Table of Contents
New Journal of Science
Volume 2014 (2014), Article ID 734515, 25 pages
http://dx.doi.org/10.1155/2014/734515
Review Article

Tumour Immunogenicity, Antigen Presentation, and Immunological Barriers in Cancer Immunotherapy

1Navarrabiomed-Fundacion Miguel Servet, Calle Irunlarrea n 3, Complejo Hospitalario de Navarra, 31008 Pamplona, Navarra, Spain
2Rayne Institute, University College London, 5 University Street, London WC1E 6JF, UK

Received 7 August 2013; Accepted 17 September 2013; Published 5 January 2014

Academic Editor: Maria Chiara Maiuri

Copyright © 2014 David Escors. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. V. Holmes and L. Enjuanes, “The SARS coronavirus: a postgenomic era,” Science, vol. 300, no. 5624, pp. 1377–1378, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. A. M. Zaki, S. van Boheemen, and T. M. Bestebroer, “Brief report: isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia,” The New England Journal of Medicine, vol. 369, article 39, 2013. View at Google Scholar
  3. “Smallpox eradication: the first three years,” WHO Chronicle, vol. 24, no. 7, pp. 301–310, 1970.
  4. C. F. Estivariz, M. A. Pallansch, A. Anand et al., “Poliovirus vaccination options for achieving eradication and securing the endgame,” Current Opinion in Virology, vol. 3, no. 3, pp. 309–315, 2013. View at Google Scholar
  5. D. S. Saint-Victor and S. B. Omer, “Vaccine refusal and the endgame: walking the last mile first,” Philosophical Transactions of the Royal Society B, vol. 368, no. 1623, Article ID 20120148, 2013. View at Google Scholar
  6. R. Vivancos, A. Keenan, S. Farmer et al., “An ongoing large outbreak of measles in Merseyside, England,” Eurosurveillance, vol. 17, no. 29, 2012. View at Google Scholar
  7. K. F. Brown, S. J. Long, M. Ramsay et al., “UK parents' decision-making about measles-mumps-rubella (MMR) vaccine 10 years after the MMR-autism controversy: a qualitative analysis,” Vaccine, vol. 30, no. 10, pp. 1855–1864, 2012. View at Publisher · View at Google Scholar · View at Scopus
  8. B. Taylor, E. Miller, C. P. Farrington et al., “Autism and measles, mumps, and rubella vaccine: no epidemiological evidence for a causal association,” The Lancet, vol. 353, no. 9169, pp. 2026–2029, 1999. View at Publisher · View at Google Scholar · View at Scopus
  9. C. V. Ichim, “Revisiting immunosurveillance and immunostimulation: implications for cancer immunotherapy,” Journal of Translational Medicine, vol. 3, article 8, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. F. M. Burnet, “The concept of immunological surveillance,” Progress in Experimental Tumor Research, vol. 13, pp. 1–27, 1970. View at Google Scholar · View at Scopus
  11. D. Escors and K. Breckpot, “Lentiviral vectors in gene therapy: their current status and future potential,” Archivum Immunologiae et Therapiae Experimentalis, vol. 58, no. 2, pp. 107–119, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. F. Arce, G. Kochan, K. Breckpot, H. Stephenson, and D. Escors, “Selective activation of intracellular signalling pathways in dendritic cells for cancer immunotherapy,” Anti-Cancer Agents in Medicinal Chemistry, vol. 12, no. 1, pp. 29–39, 2012. View at Google Scholar · View at Scopus
  13. K. Breckpot and D. Escors, “Dendritic cells for active anti-cancer immunotherapy: targeting activation pathways through genetic modification,” Endocrine, Metabolic and Immune Disorders, vol. 9, no. 4, pp. 328–343, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. L. Apetoh, F. Ghiringhelli, A. Tesniere et al., “Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy,” Nature Medicine, vol. 13, no. 9, pp. 1050–1059, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. F. Ghiringhelli, L. Apetoh, A. Tesniere et al., “Activation of the NLRP3 inflammasome in dendritic cells induces IL-1Β-dependent adaptive immunity against tumors,” Nature Medicine, vol. 15, no. 10, pp. 1170–1178, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. L. Zitvogel, L. Apetoh, F. Ghiringhelli, and G. Kroemer, “Immunological aspects of cancer chemotherapy,” Nature Reviews Immunology, vol. 8, no. 1, pp. 59–73, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. F. Ghiringhelli, M. Bruchard, and L. Apetoh, “Immune effects of 5-fluorouracil: ambivalence matters,” Oncoimmunology, vol. 2, no. 3, Article ID e23139, 2013. View at Google Scholar
  18. H. Bugaut, M. Bruchard, H. Berger et al., “Bleomycin exerts ambivalent antitumor immune effect by triggering both immunogenic cell death and proliferation of regulatory T cells,” PLoS ONE, vol. 8, no. 6, Article ID e65181, 2013. View at Google Scholar
  19. F. Ghiringhelli and L. Apetoh, “Chemotherapy and immunomodulation: from immunogenic chemotherapies to novel therapeutic strategies,” Future Oncology, vol. 9, no. 4, pp. 469–472, 2013. View at Google Scholar
  20. N. Sengupta, T. S. MacFie, T. T. MacDonald, D. Pennington, and A. R. Silver, “Cancer immunoediting and “spontaneous” tumor regression,” Pathology Research and Practice, vol. 206, no. 1, pp. 1–8, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Hasek, J. Svoboda, and P. Koldovsky, “Immunological tolerance and the cancer problem,” Philippine Journal of Cancer, vol. 33, pp. 535–539, 1963. View at Google Scholar · View at Scopus
  22. J. M. Cruse, W. W. Germany, and A. D. Dulaney, “The demonstration of mouse fibrosarcoma fractions as antigens by latex agglutination reactions,” Zeitschrift für Immunitätsforschung und Experimentelle Therapie, vol. 124, pp. 419–427, 1962. View at Google Scholar · View at Scopus
  23. G. Pasternak and A. Graffi, “Induction of resistance against isotransplantation of virus-induced,” British Journal of Cancer, vol. 17, pp. 532–539, 1963. View at Google Scholar · View at Scopus
  24. J. P. Glynn, A. R. Blanco, and A. Goldin, “Studies on induced resistance against isotransplants of virus-induced,” Cancer Research, vol. 24, pp. 502–508, 1964. View at Google Scholar · View at Scopus
  25. I. Witz, G. Hermann, M. Pikovski, and J. Gross, “The antigenic composition of tumours, sera and urines of tumour-bearing,” British Journal of Cancer, vol. 18, pp. 397–406, 1964. View at Google Scholar · View at Scopus
  26. S. Decarvalho, “Preparation of antigens specific of human breast carcinoma by an immunochromatographic method,” Nature, vol. 203, no. 4950, pp. 1186–1188, 1964. View at Publisher · View at Google Scholar · View at Scopus
  27. H. O. Sjoegren, “Studies on specific transplantation resistance to polyoma-virus-induced tumors. Iv. Stability of the polyoma cell antigen,” Journal of the National Cancer Institute, vol. 32, pp. 661–666, 1964. View at Google Scholar
  28. B. Stueck, L. J. Old, and E. A. Boyse, “Occurrence of soluble antigen in the plasma of mice with virus-induced,” Proceedings of the National Academy of Sciences of the United States of, vol. 52, pp. 950–958, 1964. View at Google Scholar · View at Scopus
  29. B. Stück, E. A. Boyse, L. J. Old, and E. A. Carswell, “ML: a new antigen found in leukæmias and mammary tumours of the mouse,” Nature, vol. 203, no. 4949, pp. 1033–1034, 1964. View at Publisher · View at Google Scholar · View at Scopus
  30. H. S. Rosenkranz, “Viral aetiology of human tumours,” Nature, vol. 218, no. 5139, pp. 370–371, 1968. View at Publisher · View at Google Scholar · View at Scopus
  31. M. S. Reitz and R. C. Gallo, “Retroviruses of human T cells: their role in the aetiology of adult T-cell leukaemia/lymphoma and the acquired immune deficiency syndrome,” Cancer Surveys, vol. 4, no. 2, pp. 313–329, 1985. View at Google Scholar · View at Scopus
  32. G. Klein, “Tumor antigens,” Annual Review of Microbiology, vol. 20, pp. 223–252, 1966. View at Google Scholar · View at Scopus
  33. M. J. Casey, G. F. Rabotti, P. S. Sarma, W. T. Lane, H. C. Turner, and R. J. Huebner, “Complement-fixing antigens in hamster tumors induced by the bryan strain of rous sarcoma virus,” Science, vol. 151, no. 3714, pp. 1086–1088, 1966. View at Google Scholar · View at Scopus
  34. G. G. Kenter, M. J. P. Welters, A. R. P. M. Valentijn et al., “Vaccination against HPV-16 oncoproteins for vulvar intraepithelial neoplasia,” The New England Journal of Medicine, vol. 361, no. 19, pp. 1838–1847, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. G. Haughton and D. B. Amos, “Immunology of carcinogenesis,” Cancer Research, vol. 28, no. 9, pp. 1839–1840, 1968. View at Google Scholar · View at Scopus
  36. H. J. Smith, “Antigenicity of carcinogen-induced and spontaneous tumours in inbred mice,” British Journal of Cancer, vol. 20, no. 4, pp. 831–837, 1966. View at Google Scholar · View at Scopus
  37. T. Tran, D. Burt, L. Eapen, and O. R. Keller, “Spontaneous regression of metastatic melanoma after inoculation with tetanus-diphtheria-pertussis vaccine,” Current Oncology, vol. 20, no. 3, pp. e270–e273, 2013. View at Google Scholar
  38. F. W. Stewart, “Experiences in spontaneous regression of neoplastic disease in man,” Texas Reports on Biology and Medicine, vol. 10, no. 1, pp. 239–253, 1952. View at Google Scholar · View at Scopus
  39. R. Dalla Favera, E. P. Gelmann, and S. Martinotti, “Cloning and characterization of different human sequences related to the onc gene (v-myc) of avian myelocytomatosis virus (MC29),” Proceedings of the National Academy of Sciences of the United States of America, vol. 79, no. 21, pp. 6497–6501, 1982. View at Google Scholar · View at Scopus
  40. S. P. Goff, P. D'Eustachio, F. H. Ruddle, and D. Baltimore, “Chromosomal assignment of the endogenous proto-oncogene C-abl,” Science, vol. 218, no. 4579, pp. 1317–1319, 1982. View at Google Scholar · View at Scopus
  41. L. F. Parada, C. J. Tabin, C. Shih, and R. A. Weinberg, “Human EJ bladder carcinoma oncogene is homologue of Harvey sarcoma virus ras gene,” Nature, vol. 297, no. 5866, pp. 474–478, 1982. View at Google Scholar · View at Scopus
  42. B. Vennstrom, “Isolation and characterization of chicken DNA homologous to the two putative oncogenes of avian erythroblastosis virus,” Cell, vol. 28, no. 1, pp. 135–143, 1982. View at Google Scholar · View at Scopus
  43. B. Vennstrom, D. Sheiness, J. Zabielski, and J. M. Bishop, “Isolation and characterization of c-myc, a cellular homolog of the oncogene (v-myc) of avian myelocytomatosis virus strain 29,” Journal of Virology, vol. 42, no. 3, pp. 773–779, 1982. View at Google Scholar · View at Scopus
  44. I. S. Y. Chen, K. C. Wilhelmsen, and H. M. Temin, “Structure and expression of c-rel, the cellular homolog to the oncogene of reticuloendotheliosis virus strain T,” Journal of Virology, vol. 45, no. 1, pp. 104–113, 1983. View at Google Scholar · View at Scopus
