. Dickson, “Sphingolipid synthesis as a target for antifungal drugs: complementation of the inositol phosphorylceramide synthase defect in a mutant strain of Saccharomyces cerevisiae by the AUR1 gene,” The Journal of Biological Chemistry, vol. 272, no. 15, pp. 9809–9817, 1997. View at Publisher · View at Google Scholar · View at Scopus
  43. M. S. Skrzypek, M. M. Nagiec, R. L. Lester, and R. C. Dickson, “Inhibition of amino acid transport by sphingoid long chain bases in Saccharomyces cerevisiae,” The Journal of Biological Chemistry, vol. 273, no. 5, pp. 2829–2834, 1998. View at Publisher · View at Google Scholar · View at Scopus
  44. S. Omura, Y. Iwai, A. Hirano et al., “A new alkaloid AM-2282 of Streptomyces origin taxonomy, fermentation, isolation and preliminary characterization,” The Journal of Antibiotics, vol. 30, no. 4, pp. 275–282, 1977. View at Publisher · View at Google Scholar · View at Scopus
  45. M. W. Karaman, S. Herrgard, D. K. Treiber et al., “A quantitative analysis of kinase inhibitor selectivity,” Nature Biotechnology, vol. 26, no. 1, pp. 127–132, 2008. View at Publisher · View at Google Scholar · View at Scopus
  46. S. Yoshida, E. Ikeda, I. Uno, and H. Mitsuzawa, “Characterization of a staurosporine- and temperature-sensitive mutant, STT1, of Saccharomyces cerevisiae: STT1 is allelic to PKC1,” Molecular and General Genetics, vol. 231, no. 3, pp. 337–344, 1992. View at Publisher · View at Google Scholar · View at Scopus
  47. O. A. Gani and R. A. Engh, “Protein kinase inhibition of clinically important staurosporine analogues,” Natural Product Reports, vol. 27, no. 4, pp. 489–498, 2010. View at Publisher · View at Google Scholar · View at Scopus
  48. M. B. Reeves, A. A. Davies, B. P. McSharry, G. W. Wilkinson, and J. H. Sinclair, “Complex I binding by a virally encoded RNA regulates mitochondria-induced cell death,” Science, vol. 316, no. 5829, pp. 1345–1348, 2007. View at Publisher · View at Google Scholar · View at Scopus
  49. G. Huang, Y. Chen, H. Lu, and X. Cao, “Coupling mitochondrial respiratory chain to cell death: an essential role of mitochondrial complex I in the interferon-β and retinoic acid-induced cancer cell death,” Cell Death and Differentiation, vol. 14, no. 2, pp. 327–337, 2007. View at Publisher · View at Google Scholar · View at Scopus
  50. J.-E. Ricci, C. Muñoz-Pinedo, P. Fitzgerald et al., “Disruption of mitochondrial function during apoptosis is mediated by caspase cleavage of the p75 subunit of complex I of the electron transport chain,” Cell, vol. 117, no. 6, pp. 773–786, 2004. View at Publisher · View at Google Scholar · View at Scopus
  51. D. Martinvalet, D. M. Dykxhoorn, R. Ferrini, and J. Lieberman, “Granzyme A cleaves a mitochondrial complex I protein to initiate caspase-independent cell death,” Cell, vol. 133, no. 4, pp. 681–692, 2008. View at Publisher · View at Google Scholar · View at Scopus
  52. J. S. Ladha, M. K. Tripathy, and D. Mitra, “Mitochondrial complex I activity is impaired during HIV-1-induced T-cell apoptosis,” Cell Death and Differentiation, vol. 12, no. 11, pp. 1417–1428, 2005. View at Publisher · View at Google Scholar · View at Scopus
  53. A. Breier, M. Barančík, Z. Sulová, and B. Uhrík, “P-glycoprotein—implications of metabolism of neoplastic cells and cancer therapy,” Current Cancer Drug Targets, vol. 5, no. 6, pp. 457–468, 2005. View at Publisher · View at Google Scholar · View at Scopus
  54. S. Yoshida and Y. Anraku, “Characterization of staurosporine-sensitive mutants of Saccharomyces cerevisiae: vacuolar functions affect staurosporine sensitivity,” Molecular and General Genetics, vol. 263, no. 5, pp. 877–888, 2000. View at Publisher · View at Google Scholar · View at Scopus
  55. S. Yoshida, Y. Ohya, A. Nakano, and Y. Anraku, “Genetic interactions among genes involved in the STT4-PKC1 pathway of Saccharomyces cerevisiae,” Molecular and General Genetics, vol. 242, no. 6, pp. 631–640, 1994. View at Publisher · View at Google Scholar · View at Scopus
  56. S. Yoshida, Y. Ohya, M. Goebl, A. Nakano, and Y. Anraku, “A novel gene, STT4, encodes a phosphatidylinositol 4-kinase in the PKC1 protein kinase pathway of Saccharomyces cerevisiae,” The Journal of Biological Chemistry, vol. 269, no. 2, pp. 1166–1172, 1994. View at Google Scholar · View at Scopus
  57. Y. Zhang, S. Muend, and R. Rao, “Dysregulation of ion homeostasis by antifungal agents,” Frontiers in Microbiology, vol. 3, article 133, 2012. View at Publisher · View at Google Scholar
  58. W. Li, L. Sun, Q. Liang, J. Wang, W. Mo, and B. Zhou, “Yeast AMID homologue Ndi1p displays respiration-restricted apoptotic activity and is involved in chronological aging,” Molecular Biology of the Cell, vol. 17, no. 4, pp. 1802–1811, 2006. View at Publisher · View at Google Scholar · View at Scopus