  45. K. H. Klempnauer, G. Ramsay, and J. M. Bishop, “The product of the retroviral transforming gene v-myb is a truncated version of the protein encoded by the cellular oncogene c-myb,” Cell, vol. 33, no. 2, pp. 345–355, 1983. View at Google Scholar · View at Scopus
  46. U. R. Rapp, M. D. Goldsborough, and G. E. Mark, “Structure and biological activity of v-raf, a unique oncogene transduced by a retrovirus,” Proceedings of the National Academy of Sciences of the United States of America, vol. 80, no. 14, pp. 4218–4222, 1983. View at Google Scholar · View at Scopus
  47. E. Santos, D. Martin Zanca, and E. P. Reddy, “Malignant activation of a K-ras oncogene in lung carcinoma but not in normal tissue of the same patient,” Science, vol. 223, no. 4637, pp. 661–664, 1984. View at Google Scholar · View at Scopus
  48. M. Barbacid, “Oncogenes and human cancer: cause or consequence?” Carcinogenesis, vol. 7, no. 7, pp. 1037–1042, 1986. View at Google Scholar · View at Scopus
  49. M. Malumbres and M. Barbacid, “Cell cycle kinases in cancer,” Current Opinion in Genetics and Development, vol. 17, no. 1, pp. 60–65, 2007. View at Publisher · View at Google Scholar · View at Scopus
  50. R. Iggo, K. Gatter, J. Bartek, D. Lane, and A. L. Harris, “Increased expression of mutant forms of p53 oncogene in primary lung cancer,” The Lancet, vol. 335, no. 8691, pp. 675–679, 1990. View at Publisher · View at Google Scholar · View at Scopus
  51. D. J. Slamon, T. C. Boone, and R. C. Seeger, “Identification and characterization of the protein encoded by the human N-myc oncogene,” Science, vol. 232, no. 4751, pp. 768–772, 1986. View at Google Scholar · View at Scopus
  52. W.-H. Lee, J.-Y. Shew, F. D. Hong et al., “The retinoblastoma susceptibility gene encodes a nuclear phosphoprotein associated with DNA binding activity,” Nature, vol. 329, no. 6140, pp. 642–645, 1987. View at Google Scholar · View at Scopus
  53. M. A. Cheever, J. P. Allison, A. S. Ferris et al., “The prioritization of cancer antigens: a National Cancer Institute pilot project for the acceleration of translational research,” Clinical Cancer Research, vol. 15, no. 17, pp. 5323–5337, 2009. View at Publisher · View at Google Scholar · View at Scopus
  54. T. B. Fitzpatrick, A. B. Lerner, E. Calkins, and W. H. Summerson, “Occurrence of tyrosinase in horse and fish melanomas,” Proceedings of the Society for Experimental Biology and Medicine, vol. 75, no. 2, pp. 394–398, 1950. View at Google Scholar
  55. T. B. Fitzpatric, “Human melanogenesis; the tyrosinase reaction in pigment cell neoplasms, with particular reference to the malignant melanoma; preliminary report,” A. M. A. Archives of Dermatology and Syphilology, vol. 65, no. 4, pp. 379–391, 1952. View at Google Scholar · View at Scopus
  56. T. L. Darrow, C. L. Slingluff Jr., and H. F. Seigler, “The role of HLA class I antigens in recognition of melanoma cells by tumor-specific cytotoxic T lymphocytes. Evidence for shared tumor antigens,” Journal of Immunology, vol. 142, no. 9, pp. 3329–3335, 1989. View at Google Scholar · View at Scopus
  57. V. Brichard, A. Van Pel, T. Wolfel et al., “The tyrosinase gene codes for an antigen recognized by autologous cytolytic T lymphocytes on HLA-A2 melanomas,” Journal of Experimental Medicine, vol. 178, no. 2, pp. 489–495, 1993. View at Google Scholar · View at Scopus
  58. S. L. Topalian, L. Rivoltini, M. Mancini et al., “Human CD4+ T cells specifically recognize a shared melanoma-associated antigen encoded by the tyrosinase gene,” Proceedings of the National Academy of Sciences of the United States of America, vol. 91, no. 20, pp. 9461–9465, 1994. View at Google Scholar · View at Scopus
  59. A. A. Tarhini, S. Leng, S. J. Moschos et al., “Safety and immunogenicity of vaccination with MART-1 (26–35, 27L), gp100 (209–217, 210M), and tyrosinase (368–376, 370D) in adjuvant with PF-3512676 and GM-CSF in metastatic melanoma,” Journal of Immunotherapy, vol. 35, no. 4, pp. 359–366, 2012. View at Publisher · View at Google Scholar · View at Scopus
  60. A. Ribas, J. S. Weber, B. Chmielowski et al., “Intra-lymph node prime-boost vaccination against Melan A and tyrosinase for the treatment of metastatic melanoma: results of a phase 1 clinical trial,” Clinical Cancer Research, vol. 17, no. 9, pp. 2987–2996, 2011. View at Publisher · View at Google Scholar · View at Scopus
  61. P. Gold and S. O. Freedman, “Demonstration of tumor-specific antigens in human colonic carcinomata by immunological tolerance and absorption techniques,” The Journal of Experimental Medicine, vol. 121, pp. 439–462, 1965. View at Google Scholar · View at Scopus
  62. P. Gold, M. Gold, and S. O. Freedman, “Cellular location of carcinoembryonic antigens of the human digestive system,” Cancer Research, vol. 28, no. 7, pp. 1331–1334, 1968. View at Google Scholar · View at Scopus
  63. A. H. Rule and M. E. Kirch, “Gene activation of molecules with carcinoembryonic antigen determinants in fetal development and in adenocarcinoma of the colon,” Cancer Research, vol. 36, no. 9, pp. 3503–3509, 1976. View at Google Scholar · View at Scopus
  64. S. A. Halter, L. D. Fraker, M. Parmenter, and W. D. Dupont, “Carcinoembryonic antigen expression and patient survival in carcinoma of the breast,” Oncology, vol. 41, no. 5, pp. 297–302, 1984. View at Google Scholar · View at Scopus
  65. W. Savino, D. Durand, and M. Dardenne, “Immunohistochemical evidence for the expression of the carcinoembryonic antigen by human thymic epithelial cells in vitro and in neoplastic conditions,” American Journal of Pathology, vol. 121, no. 3, pp. 418–425, 1985. View at Google Scholar · View at Scopus
  66. W. H. Allum, H. J. Stokes, F. MacDonald, and J. W. L. Fielding, “Demonstration of carcinoembryonic antigen (CEA) expression in normal, chronically inflamed, and malignant pancreatic tissue by immunohistochemistry,” Journal of Clinical Pathology, vol. 39, no. 6, pp. 610–614, 1986. View at Google Scholar · View at Scopus
  67. J. Kim, F. J. Kaye, J. G. Henslee et al., “Expression of carcinoembryonic antigen and related genes in lung and gastrointestinal cancers,” International Journal of Cancer, vol. 52, no. 5, pp. 718–725, 1992. View at Publisher · View at Google Scholar · View at Scopus
  68. K. Y. Tsang, S. Zaremba, C. A. Nieroda, M. Z. Zhu, J. M. Hamilton, and J. Schlom, “Generation of human cytotoxic T cells specific for human carcinoembryonic antigen epitopes from patients immunized with recombinant vaccinia-CEA vaccine,” Journal of the National Cancer Institute, vol. 87, no. 13, pp. 982–990, 1995. View at Google Scholar · View at Scopus
  69. A. J. A. Bremers, S. H. Van der Burg, P. J. K. Kuppen, W. M. Kast, C. J. H. Van de Velde, and C. J. M. Melief, “The use of Epstein-Barr virus-transformed B lymphocyte cell lines in a peptide-reconstitution assay: identification of CEA-related HLA-A*0301- restricted potential cytotoxic T-lymphocyte epitopes,” Journal of Immunotherapy, vol. 18, no. 2, pp. 77–85, 1995. View at Google Scholar · View at Scopus
  70. I. Kawashima, V. Tsai, S. Southwood, K. Takesako, A. Sette, and E. Celis, “Identification of HLA-A3-restricted cytotoxic T lymphocyte epitopes from carcinoembryonic antigen and HER-2/neu by primary in vitro immunization with peptide-pulsed dendritic cells,” Cancer Research, vol. 59, no. 2, pp. 431–435, 1999. View at Google Scholar · View at Scopus
  71. I. Nukaya, M. Yasumoto, T. Iwasaki et al., “Identification of HLA-A24 epitope peptides of carcinoembryonic antigen which induce tumor-reactive cytotoxic T lymphocyte,” International Journal of Cancer, vol. 80, no. 1, pp. 92–97, 1999. View at Google Scholar
  72. E. Huarte, P. Sarobe, J. J. Lasarte et al., “Identification of HLA-B27-restricted cytotoxic T lymphocyte epitope from carcinoembryonic antigen,” International Journal of Cancer, vol. 97, no. 1, pp. 58–63, 2002. View at Google Scholar
  73. J. Schmitz, E. Reali, J. W. Hodge et al., “Identification of an interferon-γ-inducible carcinoembryonic antigen (CEA) CD8+ T-cell epitope, which mediates tumor killing in CEA transgenic mice,” Cancer Research, vol. 62, no. 17, pp. 5058–5064, 2002. View at Google Scholar · View at Scopus
  74. G. J. Ullenhag, J. Fagerberg, K. Strigård, J.-E. Frödin, and H. Mellstedt, “Functional HLA-DR T cell epitopes of CEA identified in patients with colorectal carcinoma immunized with the recombinant protein CEA,” Cancer Immunology, Immunotherapy, vol. 53, no. 4, pp. 331–337, 2004. View at Publisher · View at Google Scholar · View at Scopus
  75. G. Campi, M. Crosti, G. Consogno et al., “CD4+ T cells from healthy subjects and colon cancer patients recognize a carcinoembryonic antigen-specific immunodominant Epitope,” Cancer Research, vol. 63, no. 23, pp. 8481–8486, 2003. View at Google Scholar · View at Scopus
  76. S. R. Gameiro, M. L. Jammeh, and J. W. Hodge, “Cancer vaccines targeting carcinoembryonic antigen: state-of-the-art and future promise,” Expert Review of Vaccines, vol. 12, no. 6, pp. 617–629, 2013. View at Google Scholar
  77. C. Merrin, E. Sarcione, M. Bohne, and D. J. Albert, “Alphafetoprotein in testicular tumors,” Journal of Surgical Research, vol. 15, no. 4, pp. 309–312, 1973. View at Google Scholar · View at Scopus
  78. J. Houštěk, J. Masopust, K. Kithier, and J. Rádl, “Hepatocellular carcinoma in association with a specific fetal α1-globulin, fetoprotein,” The Journal of Pediatrics, vol. 72, no. 2, pp. 186–193, 1968. View at Google Scholar · View at Scopus
  79. C. Li, Z. Zhang, P. Zhang, and J. Liu, “Diagnostic accuracy of des-gamma-carboxy prothrombin versus alpha-fetoprotein for hepatocellular carcinoma: a systematic review,” Hepatology Research, 2013. View at Publisher · View at Google Scholar
  80. A. Alisa, S. Boswell, A. A. Pathan, L. Ayaru, R. Williams, and S. Behboudi, “Human CD4+ T cells recognize an epitope within α-fetoprotein sequence and develop into TGF-β-producing CD4+ T cells,” Journal of Immunology, vol. 180, no. 7, pp. 5109–5117, 2008. View at Google Scholar · View at Scopus
  81. L. H. Butterfield, A. Koh, W. Meng et al., “Generation of human T-cell responses to an HLA-A2.1-restricted peptide epitope derived from α-fetoprotein,” Cancer Research, vol. 59, no. 13, pp. 3134–3142, 1999. View at Google Scholar · View at Scopus
  82. L. H. Butterfield, W. S. Meng, A. Koh et al., “T cell responses to HLA-A* 0201-restricted peptides derived from human α fetoprotein,” Journal of Immunology, vol. 166, no. 8, pp. 5300–5308, 2001. View at Google Scholar · View at Scopus
  83. W. S. Meng, L. H. Butterfield, A. Ribas et al., “Fine specificity analysis of an HLA-A2.1-restricted immunodominant T cell epitope derived from human α-fetoprotein,” Molecular Immunology, vol. 37, no. 16, pp. 943–950, 2001. View at Publisher · View at Google Scholar · View at Scopus
  84. R. Thimme, M. Neagu, T. Boettler et al., “Comprehensive analysis of the α-fetoprotein-specific CD8+ T cell responses in patients with hepatocellular carcinoma,” Hepatology, vol. 48, no. 6, pp. 1821–1833, 2008. View at Publisher · View at Google Scholar · View at Scopus
  85. E. Mizukoshi, Y. Nakamoto, H. Tsuji, T. Yamashita, and S. Kaneko, “Identification of α-fetoprotein-derived peptides recognized by cytotoxic T lymphocytes in HLA-A24+ patients with hepatocellular carcinoma,” International Journal of Cancer, vol. 118, no. 5, pp. 1194–1204, 2006. View at Publisher · View at Google Scholar · View at Scopus
  86. L. H. Butterfield, A. Ribas, W. S. Meng et al., “T-cell responses to HLA-A*0201 immunodominant peptides derived from α-fetoprotein in patients with hepatocellular cancer,” Clinical Cancer Research, vol. 9, no. 16, pp. 5902–5908, 2003. View at Google Scholar · View at Scopus
  87. F. Tada, M. Abe, M. Hirooka et al., “Phase I/II study of immunotherapy using tumor antigen-pulsed dendritic cells in patients with hepatocellular carcinoma,” International Journal of Oncology, vol. 41, no. 5, pp. 1601–1609, 2012. View at Google Scholar
  88. R. C. Bast Jr., M. Feeney, and H. Lazarus, “Reactivity of a monoclonal antibody with human ovarian carcinoma,” Journal of Clinical Investigation, vol. 68, no. 5, pp. 1331–1337, 1981. View at Google Scholar · View at Scopus
  89. R. C. Bast Jr., T. L. Klug, and E. St. John, “A radioimmunoassay using a monoclonal antibody to monitor the course of epithelial ovarian cancer,” The New England Journal of Medicine, vol. 309, no. 15, pp. 883–887, 1983. View at Google Scholar · View at Scopus
  90. A. A. Noujaim, B. C. Schultes, R. P. Baum, and R. Madiyalakan, “Induction of CA125-specific B and T cell responses in patients injected with MAb-B43.13—evidence for antibody-mediated antigen-processing and presentation of CA125 in vivo,” Cancer Biotherapy and Radiopharmaceuticals, vol. 16, no. 3, pp. 187–203, 2001. View at Google Scholar · View at Scopus
  91. A. N. Gordon, B. C. Schultes, H. Gallion et al., “CA125- and tumor-specific T-cell responses correlate with prolonged survival in oregovomab-treated recurrent ovarian cancer patients,” Gynecologic Oncology, vol. 94, no. 2, pp. 340–351, 2004. View at Publisher · View at Google Scholar · View at Scopus
  92. S. Bellone, S. Anfossi, T. J. O'Brien et al., “Generation of CA125-specific cytotoxic T lymphocytes in human leukocyte antigen-A2.1-positive healthy donors and patients with advanced ovarian cancer,” American Journal of Obstetrics and Gynecology, vol. 200, no. 1, pp. 75.e1–75.e10, 2009. View at Publisher · View at Google Scholar · View at Scopus
  93. T. A. Stamey, N. Yang, and A. R. Hay, “Prostate-specific antigen as a serum marker for adenocarcinoma of the prostate,” The New England Journal of Medicine, vol. 317, no. 15, pp. 909–916, 1987. View at Google Scholar · View at Scopus
  94. B. Seamonds, B. Whitaker, and N. Yang, “Evaluation of prostate-specific antigen and prostatic acid phosphatase as prostate cancer markers,” Urology, vol. 28, no. 6, pp. 472–479, 1986. View at Google Scholar · View at Scopus
  95. J. W. Hodge, J. Schlom, S. J. Donohue et al., “A recombinant vaccinia virus expressing human prostate-specific antigen (PSA): safety and immunogenicity in a non-human primate,” International Journal of Cancer, vol. 63, no. 2, pp. 231–237, 1995. View at Publisher · View at Google Scholar · View at Scopus
  96. N. Meidenbauer, D. T. Harris, L. E. Spitler, and T. L. Whiteside, “Generation of PSA-reactive effector cells after vaccination with a PSA-based vaccine in patients with prostate cancer,” Prostate, vol. 43, no. 2, pp. 88–100, 2000. View at Google Scholar
  97. S. Perambakam, S. Hallmeyer, S. Reddy et al., “Induction of specific T cell immunity in patients with prostate cancer by vaccination with PSA146-154 peptide,” Cancer Immunology, Immunotherapy, vol. 55, no. 9, pp. 1033–1042, 2006. View at Publisher · View at Google Scholar · View at Scopus
  98. P. Correale, K. Walmsley, C. Nieroda et al., “In vitro generation of human cytotoxic T lymphocytes specific for peptides derived from prostate-specific antigen,” Journal of the National Cancer Institute, vol. 89, no. 4, pp. 293–300, 1997. View at Google Scholar · View at Scopus
  99. P. Correale, K. Walmsley, S. Zaremba, M. Zhu, J. Schlom, and K. Y. Tsang, “Generation of human cytolytic T lymphocyte lines directed against prostate-specific antigen (PSA) employing a PSA oligoepitope peptide,” Journal of Immunology, vol. 161, no. 6, pp. 3186–3194, 1998. View at Google Scholar · View at Scopus
  100. J. M. Corman, E. E. Sercarz, and N. K. Nanda, “Recognition of prostate-specific antigenic peptide determinants by human CD4 and CD8 T cells,” Clinical and Experimental Immunology, vol. 114, no. 2, pp. 166–172, 1998. View at Publisher · View at Google Scholar · View at Scopus
  101. M. Harada, K. Kobayashi, S. Matsueda, M. Nakagawa, M. Noguchi, and K. Itoh, “Prostate-specific antigen-derived epitopes capable of inducing cellular and humoral responses in HLA-A24+ prostate cancer patients,” Prostate, vol. 57, no. 2, pp. 152–159, 2003. View at Publisher · View at Google Scholar · View at Scopus
  102. H. S. Lee, S. W. Kim, J. C. Hong et al., “Expression of MAGE A1-6 and the clinical characteristics of papillary thyroid carcinoma,” Anticancer Research, vol. 33, no. 4, pp. 1731–1735, 2013. View at Google Scholar
  103. D. W. Meek and L. Marcar, “MAGE-A antigens as targets in tumour therapy,” Cancer Letters, vol. 324, no. 2, pp. 126–132, 2012. View at Google Scholar
  104. E. De Plaen, K. Arden, C. Traversari et al., “Structure, chromosomal localization, and expression of 12 genes of the MAGE family,” Immunogenetics, vol. 40, no. 5, pp. 360–369, 1994. View at Google Scholar · View at Scopus
  105. P. Van Der Bruggen, C. Traversari, P. Chomez et al., “A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma,” Science, vol. 254, no. 5038, pp. 1643–1647, 1991. View at Google Scholar · View at Scopus
  106. C. Traversari, P. Van der Bruggen, I. F. Luescher et al., “A nonapeptide encoded by human gene MAGE-1 is recognized on HLA-A1 by cytolytic T lymphocytes directed against tumor antigen MZ2-E,” Journal of Experimental Medicine, vol. 176, no. 5, pp. 1453–1457, 1992. View at Publisher · View at Google Scholar · View at Scopus
  107. F. Brasseur, M. Marchand, R. Vanwijck et al., “Human gene MAGE-1, which codes for a tumor-rejection antigen, is expressed by some breast tumors,” International Journal of Cancer, vol. 52, no. 5, pp. 839–841, 1992. View at Publisher · View at Google Scholar · View at Scopus
  108. P. Chaux, R. Luiten, N. Demotte et al., “Identification of five MAGE-A1 epitopes recognized by cytolytic T lymphocytes obtained by in vitro stimulation with dendritic cells transduced with MAGE-A1,” Journal of Immunology, vol. 163, no. 5, pp. 2928–2936, 1999. View at Google Scholar · View at Scopus
  109. P. Chaux, V. Vantomme, V. Stroobant et al., “Identification of MAGE-3 epitopes presented by HLA-DR molecules to CD4+ T lymphocytes,” Journal of Experimental Medicine, vol. 189, no. 5, pp. 767–778, 1999. View at Publisher · View at Google Scholar · View at Scopus
  110. M. T. Duffour, P. Chaux, C. Lurquin, G. Cornelis, T. Boon, and P. van der Bruggen, “MAGE-A4 peptide presented by HLA-A2 is recognized by cytolytic T lymphocytes,” European Journal of Immunology, vol. 29, no. 10, pp. 3329–3337, 1999. View at Google Scholar
  111. C. Germeau, W. Ma, F. Schiavetti et al., “High frequency of antitumor T cells in the blood of melanoma patients before and after vaccination with tumor antigens,” Journal of Experimental Medicine, vol. 201, no. 2, pp. 241–248, 2005. View at Publisher · View at Google Scholar · View at Scopus
  112. T. Cohan, R. M. Muller, Y. Tomita, and S. Shibahara, “Nucleotide sequence of the cDNA encoding human tyrosinase-related protein,” Nucleic Acids Research, vol. 18, no. 9, pp. 2807–2808, 1990. View at Google Scholar · View at Scopus
  113. I. J. Jackson, D. M. Chambers, K. Tsukamoto et al., “A second tyrosinase-related protein, TRP-2, maps to and is mutated at the mouse slaty locus,” EMBO Journal, vol. 11, no. 2, pp. 527–535, 1992. View at Google Scholar · View at Scopus
  114. R.-F. Wang, E. Appella, Y. Kawakami, X. Kang, and S. A. Rosenberg, “Identification of TRP-2 as a human tumor antigen recognized by cytotoxic T lymphocytes,” Journal of Experimental Medicine, vol. 184, no. 6, pp. 2207–2216, 1996. View at Publisher · View at Google Scholar · View at Scopus
  115. R.-F. Wang, S. L. Johnston, S. Southwood, A. Sette, and S. A. Rosenberg, “Recognition of an antigenic peptide derived from tyrosinase-related protein-2 by CTL in the context of HLA-A31 and -A33,” Journal of Immunology, vol. 160, no. 2, pp. 890–897, 1998. View at Google Scholar · View at Scopus
  116. M. R. Parkhurst, E. B. Fitzgerald, S. Southwood, A. Sette, S. A. Rosenberg, and Y. Kawakami, “Identification of a shared HLA-A*0201-restricted T-cell epitope from the melanoma antigen tyrosinase-related protein 2 (TRP2),” Cancer Research, vol. 58, no. 21, pp. 4895–4901, 1998. View at Google Scholar · View at Scopus
  117. C. Castelli, P. Tarsini, A. Mazzocchi et al., “Novel HLA-Cw8-restricted T cell epitopes derived from tyrosinase-related protein-2 and gp100 melanoma antigens,” Journal of Immunology, vol. 162, no. 3, pp. 1739–1748, 1999. View at Google Scholar · View at Scopus
  118. C. Noppen, F. Levy, L. Burri et al., “Naturally processed and concealed HLA-A2. 1-restricted epitopes from tumor-associated antigen tyrosinase-related protein-2,” International Journal of Cancer, vol. 87, no. 2, pp. 241–246, 2000. View at Google Scholar
  119. Y. Sun, M. Song, S. Stevanovic et al., “Identification of a new HLA-A(*)0201-restricted T-cell epitope from the tyrosinase-related protein 2 (TRP2) melanoma antigen,” International Journal of Cancer, vol. 87, no. 3, pp. 399–404, 2000. View at Google Scholar
  120. Y. Liu, Y. Peng, M. Mi et al., “Lentivector immunization stimulates potent CD8 T cell responses against melanoma self-antigen tyrosinase-related protein 1 and generates antitumor immunity in mice,” Journal of Immunology, vol. 182, no. 10, pp. 5960–5969, 2009. View at Publisher · View at Google Scholar · View at Scopus
  121. W. Osen, S. Soltek, M. Song et al., “Screening of human tumor antigens for CD4+ T cell epitopes by combination of HLA-transgenic mice, recombinant adenovirus and antigen peptide libraries,” PLoS ONE, vol. 5, no. 11, Article ID e14137, 2010. View at Publisher · View at Google Scholar · View at Scopus
  122. S. R. Sierro, A. Donda, R. Perret et al., “Combination of lentivector immunization and low-dose chemotherapy or PD-1/PD-L1 blocking primes self-reactive T cells and induces anti-tumor immunity,” European Journal of Immunology, vol. 41, no. 8, pp. 2217–2228, 2011. View at Publisher · View at Google Scholar · View at Scopus
  123. W. W. Overwijk, D. S. Lee, D. R. Surman et al., “Vaccination with a recombinant vaccinia virus encoding a “self” antigen induces autoimmune vitiligo and tumor cell destruction in mice: requirement for CD4+ T lymphocytes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 6, pp. 2982–2987, 1999. View at Google Scholar · View at Scopus
  124. H. T. Khong and S. A. Rosenberg, “Pre-existing immunity to tyrosinase-related protein (TRP)-2, a new TRP-2 isoform, and the NY-ESO-1 melanoma antigen in a patient with a dramatic response to immunotherapy,” Journal of Immunology, vol. 168, no. 2, pp. 951–956, 2002. View at Google Scholar · View at Scopus
  125. V. Bronte, E. Apolloni, R. Ronca et al., “Genetic vaccination with 'self' tyrosinase-related protein 2 causes melanoma eradication but not vitiligo,” Cancer Research, vol. 60, no. 2, pp. 253–258, 2000. View at Google Scholar · View at Scopus
  126. C. Vennegoor, H. P. Hageman Ph., H. Van Nouhuijs et al., “A monoclonal antibody specific for cells of the melanocyte lineage,” American Journal of Pathology, vol. 130, no. 1, pp. 179–192, 1988. View at Google Scholar · View at Scopus
  127. A. B. H. Bakker, M. W. J. Schreurs, A. J. De Boer et al., “Melanocyte lineage-specific antigen gp100 is recognized by melanoma-derived tumor-infiltrating lymphocytes,” Journal of Experimental Medicine, vol. 179, no. 3, pp. 1005–1009, 1994. View at Google Scholar · View at Scopus
  128. G. J. Adema, A. J. De Boer, A. M. Vogel, W. A. M. Loenen, and C. G. Figdor, “Molecular characterization of the melanocyte lineage-specific antigen gp100,” Journal of Biological Chemistry, vol. 269, no. 31, pp. 20126–20133, 1994. View at Google Scholar · View at Scopus
  129. Y.-T. Chen, A. D. Boyer, C. S. Viars, S. Tsang, L. J. Old, and K. C. Arden, “Genomic cloning and localization of CTAG, a gene encoding an autoimmunogenic cancer-testis antigen NY-ESO-1, to human chromosome Xq28,” Cytogenetics and Cell Genetics, vol. 79, no. 3-4, pp. 237–240, 1997. View at Google Scholar · View at Scopus
  130. Y.-T. Chen, M. J. Scanlan, U. Sahin et al., “A testicular antigen aberrantly expressed in human cancers detected by autologous antibody screening,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 5, pp. 1914–1918, 1997. View at Publisher · View at Google Scholar · View at Scopus
  131. S. Eikawa, K. Kakimi, M. Isobe et al., “Induction of CD8 T-cell responses restricted to multiple HLA class I alleles in a cancer patient by immunization with a 20-mer NY-ESO-1f (NY-ESO-1 91-110) peptide,” International Journal of Cancer, vol. 132, no. 2, pp. 345–354, 2013. View at Google Scholar
  132. Y. Mizote, T. Taniguchi, K. Tanaka et al., “Three novel NY-ESO-1 epitopes bound to DRB10803, DQB10401 and DRB1 0901 recognized by CD4 T cells from CHP-NY-ESO-1-vaccinated patients,” Vaccine, vol. 28, no. 32, pp. 5338–5346, 2010. View at Publisher · View at Google Scholar · View at Scopus
  133. N. C. Robson, T. McAlpine, A. J. Knights et al., “Processing and cross-presentation of individual HLA-A, -B, or -C epitopes from NY-ESO-1 or an HLA-A epitope for Melan-A differ according to the mode of antigen delivery,” Blood, vol. 116, no. 2, pp. 218–225, 2010. View at Publisher · View at Google Scholar · View at Scopus
  134. D. Escors, L. Lopes, R. Lin et al., “Targeting dendritic cell signaling to regulate the response to immunization,” Blood, vol. 111, no. 6, pp. 3050–3061, 2008. View at Publisher · View at Google Scholar · View at Scopus
  135. E. Jäger, D. Jäger, J. Karbach et al., “Identification of NY-ESO-1 epitopes presented by human histocompatibility antigen (HLA)-DRB4(*)0101-0103 and recognized by CD4+ T lymphocytes of patients with NY-ESO-1-expressing melanoma,” Journal of Experimental Medicine, vol. 191, no. 4, pp. 625–630, 2000. View at Publisher · View at Google Scholar · View at Scopus
  136. K. Odunsi, J. Matsuzaki, J. Karbach et al., “Efficacy of vaccination with recombinant vaccinia and fowlpox vectors expressing NY-ESO-1 antigen in ovarian cancer and melanoma patients,” Proceedings of the National Academy of Sciences of the United States of America, vol. 109, no. 15, pp. 5797–5802, 2012. View at Publisher · View at Google Scholar · View at Scopus
  137. S. Gnjatic, H. Nishikawa, A. A. Jungbluth et al., “NY-ESO-1: review of an immunogenic tumor antigen,” Advances in Cancer Research, vol. 95, pp. 1–30, 2006. View at Publisher · View at Google Scholar · View at Scopus
  138. J. Campos-Perez, J. Rice, D. Escors et al., “DNA fusion vaccine designs to induce tumor-lytic CD8+ T-cell attack via the immunodominant cysteine-containing epitope of NY-ESO 1,” International Journal of Cancer, vol. 133, no. 6, pp. 1400–1407, 2013. View at Publisher · View at Google Scholar
  139. P. F. Robbins, R. A. Morgan, S. A. Feldman et al., “Tumor regression in patients with metastatic synovial cell sarcoma and melanoma using genetically engineered lymphocytes reactive with NY-ESO-1,” Journal of Clinical Oncology, vol. 29, no. 7, pp. 917–924, 2011. View at Publisher · View at Google Scholar · View at Scopus
  140. Y. Kawakami, S. Eliyahu, C. H. Delgado et al., “Identification of a human melanoma antigen recognized by tumor-infiltrating lymphocytes associated with in vivo tumor rejection,” Proceedings of the National Academy of Sciences of the United States of America, vol. 91, no. 14, pp. 6458–6462, 1994. View at Publisher · View at Google Scholar · View at Scopus
  141. Y. Kawakami, S. Eliyahu, K. Sakaguchi et al., “Identification of the immunodominant peptides of the MART-1 human melanoma antigen recognized by the majority of HLA-A2-restricted tumor infiltrating lymphocytes,” Journal of Experimental Medicine, vol. 180, no. 1, pp. 347–352, 1994. View at Publisher · View at Google Scholar · View at Scopus
  142. K. S. Lang, C. C. Caroli, A. Muhm et al., “HLA-A2 restricted, melanocyte-specific CD8+ T lymphocytes detected in vitiligo patients are related to disease activity and are predominantly directed against MelanA/MART1,” Journal of Investigative Dermatology, vol. 116, no. 6, pp. 891–897, 2001. View at Publisher · View at Google Scholar · View at Scopus
  143. S. Bobisse, M. Rondina, A. Merlo et al., “Reprogramming T lymphocytes for melanoma adoptive immunotherapy by T-cell receptor gene transfer with lentiviral vectors,” Cancer Research, vol. 69, no. 24, pp. 9385–9394, 2009. View at Publisher · View at Google Scholar · View at Scopus
  144. M. Coccoris, T. Straetemans, C. Govers, C. Lamers, S. Sleijfer, and R. Debets, “T cell receptor (TCR) gene therapy to treat melanoma: lessons from clinical and preclinical studies,” Expert Opinion on Biological Therapy, vol. 10, no. 4, pp. 547–562, 2010. View at Publisher · View at Google Scholar · View at Scopus
  145. R. A. Morgan, M. E. Dudley, J. R. Wunderlich et al., “Cancer regression in patients after transfer of genetically engineered lymphocytes,” Science, vol. 314, no. 5796, pp. 126–129, 2006. View at Publisher · View at Google Scholar · View at Scopus
  146. V. Shankaran, H. Ikeda, A. T. Bruce et al., “IFNγ, and lymphocytes prevent primary tumour development and shape tumour immunogenicity,” Nature, vol. 410, no. 6832, pp. 1107–1111, 2001. View at Publisher · View at Google Scholar · View at Scopus
  147. C. Bricogne, R. Laranga, A. Padella et al., “Critical mass hypothesis of T cell responses and its application for the treatment of T cell lymphoma,” in Hodgkin's and T-Cell Lymphoma: Diagnosis, Treatment Options and Prognosis, W. K. Harvey and R. M. Jacobs, Eds., Nova Publishers, New York, NY, USA, 2012. View at Google Scholar
  148. K. Karwacz, F. Arce, C. Bricogne, G. Kochan, and D. Escors, “PD-L1 co-stimulation, ligand-induced TCR down-modulation and anti-tumor immunotherapy,” Oncoimmunology, vol. 1, no. 1, pp. 86–88, 2012. View at Google Scholar
  149. K. Karwacz, C. Bricogne, D. MacDonald et al., “PD-L1 co-stimulation contributes to ligand-induced T cell receptor down-modulation on CD8+ T cells,” EMBO Molecular Medicine, vol. 3, no. 10, pp. 581–592, 2011. View at Publisher · View at Google Scholar · View at Scopus
  150. K. Trnkova, S. Pastorekova, and J. Petrik, “Novel approaches to antiviral and anticancer immunotherapy,” Acta Virologica, vol. 56, no. 4, pp. 271–282, 2012. View at Google Scholar
  151. E. Mohit and S. Rafati, “Chemokine-based immunotherapy: delivery systems and combination therapies,” Immunotherapy, no. 8, pp. 807–840, 2012. View at Google Scholar
  152. S. Ghafouri-Fard, “siRNA and cancer immunotherapy,” Immunotherapy, vol. 4, no. 9, pp. 907–917, 2012. View at Google Scholar
  153. T. Liechtenstein, I. Dufait, A. Lanna, K. Breckpot, and D. Escors, “Modulating co-stimulation during antigen presentation to enhance cancer immunotherapy,” Immunology, Endocrine & Metabolic Agents in Medicinal Chemistry, vol. 12, no. 3, pp. 224–235, 2012. View at Google Scholar
  154. T. Liechtenstein, N. Perez-Janices, C. Bricogne et al., “Immune modulation by genetic modification of dendritic cells with lentiviral vectors,” Virus Research, vol. 176, no. 1-2, pp. 1–15, 2013. View at Google Scholar
  155. D. Escors, C. Bricogne, F. Arce, G. Kochan, and K. Karwacz, “On the Mechanism of T cell receptor down-modulation and its physiological significance,” The Journal of Bioscience and Medicine, vol. 1, no. 1, 2012. View at Google Scholar
  156. M. R. Parkhurst, J. C. Yang, R. C. Langan et al., “T cells targeting carcinoembryonic antigen can mediate regression of metastatic colorectal cancer but induce severe transient colitis,” Molecular Therapy, vol. 19, no. 3, pp. 620–626, 2011. View at Publisher · View at Google Scholar · View at Scopus
  157. L. A. Johnson, B. Heemskerk, D. J. Powell Jr. et al., “Gene transfer of tumor-reactive TCR confers both high avidity and tumor reactivity to nonreactive peripheral blood mononuclear cells and tumor-infiltrating lymphocytes,” Journal of Immunology, vol. 177, no. 9, pp. 6548–6559, 2006. View at Google Scholar · View at Scopus
  158. M. Schnurr, P. Galambos, C. Scholz et al., “Tumor cell lysate-pulsed human dendritic cells induce a T-cell response against pancreatic carcinoma cells: an in vitro model for the assessment of tumor vaccines,” Cancer Research, vol. 61, no. 17, pp. 6445–6450, 2001. View at Google Scholar · View at Scopus
  159. B. Bodey, B. Bodey Jr., S. E. Siegel, and H. E. Kaiser, “Failure of cancer vaccines: the significant limitations of this approach to immunotherapy,” Anticancer Research, vol. 20, no. 4, pp. 2665–2676, 2000. View at Google Scholar · View at Scopus
  160. R. Nurieva, S. Thomas, T. Nguyen et al., “T-cell tolerance or function is determined by combinatorial costimulatory signals,” EMBO Journal, vol. 25, no. 11, pp. 2623–2633, 2006. View at Publisher · View at Google Scholar · View at Scopus
  161. T. Liechtenstein, I. Dufait, C. Bricogne et al., “PD-L1/PD-1 co-stimulation, a brake for T cell activation and a T cell differentiation signal,” Journal of Clinical & Cellular Immunology, 2012. View at Publisher · View at Google Scholar
  162. L. S. K. Walker, A. Chodos, M. Eggena, H. Dooms, and A. K. Abbas, “Antigen-dependent proliferation of CD4+ CD25+ regulatory T cells in vivo,” Journal of Experimental Medicine, vol. 198, no. 2, pp. 249–258, 2003. View at Publisher · View at Google Scholar · View at Scopus
  163. K. Kretschmer, I. Apostolou, D. Hawiger, K. Khazaie, M. C. Nussenzweig, and H. von Boehmer, “Inducing and expanding regulatory T cell populations by foreign antigen,” Nature Immunology, vol. 6, no. 12, pp. 1219–1227, 2005. View at Publisher · View at Google Scholar · View at Scopus
  164. T. Liechtenstein, N. Perez-Janices, and D. Escors, “Lentiviral vectors for cancer immunotherapy and clinical applications,” Cancers, vol. 5, no. 3, pp. 815–837, 2013. View at Google Scholar
  165. S. Sakaguchi, T. Yamaguchi, T. Nomura, and M. Ono, “Regulatory T cells and immune tolerance,” Cell, vol. 133, no. 5, pp. 775–787, 2008. View at Publisher · View at Google Scholar · View at Scopus
  166. R. M. Steinman and Z. A. Cohn, “Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution,” The Journal of Experimental Medicine, vol. 137, no. 5, pp. 1142–1162, 1973. View at Google Scholar
  167. R. M. Steinman and M. D. Witmer, “Lymphoid dendritic cells are potent stimulators of the primary mixed leukocyte reaction in mice,” Proceedings of the National Academy of Sciences of the United States of America, vol. 75, no. 10, pp. 5132–5136, 1978. View at Google Scholar · View at Scopus
  168. M. V. Dhodapkar, R. M. Steinman, J. Krasovsky, C. Munz, and N. Bhardwaj, “Antigen-specific inhibition of effector T cell function in humans after injection of immature dendritic cells,” Journal of Experimental Medicine, vol. 193, no. 2, pp. 233–238, 2001. View at Publisher · View at Google Scholar · View at Scopus
  169. D. Hawiger, K. Inaba, Y. Dorsett et al., “Dendritic cells induce peripheral T cell unresponsiveness under steady state conditions in vivo,” Journal of Experimental Medicine, vol. 194, no. 6, pp. 769–779, 2001. View at Publisher · View at Google Scholar · View at Scopus
  170. K. Inaba, M. Inaba, N. Romani et al., “Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor,” Journal of Experimental Medicine, vol. 176, no. 6, pp. 1693–1702, 1992. View at Publisher · View at Google Scholar · View at Scopus
  171. L.-J. Zhou and T. F. Tedder, “CD14+ blood monocytes can differentiate into functionally mature CD83+ dendritic cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 6, pp. 2588–2592, 1996. View at Publisher · View at Google Scholar · View at Scopus
  172. S. Tuyaerts, S. M. Noppe, J. Corthals et al., “Generation of large numbers of dendritic cells in a closed system using Cell Factories,” Journal of Immunological Methods, vol. 264, no. 1-2, pp. 135–151, 2002. View at Publisher · View at Google Scholar · View at Scopus
  173. C. A. Janeway Jr. and K. Bottomly, “Signals and signs for lymphocyte responses,” Cell, vol. 76, no. 2, pp. 275–285, 1994. View at Publisher · View at Google Scholar · View at Scopus
  174. P. Matzinger, “Tolerance, danger, and the extended family,” Annual Review of Immunology, vol. 12, pp. 991–1045, 1994. View at Google Scholar · View at Scopus
  175. M. Dullaers, K. Breckpot, S. Van Meirvenne et al., “Side-by-side comparison of lentivirally transduced and mRNA-electroporated dendritic cells: implications for cancer immunotherapy protocols,” Molecular Therapy, vol. 10, no. 4, pp. 768–779, 2004. View at Publisher · View at Google Scholar · View at Scopus
  176. E. Andreakos, R. O. Williams, J. Wales, B. M. Foxwell, and M. Feldmann, “Activation of NF-κB by the intracellular expression of NF-κB-inducing kinase acts as a powerful vaccine adjuvant,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 39, pp. 14459–14464, 2006. View at Publisher · View at Google Scholar · View at Scopus
  177. S. Van Lint, C. Goyvaerts, S. Maenhout et al., “Preclinical evaluation of TriMix and antigen mRNA-based antitumor therapy,” Cancer Research, vol. 72, no. 7, pp. 1661–1671, 2012. View at Publisher · View at Google Scholar · View at Scopus
  178. K. Karwacz, S. Mukherjee, L. Apolonia et al., “Nonintegrating lentivector vaccines stimulate prolonged T-cell and antibody responses and are effective in tumor therapy,” Journal of Virology, vol. 83, no. 7, pp. 3094–3103, 2009. View at Publisher · View at Google Scholar · View at Scopus
  179. A. Gruber, J. Kan-Mitchell, K. L. Kuhen, T. Mukai, and F. Wong-Staal, “Dendritic cells transduced by multiply deleted HIV-1 vectors exhibit normal phenotypes and functions and elicit an HIV-specific cytotoxic T-lymphocyte response in vitro,” Blood, vol. 96, no. 4, pp. 1327–1333, 2000. View at Google Scholar · View at Scopus
  180. J. Dyall, J.-B. Latouche, S. Schnell, and M. Sadelain, “Lentivirus-transduced human monocyte-derived dendritic cells efficiently stimulate antigen-specific cytotoxic T lymphocytes,” Blood, vol. 97, no. 1, pp. 114–121, 2001. View at Publisher · View at Google Scholar · View at Scopus
  181. J.-F. Arrighi, M. Pion, M. Wiznerowicz et al., “Lentivirus-mediated RNA interference of DC-SIGN expression inhibits human immunodeficiency virus transmission from dendritic cells to T cells,” Journal of Virology, vol. 78, no. 20, pp. 10848–10855, 2004. View at Publisher · View at Google Scholar · View at Scopus
  182. Q. Yu, C. Kovacs, F. Y. Yue, and M. A. Ostrowski, “The role of the p38 mitogen-activated protein kinase, extracellular signal-regulated kinase, and phosphoinositide-3-OH kinase signal transduction pathways in CD40 ligand-induced dendritic cell activation and expansion of virus-specific CD8+ T cell memory responses,” Journal of Immunology, vol. 172, no. 10, pp. 6047–6056, 2004. View at Google Scholar · View at Scopus
  183. J. J. Pen, B. De Keersmaecker, S. K. Maenhout et al., “Modulation of regulatory T cell function by monocyte-derived dendritic cells matured through electroporation with mRNA encoding CD40 ligand, constitutively Active TLR4, and CD70,” Journal of Immunology, vol. 191, no. 4, pp. 1976–1983, 2013. View at Publisher · View at Google Scholar
  184. C. Klein, H. Bueler, and R. C. Mulligan, “Comparative analysis of genetically modified dendritic cells and tumor cells as therapeutic cancer vaccines,” Journal of Experimental Medicine, vol. 191, no. 10, pp. 1699–1708, 2000. View at Publisher · View at Google Scholar · View at Scopus
  185. B. Hu, B. Dai, and P. Wang, “Vaccines delivered by integration-deficient lentiviral vectors targeting dendritic cells induces strong antigen-specific immunity,” Vaccine, vol. 28, no. 41, pp. 6675–6683, 2010. View at Publisher · View at Google Scholar · View at Scopus
  186. T. Akazawa, M. Shingai, M. Sasai et al., “Tumor immunotherapy using bone marrow-derived dendritic cells overexpressing Toll-like receptor adaptors,” FEBS Letters, vol. 581, no. 18, pp. 3334–3340, 2007. View at Publisher · View at Google Scholar · View at Scopus
  187. K. Breckpot, C. Aerts-Toegaert, C. Heirman et al., “Attenuated expression of A20 markedly increases the efficacy of double-stranded RNA-activated dendritic cells as an anti-cancer vaccine,” Journal of Immunology, vol. 182, no. 2, pp. 860–870, 2009. View at Google Scholar · View at Scopus
  188. C. L.-L. Chiang, A. R. Hagemann, R. Leskowitz et al., “Day-4 myeloid dendritic cells pulsed with whole tumor lysate are highly immunogenic and elicit potent anti-tumor responses,” PLoS ONE, vol. 6, no. 12, Article ID e28732, 2011. View at Publisher · View at Google Scholar · View at Scopus
  189. F. Arce, K. Breckpot, H. Stephenson et al., “Selective ERK activation differentiates mouse and human tolerogenic dendritic cells, expands antigen-specific regulatory T cells, and suppresses experimental inflammatory arthritis,” Arthritis and Rheumatism, vol. 63, no. 1, pp. 84–95, 2011. View at Publisher · View at Google Scholar · View at Scopus
  190. S. Rutella, S. Danese, and G. Leone, “Tolerogenic dendritic cells: cytokine modulation comes of age,” Blood, vol. 108, no. 5, pp. 1435–1440, 2006. View at Publisher · View at Google Scholar · View at Scopus
  191. D. Kabelitz, D. Wesch, and H.-H. Oberg, “Regulation of regulatory T cells: role of dendritic cells and toll-like receptors,” Critical Reviews in Immunology, vol. 26, no. 4, pp. 291–306, 2006. View at Google Scholar · View at Scopus
  192. M. G. Toscano, M. Delgado, W. Kong, F. Martin, M. Skarica, and D. Ganea, “Dendritic cells transduced with lentiviral vectors expressing vip differentiate into vip-secreting tolerogenic-like DCs,” Molecular Therapy, vol. 18, no. 5, pp. 1035–1045, 2010. View at Publisher · View at Google Scholar · View at Scopus
  193. J. M. Ilarregui, D. O. Croci, G. A. Bianco et al., “Tolerogenic signals delivered by dendritic cells to T cells through a galectin-1-driven immunoregulatory circuit involving interleukin 27 and interleukin 10,” Nature Immunology, vol. 10, no. 9, pp. 981–991, 2009. View at Publisher · View at Google Scholar · View at Scopus
  194. K. V. Tarbell, L. Petit, X. Zuo et al., “Dendritic cell-expanded, islet-specific CD4+ CD25+ CD62L+ regulatory T cells restore normoglycemia in diabetic NOD mice,” Journal of Experimental Medicine, vol. 204, no. 1, pp. 191–201, 2007. View at Publisher · View at Google Scholar · View at Scopus
  195. L. N. Liu, R. Shivakumar, C. Allen, and J. C. Fratantoni, “Delivery of whole tumor lysate into dendritic cells for cancer vaccination,” Methods in Molecular Biology, vol. 423, pp. 139–153, 2008. View at Google Scholar · View at Scopus
  196. J. P. J. J. Hegmans, A. Hemmes, J. G. Aerts, H. C. Hoogsteden, and B. N. Lambrecht, “Immunotherapy of murine malignant mesothelioma using tumor lysate-pulsed dendritic cells,” American Journal of Respiratory and Critical Care Medicine, vol. 171, no. 10, pp. 1168–1177, 2005. View at Publisher · View at Google Scholar · View at Scopus
  197. N. Herbert, A. Haferkamp, H. F. Schmitz-Winnenthal, and M. Zöller, “Concomitant tumor and autoantigen vaccination supports renal cell carcinoma rejection,” Journal of Immunology, vol. 185, no. 2, pp. 902–916, 2010. View at Publisher · View at Google Scholar · View at Scopus
  198. B. J. Gitlitz, A. S. Belldegrun, A. Zisman et al., “A pilot trial of tumor lysate-loaded dendritic cells for the treatment of metastatic renal cell carcinoma,” Journal of Immunotherapy, vol. 26, no. 5, pp. 412–419, 2003. View at Publisher · View at Google Scholar · View at Scopus
  199. H. M. Zarour and J. M. Kirkwood, “Melanoma vaccines: early progress and future promises,” Seminars in Cutaneous Medicine and Surgery, vol. 22, no. 1, pp. 68–75, 2003. View at Publisher · View at Google Scholar · View at Scopus
  200. M. Leslie, “Solution to vaccine mystery starts to crystallize,” Science, vol. 341, no. 6141, pp. 26–27, 2013. View at Google Scholar
  201. T. L. Flach, G. Ng, A. Hari et al., “Alum interaction with dendritic cell membrane lipids is essential for its adjuvanticity,” Nature Medicine, vol. 17, no. 4, pp. 479–487, 2011. View at Publisher · View at Google Scholar · View at Scopus
  202. H. Xiao, Y. Peng, Y. Hong et al., “Local administration of TLR ligands rescues the function of tumor-infiltrating CD8 T cells and enhances the antitumor effect of lentivector immunization,” Journal of Immunology, vol. 190, no. 11, pp. 5866–5873, 2013. View at Google Scholar
  203. S. N. Lim, S. Kuhn, E. Hyde, and F. Ronchese, “Combined TLR stimulation with Pam3Cys and Poly I: C enhances Flt3-ligand dendritic cell activation for tumor immunotherapy,” Journal of Immunotherapy, vol. 35, no. 9, pp. 670–679, 2012. View at Google Scholar
  204. T. Kawai and S. Akira, “Toll-like receptor and RIG-1-like receptor signaling,” Annals of the New York Academy of Sciences, vol. 1143, pp. 1–20, 2008. View at Publisher · View at Google Scholar · View at Scopus
  205. B. Coornaert, I. Carpentier, and R. Beyaert, “A20: central gatekeeper in inflammation and immunity,” Journal of Biological Chemistry, vol. 284, no. 13, pp. 8217–8221, 2009. View at Publisher · View at Google Scholar · View at Scopus
  206. X.-T. Song, K. E. Kabler, L. Shen, L. Rollins, X. F. Huang, and S.-Y. Chen, “A20 is an antigen presentation attenuator, and its inhibition overcomes regulatory T cell-mediated suppression,” Nature Medicine, vol. 14, no. 3, pp. 258–265, 2008. View at Publisher · View at Google Scholar · View at Scopus
  207. T. Yokosuka, M. Takamatsu, W. Kobayashi-Imanishi, A. Hashimoto-Tane, M. Azuma, and T. Saito, “Programmed cell death 1 forms negative costimulatory microclusters that directly inhibit T cell receptor signaling by recruiting phosphatase SHP2,” Journal of Experimental Medicine, vol. 209, no. 6, pp. 1201–1217, 2012. View at Google Scholar
  208. M. R. Junttila, S.-P. Li, and J. Westermarck, “Phosphatase-mediated crosstalk between MAPK signaling pathways in the regulation of cell survival,” FASEB Journal, vol. 22, no. 4, pp. 954–965, 2008. View at Publisher · View at Google Scholar · View at Scopus
  209. Q. Zhao, X. Wang, L. D. Nelin et al., “MAP kinase phosphatase 1 controls innate immune responses and suppresses endotoxic shock,” Journal of Experimental Medicine, vol. 203, no. 1, pp. 131–140, 2006. View at Publisher · View at Google Scholar · View at Scopus
  210. K. V. Salojin, I. B. Owusu, K. A. Millerchip, M. Potter, K. A. Platt, and T. Oravecz, “Essential role of MAPK phosphatase-1 in the negative control of innate immune responses,” Journal of Immunology, vol. 176, no. 3, pp. 1899–1907, 2006. View at Google Scholar · View at Scopus
  211. M. Hammer, J. Mages, H. Dietrich et al., “Dual specificity phosphatase 1 (DUSP1) regulates a subset of LPS-induced genes and protects mice from lethal endotoxin shock,” Journal of Experimental Medicine, vol. 203, no. 1, pp. 15–20, 2006. View at Publisher · View at Google Scholar · View at Scopus
  212. S. Saccani, S. Pantano, and G. Natoli, “p38-dependent marking of inflammatory genes for increased NF-κB recruitment,” Nature Immunology, vol. 3, no. 1, pp. 69–75, 2002. View at Publisher · View at Google Scholar · View at Scopus
  213. A. Shimizu, M. Baratchian, Y. Takeuchi et al., “Kaposi's sarcoma-associated herpesvirus vFLIP and human T cell lymphotropic virus type 1 Tax oncogenic proteins activate IκB kinase subunit γ by different mechanisms independent of the physiological cytokine-induced pathways,” Journal of Virology, vol. 85, no. 14, pp. 7444–7448, 2011. View at Publisher · View at Google Scholar · View at Scopus
  214. N. Field, W. Low, M. Daniels et al., “KSHV vFLIP binds to IKK-γ to activate IKK,” Journal of Cell Science, vol. 116, no. 18, pp. 3721–3728, 2003. View at Publisher · View at Google Scholar · View at Scopus
  215. C. Bagnéris, A. V. Ageichik, N. Cronin et al., “Crystal structure of a vFlip-IKKγ complex: insights into viral activation of the IKK signalosome,” Molecular Cell, vol. 30, no. 5, pp. 620–631, 2008. View at Publisher · View at Google Scholar · View at Scopus
  216. H. M. Rowe, L. Lopes, N. Brown et al., “Expression of vFLIP in a lentiviral vaccine vector activates NF-κB, matures dendritic cells, and increases CD8+ T-cell responses,” Journal of Virology, vol. 83, no. 4, pp. 1555–1562, 2009. View at Publisher · View at Google Scholar · View at Scopus
  217. I. E. Wartz, K. M. O'Rourke, H. Zhou et al., “De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-κB signalling,” Nature, vol. 430, no. 7000, pp. 694–699, 2004. View at Publisher · View at Google Scholar · View at Scopus
  218. R. Beyaert, K. Heyninck, and S. Van Huffel, “A20 and A20-binding proteins as cellular inhibitors of nuclear factor- κB-dependent gene expression and apoptosis,” Biochemical Pharmacology, vol. 60, no. 8, pp. 1143–1151, 2000. View at Publisher · View at Google Scholar · View at Scopus
  219. S. Q. Zhang, A. Kovalenko, G. Cantarella, and D. Wallach, “Recruitment of the IKK signalosome to the p55 TNF receptor: RIP and A20 bind to NEMO (IKKγ) upon receptor stimulation,” Immunity, vol. 12, no. 3, pp. 301–311, 2000. View at Google Scholar · View at Scopus
  220. K. Heyninck and R. Beyaert, “The cytokine-inducible zinc finger protein A20 inhibits IL-1-induced NF-κB activation at the level of TRAF6,” FEBS Letters, vol. 442, no. 2-3, pp. 147–150, 1999. View at Publisher · View at Google Scholar · View at Scopus
  221. D. L. Boone, E. E. Turer, E. G. Lee et al., “The ubiquitin-modifying enzyme A20 is required for termination of Toll-like receptor responses,” Nature Immunology, vol. 5, no. 10, pp. 1052–1060, 2004. View at Publisher · View at Google Scholar · View at Scopus
  222. K. Sato, H. Nagayama, K. Tadokoro, T. Juji, and T. A. Takahashi, “Extracellular signal-regulated kinase, stress-activated protein kinase/c-Jun N-terminal kinase, and p38(mapk) are involved in IL-10-mediated selective repression of TNF-α-induced activation and maturation of human peripheral blood monocyte-derived dendritic cells,” Journal of Immunology, vol. 162, no. 7, pp. 3865–3872, 1999. View at Google Scholar · View at Scopus
  223. K. M. Ardeshna, A. R. Pizzey, S. Devereux, and A. Khwaja, “The PI3 kinase, p38 SAP kinase, and NF-κb signal transduction pathways are involved in the survival and maturation of lipopolysaccharide-stimulated human monocyte-derived dendritic cells,” Blood, vol. 96, no. 3, pp. 1039–1046, 2000. View at Google Scholar · View at Scopus
  224. J.-F. Arrighi, M. Rebsamen, F. Rousset, V. Kindler, and C. Hauser, “A critical role for p38 mitogen-activated protein kinase in the maturation of human blood-derived dendritic cells induced by lipopolysaccharide, TNF-α, and contact sensitizers,” Journal of Immunology, vol. 166, no. 6, pp. 3837–3845, 2001. View at Google Scholar · View at Scopus
  225. J. Raingeaud, A. J. Whitmarsh, T. Barrett, B. Dérijard, and R. J. Davis, “MKK3- and MKK6-regulated gene expression is mediated by the p38 mitogen-activated protein kinase signal transduction pathway,” Molecular and Cellular Biology, vol. 16, no. 3, pp. 1247–1255, 1996. View at Google Scholar · View at Scopus
  226. Z. Yang, X. Zhang, P. A. Darrah, and D. M. Mosser, “The regulation of Th1 responses by the p38 MAPK,” Journal of Immunology, vol. 185, no. 10, pp. 6205–6213, 2010. View at Publisher · View at Google Scholar · View at Scopus
  227. H. A. Franks, Q. Wang, S. J. Lax et al., “Novel function for the p38-MK2 signalling pathway in circulating CD1c+ (BDCA-1+) myeloid dendritic cells from healthy donors and advanced cancer patients, inhibition of p38 enhances IL-12 whilst suppressing IL-10,” International Journal of Cancer, 2013. View at Publisher · View at Google Scholar
  228. H. Firat, F. Garcia-Pons, S. Tourdot et al., “H-2 class I knockout, HLA-A2. 1-transgenic mice: a versatile animal model for preclinical evaluation of antitumor immunotherapeutic strategies,” European Journal of Immunology, vol. 29, no. 10, pp. 3112–3121, 1999. View at Google Scholar
  229. E. Kriehuber, W. Bauer, A.-S. Charbonnier et al., “Balance between NF-κB and JNK/AP-1 activity controls dendritic cell life and death,” Blood, vol. 106, no. 1, pp. 175–183, 2005. View at Publisher · View at Google Scholar · View at Scopus
  230. T. Nakahara, H. Uchi, K. Urabe, Q. Chen, M. Furue, and Y. Moroi, “Role of c-Jun N-terminal kinase on lipopolysaccharide induced maturation of human monocyte-derived dendritic cells,” International Immunology, vol. 16, no. 12, pp. 1701–1709, 2004. View at Publisher · View at Google Scholar · View at Scopus
  231. K. Lei, A. Nimnual, W.-X. Zong et al., “The Bax subfamily of Bcl2-related proteins is essential for apoptotic signal transduction by c-Jun NH2-terminal kinase,” Molecular and Cellular Biology, vol. 22, no. 13, pp. 4929–4942, 2002. View at Publisher · View at Google Scholar · View at Scopus
  232. M. Dupage, C. Mazumdar, L. M. Schmidt, A. F. Cheung, and T. Jacks, “Expression of tumour-specific antigens underlies cancer immunoediting,” Nature, vol. 482, no. 7385, pp. 405–409, 2012. View at Publisher · View at Google Scholar · View at Scopus
  233. A. D. Griesemer, E. C. Sorenson, and M. A. Hardy, “The role of the thymus in tolerance,” Transplantation, vol. 90, no. 5, pp. 465–474, 2010. View at Publisher · View at Google Scholar · View at Scopus
  234. F. Flores-Borja, C. Mauri, and M. R. Ehrenstein, “Restoring the balance: harnessing regulatory T cells for therapy in rheumatoid arthritis,” European Journal of Immunology, vol. 38, no. 4, pp. 934–937, 2008. View at Publisher · View at Google Scholar · View at Scopus
  235. R. R. Rich and C. W. Pierce, “Biological expressions of lymphocyte activation. II. Generation of a population of thymus-derived suppressor lymphocytes,” Journal of Experimental Medicine, vol. 137, no. 3, pp. 649–659, 1973. View at Google Scholar · View at Scopus
  236. E. Simpson and H. Cantor, “Regulation of the immune response by subclasses of T lymphocytes. II. The effect of adult thymectomy upon humoral and cellular responses in mice,” European Journal of Immunology, vol. 5, no. 5, pp. 337–343, 1975. View at Google Scholar · View at Scopus
  237. H. Cantor and E. Simpson, “Regulation of the immune response by subclasses of T lymphocytes. I. Interactions between pre killer T cells and regulatory T cells obtained from peripheral lymphoid tissues of mice,” European Journal of Immunology, vol. 5, no. 5, pp. 330–336, 1975. View at Google Scholar · View at Scopus
  238. T. Y. H. Tai You Ha, B. H. Waksman, and H. P. Treffers, “The thymic suppressor cell. I. Separation of subpopulations with suppressor activity,” Journal of Experimental Medicine, vol. 139, no. 1, pp. 13–23, 1974. View at Google Scholar · View at Scopus
  239. M. J. Taussig, “Demonstration of suppressor T cells in a population of 'educated' T cells,” Nature, vol. 248, no. 5445, pp. 236–238, 1974. View at Google Scholar · View at Scopus
  240. L. Polak and J. L. Turk, “Reversal of immunological tolerance by cyclophosphamide through inhibition of suppressor cell activity,” Nature, vol. 249, no. 5458, pp. 654–656, 1974. View at Google Scholar · View at Scopus
  241. S. Kan, S. Hazama, K. Maeda et al., “Suppressive effects of cyclophosphamide and gemcitabine on regulatory T-cell induction in vitro,” Anticancer Research, vol. 32, no. 12, pp. 5363–5369, 2012. View at Google Scholar
  242. H. Kirchner, T. M. Chused, and R. B. Herberman, “Evidence of suppressor cell activity in spleens of mice bearing primary tumors induced by Moloney sarcoma virus,” Journal of Experimental Medicine, vol. 139, no. 6, pp. 1473–1487, 1974. View at Google Scholar · View at Scopus
  243. D. I. Gabrilovich, V. Bronte, S.-H. Chen et al., “The terminology issue for myeloid-derived suppressor cells,” Cancer Research, vol. 67, no. 1, article 425, 2007. View at Publisher · View at Google Scholar · View at Scopus
  244. A. Basten, J. F. A. P. Miller, J. Sprent, and C. Cheers, “Cell to cell interaction in the immune response. X. T cell dependent suppression in tolerant mice,” Journal of Experimental Medicine, vol. 140, no. 1, pp. 199–217, 1974. View at Google Scholar · View at Scopus
  245. D. M. Sansom, “CD28, CTLA-4 and their ligands: who does what and to whom?” Immunology, vol. 101, no. 2, pp. 169–177, 2000. View at Publisher · View at Google Scholar · View at Scopus
  246. O. S. Qureshi, Y. Zheng, K. Nakamura et al., “Trans-endocytosis of CD80 and CD86: a molecular basis for the cell-extrinsic function of CTLA-4,” Science, vol. 332, no. 6029, pp. 600–603, 2011. View at Publisher · View at Google Scholar · View at Scopus
  247. L. S. K. Walker and D. M. Sansom, “The emerging role of CTLA4 as a cell-extrinsic regulator of T cell responses,” Nature Reviews Immunology, vol. 11, no. 12, pp. 852–863, 2011. View at Publisher · View at Google Scholar · View at Scopus
  248. S. Hori, T. Nomura, and S. Sakaguchi, “Control of regulatory T cell development by the transcription factor Foxp3,” Science, vol. 299, no. 5609, pp. 1057–1061, 2003. View at Publisher · View at Google Scholar · View at Scopus
  249. J. Schwaber and E. P. Cohen, “Human X mouse somatic cell hybrid clone secreting immunoglobulins of both parental types,” Nature, vol. 244, no. 5416, pp. 444–447, 1973. View at Google Scholar · View at Scopus
  250. S. Sakaguchi, “The origin of FOXP3-expressing CD4+ regulatory T cells: thymus or periphery,” Journal of Clinical Investigation, vol. 112, no. 9, pp. 1310–1312, 2003. View at Publisher · View at Google Scholar · View at Scopus
  251. X. C. Li, G. Demirci, S. Ferrari-Lacraz et al., “IL-15 and IL-2: a matter of life and death for T cells in vivo,” Nature Medicine, vol. 7, no. 1, pp. 114–118, 2001. View at Publisher · View at Google Scholar · View at Scopus
  252. A. Scheffold, J. Hühn, and T. Höfer, “Regulation of CD4+CD25+ regulatory T cell activity: it takes (IL-)two to tango,” European Journal of Immunology, vol. 35, no. 5, pp. 1336–1341, 2005. View at Publisher · View at Google Scholar · View at Scopus
  253. J. D. Fontenot, J. P. Rasmussen, M. A. Gavin, and A. Y. Rudensky, “A function for interleukin 2 in Foxp3-expressing regulatory T cells,” Nature Immunology, vol. 6, no. 11, pp. 1142–1151, 2005. View at Publisher · View at Google Scholar · View at Scopus
  254. D. Getnet, J. F. Grosso, M. V. Goldberg et al., “A role for the transcription factor Helios in human CD4+CD25+ regulatory T cells,” Molecular Immunology, vol. 47, no. 7-8, pp. 1595–1600, 2010. View at Publisher · View at Google Scholar · View at Scopus
  255. P. Chappert, M. Leboeuf, P. Rameau et al., “Antigen-driven interactions with dendritic cells and expansion of Foxp3+ regulatory T cells occur in the absence of inflammatory signals,” Journal of Immunology, vol. 180, no. 1, pp. 327–334, 2008. View at Google Scholar · View at Scopus
  256. K. Mahnke, Y. Qian, J. Knop, and A. H. Enk, “Induction of CD4+/CD25+ regulatory T cells by targeting of antigens to immature dendritic cells,” Blood, vol. 101, no. 12, pp. 4862–4869, 2003. View at Google Scholar · View at Scopus
  257. L. Wang, K. Pino-Lagos, V. C. De Vries, I. Guleria, M. H. Sayegh, and R. J. Noelle, “Programmed death 1 ligand signaling regulates the generation of adaptive Foxp3+CD4+ regulatory T cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 27, pp. 9331–9336, 2008. View at Publisher · View at Google Scholar · View at Scopus
  258. S. You, B. Leforban, C. Garcia, J.-F. Bach, J. A. Bluestone, and L. Chatenoud, “Adaptive TGF-β-dependent regulatory T cells control autoimmune diabetes and are a privileged target of anti-CD3 antibody treatment,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 15, pp. 6335–6340, 2007. View at Publisher · View at Google Scholar · View at Scopus
  259. O. Akbari, G. J. Freeman, E. H. Meyer et al., “Antigen-specific regulatory T cells develop via the ICOS-ICOS-ligand pathway and inhibit allergen-induced airway hyperreactivity,” Nature Medicine, vol. 8, no. 9, pp. 1024–1032, 2002. View at Publisher · View at Google Scholar · View at Scopus
  260. A. O'Garra, P. L. Vieira, P. Vieira, and A. E. Goldfeld, “IL-10-producing and naturally occurring CD4+Tregs: limiting collateral damage,” Journal of Clinical Investigation, vol. 114, no. 10, pp. 1372–1378, 2004. View at Publisher · View at Google Scholar · View at Scopus
  261. E.-O. Glocker, D. Kotlarz, K. Boztug et al., “Inflammatory bowel disease and mutations affecting the interleukin-10 receptor,” The New England Journal of Medicine, vol. 361, no. 21, pp. 2033–2045, 2009. View at Publisher · View at Google Scholar · View at Scopus
  262. S. Onizuka, I. Tawara, J. Shimizu, S. Sakaguchi, T. Fujita, and E. Nakayama, “Tumor rejection by in vivo administration of anti-CD25 (interleukin-2 receptor α) monoclonal antibody,” Cancer Research, vol. 59, no. 13, pp. 3128–3133, 1999. View at Google Scholar · View at Scopus
  263. G. Zhou, C. G. Drake, and H. I. Levitsky, “Amplification of tumor-specific regulatory T cells following therapeutic cancer vaccines,” Blood, vol. 107, no. 2, pp. 628–636, 2006. View at Publisher · View at Google Scholar · View at Scopus
  264. A. M. Wolf, D. Wolf, M. Steurer, G. Gastl, E. Gunsilius, and B. Grubeck-Loebenstein, “Increase of regulatory T cells in the peripheral blood of cancer patients,” Clinical Cancer Research, vol. 9, no. 2, pp. 606–612, 2003. View at Google Scholar · View at Scopus
  265. H. Y. Wang, D. A. Lee, G. Peng et al., “Tumor-specific human CD4+ regulatory T cells and their ligands: implications for immunotherapy,” Immunity, vol. 20, no. 1, pp. 107–118, 2004. View at Publisher · View at Google Scholar · View at Scopus
  266. M. Beyer and J. L. Schultze, “Regulatory T cells in cancer,” Blood, vol. 108, no. 3, pp. 804–811, 2006. View at Publisher · View at Google Scholar · View at Scopus
  267. A. Gallimore and A. Godkin, “Regulatory T cells and tumour immunity—observations in mice and men,” Immunology, vol. 123, no. 2, pp. 157–163, 2008. View at Publisher · View at Google Scholar · View at Scopus
  268. T. L. Whiteside, P. Schuler, and B. Schilling, “Induced and natural regulatory T cells in human cancer,” Expert Opinion on Biological Therapy, vol. 12, no. 10, pp. 1383–1397, 2012. View at Google Scholar
  269. F. Ghiringhelli, P. E. Puig, S. Roux et al., “Tumor cells convert immature myeloid dendritic cells into TGF-β-secreting cells inducing CD4+CD25+ regulatory T cell proliferation,” Journal of Experimental Medicine, vol. 202, no. 7, pp. 919–929, 2005. View at Publisher · View at Google Scholar · View at Scopus
  270. S. Sharma, S.-C. Yang, L. Zhu et al., “Tumor cyclooxygenase-2/prostaglandin E2-dependent promotion of FOXP3 expression and CD4+CD25+ T regulatory cell activities in lung cancer,” Cancer Research, vol. 65, no. 12, pp. 5211–5220, 2005. View at Publisher · View at Google Scholar · View at Scopus
  271. E. Schlecker, A. Stojanovic, C. Eisen et al., “Tumor-infiltrating monocytic myeloid-derived suppressor cells mediate CCR5-dependent recruitment of regulatory T cells favoring tumor growth,” Journal of Immunology, vol. 189, no. 12, pp. 5602–5611, 2012. View at Google Scholar
  272. M. L. Belladonna, C. Orabona, U. Grohmann, and P. Puccetti, “TGF-β and kynurenines as the key to infectious tolerance,” Trends in Molecular Medicine, vol. 15, no. 2, pp. 41–49, 2009. View at Publisher · View at Google Scholar · View at Scopus
  273. S. P. Cobbold, E. Adams, C. A. Farquhar et al., “Infectious tolerance via the consumption of essential amino acids and mTOR signaling,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 29, pp. 12055–12060, 2009. View at Publisher · View at Google Scholar · View at Scopus
  274. F. Flores-Borja, E. C. Jury, C. Mauri, and M. R. Ehrenstein, “Defects in CTLA-4 are associated with abnormal regulatory T cell function in rheumatoid arthritis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 49, pp. 19396–19401, 2008. View at Publisher · View at Google Scholar · View at Scopus
  275. A. V. Collins, D. W. Brodie, R. J. C. Gilbert et al., “The interaction properties of costimulatory molecules revisited,” Immunity, vol. 17, no. 2, pp. 201–210, 2002. View at Publisher · View at Google Scholar · View at Scopus
  276. R. Nasser, M. Pelegrin, M. Plays, L. Gros, and M. Piechaczyk, “Control of regulatory T cells is necessary for vaccine-like effects of antiviral immunotherapy by monoclonal antibodies,” Blood, vol. 121, no. 7, pp. 1102–1111, 2013. View at Google Scholar
  277. R. P. M. Sutmuller, L. M. Van Duivenvoorde, A. Van Elsas et al., “Synergism of cytotoxic T lymphocyte-associated antigen 4 blockade and depletion of CD25+ regulatory T cells in antitumor therapy reveals alternative pathways for suppression of autoreactive cytotoxic T lymphocyte responses,” Journal of Experimental Medicine, vol. 194, no. 6, pp. 823–832, 2001. View at Publisher · View at Google Scholar · View at Scopus
  278. J. Duraiswamy, K. M. Kaluza, G. J. Freeman, and G. Coukos, “Dual blockade of PD-1 and CTLA-4 combined with tumor vaccine effectively restores t-cell rejection function in tumors,” Cancer Research, vol. 73, no. 12, pp. 3591–3603, 2013. View at Google Scholar
  279. D. R. Leach, M. F. Krummel, and J. P. Allison, “Enhancement of antitumor immunity by CTLA-4 blockade,” Science, vol. 271, no. 5256, pp. 1734–1736, 1996. View at Google Scholar · View at Scopus
  280. V. A. Trinh and W. J. Hwu, “Ipilimumab in the treatment of melanoma,” Expert Opinion on Biological Therapy, vol. 12, no. 6, pp. 773–782, 2012. View at Publisher · View at Google Scholar
  281. F. S. Hodi, D. A. Oble, J. Drappatz et al., “CTLA-4 blockade with ipilimumab induces significant clinical benefit in a female with melanoma metastases to the CNS,” Nature Clinical Practice Oncology, vol. 5, no. 9, pp. 557–561, 2008. View at Publisher · View at Google Scholar · View at Scopus
  282. F. S. Hodi, S. J. O'Day, D. F. McDermott et al., “Improved survival with ipilimumab in patients with metastatic melanoma,” The New England Journal of Medicine, vol. 363, no. 8, pp. 711–723, 2010. View at Publisher · View at Google Scholar · View at Scopus
  283. P. Tomasini, N. Khobta, L. Greillier, and F. Barlesi, “Ipilimumab: its potential in non-small cell lung cancer,” Therapeutic Advances in Medical Oncology, vol. 4, no. 2, pp. 43–50, 2012. View at Google Scholar
  284. T. R. Simpson, F. Li, W. Montalvo-Ortiz et al., “Fc-dependent depletion of tumor-infiltrating regulatory T cells co-defines the efficacy of anti-CTLA-4 therapy against melanoma,” Journal of Experimental Medicine, vol. 210, no. 9, pp. 1695–1710, 2013. View at Google Scholar
  285. R. E. Royal, C. Levy, K. Turner et al., “Phase 2 trial of single agent ipilimumab (Anti-CTLA-4) for locally advanced or metastatic pancreatic adenocarcinoma,” Journal of Immunotherapy, vol. 33, no. 8, pp. 828–833, 2010. View at Publisher · View at Google Scholar · View at Scopus
  286. S. A. Quezada, K. S. Peggs, M. A. Curran, and J. P. Allison, “CTLA4 blockade and GM-CSF combination immunotherapy alters the intratumor balance of effector and regulatory T cells,” Journal of Clinical Investigation, vol. 116, no. 7, pp. 1935–1945, 2006. View at Publisher · View at Google Scholar · View at Scopus
  287. J. H. Finke, B. Rini, J. Ireland et al., “Sunitinib reverses type-1 immune suppression and decreases T-regulatory cells in renal cell carcinoma patients,” Clinical Cancer Research, vol. 14, no. 20, pp. 6674–6682, 2008. View at Publisher · View at Google Scholar · View at Scopus
  288. H. Xin, C. Zhang, A. Herrmann, Y. Du, R. Figlin, and H. Yu, “Sunitinib inhibition of Stat3 induces renal cell carcinoma tumor cell apoptosis and reduces immunosuppressive cells,” Cancer Research, vol. 69, no. 6, pp. 2506–2513, 2009. View at Publisher · View at Google Scholar · View at Scopus
  289. C. Nishioka, T. Ikezoe, J. Yang et al., “Blockade of MEK/ERK signaling enhances sunitinib-induced growth inhibition and apoptosis of leukemia cells possessing activating mutations of the FLT3 gene,” Leukemia Research, vol. 32, no. 6, pp. 865–872, 2008. View at Publisher · View at Google Scholar · View at Scopus
  290. P. J. Roberts and C. J. Der, “Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer,” Oncogene, vol. 26, no. 22, pp. 3291–3310, 2007. View at Publisher · View at Google Scholar · View at Scopus
  291. Y. Hailemichael, Z. Dai, N. Jaffarzad et al., “Persistent antigen at vaccination sites induces tumor-specific CD8+ T cell sequestration, dysfunction and deletion,” Nature Medicine, vol. 19, no. 4, pp. 465–472, 2013. View at Publisher · View at Google Scholar
  292. D. I. Gabrilovich and S. Nagaraj, “Myeloid-derived suppressor cells as regulators of the immune system,” Nature Reviews Immunology, vol. 9, no. 3, pp. 162–174, 2009. View at Publisher · View at Google Scholar · View at Scopus
  293. T. Condamine and D. I. Gabrilovich, “Molecular mechanisms regulating myeloid-derived suppressor cell differentiation and function,” Trends in Immunology, vol. 32, no. 1, pp. 19–25, 2011. View at Publisher · View at Google Scholar · View at Scopus
  294. C. Iclozan, S. Antonia, A. Chiappori, D. T. Chen, and D. Gabrilovich, “Therapeutic regulation of myeloid-derived suppressor cells and immune response to cancer vaccine in patients with extensive stage small cell lung cancer,” Cancer Immunology, Immunotherapy, vol. 62, no. 5, pp. 909–918, 2013. View at Google Scholar
  295. G. A. Rabinovich, D. Gabrilovich, and E. M. Sotomayor, “Immunosuppressive strategies that are mediated by tumor cells,” Annual Review of Immunology, vol. 25, pp. 267–296, 2007. View at Publisher · View at Google Scholar · View at Scopus
  296. M. B. Lutz, N. A. Kukutsch, M. Menges, S. Rossner, and G. Schuler, “Culture of bone marrow cells in GM-CSF plus high doses of lipopolysaccharide generates exclusively immature dendritic cells which induce alloantigen-specific CD4 T cell anergy in vitro,” European Journal of Immunology, vol. 30, no. 4, pp. 1048–1052, 2000. View at Google Scholar
  297. P. Cheng, C. A. Corzo, N. Luetteke et al., “Inhibition of dendritic cell differentiation and accumulation of myeloid-derived suppressor cells in cancer is regulated by S100A9 protein,” Journal of Experimental Medicine, vol. 205, no. 10, pp. 2235–2249, 2008. View at Publisher · View at Google Scholar · View at Scopus
  298. J.-I. Youn, S. Nagaraj, M. Collazo, and D. I. Gabrilovich, “Subsets of myeloid-derived suppressor cells in tumor-bearing mice,” Journal of Immunology, vol. 181, no. 8, pp. 5791–5802, 2008. View at Google Scholar · View at Scopus
  299. S. Solito, V. Bronte, and S. Mandruzzato, “Antigen specificity of immune suppression by myeloid-derived suppressor cells,” Journal of Leukocyte Biology, vol. 90, no. 1, pp. 31–36, 2011. View at Publisher · View at Google Scholar · View at Scopus
  300. M. K. Srivastava, P. Sinha, V. K. Clements, P. Rodriguez, and S. Ostrand-Rosenberg, “Myeloid-derived suppressor cells inhibit T-cell activation by depleting cystine and cysteine,” Cancer Research, vol. 70, no. 1, pp. 68–77, 2010. View at Publisher · View at Google Scholar · View at Scopus
  301. V. Bronte, E. Apolloni, A. Cabrelle et al., “Identification of a CD11b+/Gr-1+/CD31+ myeloid progenitor capable of activating or suppressing CD8+ T cells,” Blood, vol. 96, no. 12, pp. 3838–3846, 2000. View at Google Scholar · View at Scopus
  302. P. Serafini, K. Meckel, M. Kelso et al., “Phosphodiesterase-5 inhibition augments endogenous antitumor immunity by reducing myeloid-derived suppressor cell function,” Journal of Experimental Medicine, vol. 203, no. 12, pp. 2691–2702, 2006. View at Publisher · View at Google Scholar · View at Scopus
  303. J. K. Morales, M. Kmieciak, K. L. Knutson, H. D. Bear, and M. H. Manjili, “GM-CSF is one of the main breast tumor-derived soluble factors involved in the differentiation of CD11b-Gr1-bone marrow progenitor cells into myeloid-derived suppressor cells,” Breast Cancer Research and Treatment, vol. 123, no. 1, pp. 39–49, 2010. View at Publisher · View at Google Scholar · View at Scopus
  304. L. Dolcetti, E. Peranzoni, S. Ugel et al., “Hierarchy of immunosuppressive strength among myeloid-derived suppressor cell subsets is determined by GM-CSF,” European Journal of Immunology, vol. 40, no. 1, pp. 22–35, 2010. View at Publisher · View at Google Scholar · View at Scopus
  305. E. J. Small, D. M. Reese, B. Um, S. Whisenant, S. C. Dixon, and W. D. Figg, “Therapy of advanced prostate cancer with granulocyte macrophage colony-stimulating factor,” Clinical Cancer Research, vol. 5, no. 7, pp. 1738–1744, 1999. View at Google Scholar · View at Scopus
  306. M. J. Mastrangelo, H. C. Maguire Jr., L. C. Eisenlohr et al., “Intratumoral recombinant GM-CSF-encoding virus as gene therapy in patients with cutaneous melanoma,” Cancer Gene Therapy, vol. 6, no. 5, pp. 409–422, 1999. View at Google Scholar · View at Scopus
  307. G. Dranoff, “GM-CSF-secreting melanoma vaccines,” Oncogene, vol. 22, no. 20, pp. 3188–3192, 2003. View at Publisher · View at Google Scholar · View at Scopus
  308. B. H. Kushner and N.-K. V. Cheung, “GM-CSF enhances 3F8 monoclonal antibody-dependent cellular cytotoxicity against human melanoma and neuroblastoma,” Blood, vol. 73, no. 7, pp. 1936–1941, 1989. View at Google Scholar · View at Scopus
  309. P. Rössner, J. Bubeník, V. Sobotá et al., “Granulocyte-macrophage colony-stimulating factor-producing tumour vaccines,” Folia Biologica, vol. 45, no. 5, pp. 173–177, 1999. View at Google Scholar · View at Scopus
  310. C. M. Gutschalk, A. K. Yanamandra, N. Linde, A. Meides, S. Depner, and M. M. Mueller, “GM-CSF enhances tumor invasion by elevated MMP-2, -9, and -26 expression,” Cancer Medicine, vol. 2, no. 2, pp. 117–129, 2012. View at Google Scholar
  311. M. Martinez, N. Ono, M. Planutiene, K. Planutis, E. L. Nelson, and R. F. Holcombe, “Granulocyte-macrophage stimulating factor (GM-CSF) increases circulating dendritic cells but does not abrogate suppression of adaptive cellular immunity in patients with metastatic colorectal cancer receiving chemotherapy,” Cancer Cell International, vol. 12, article 2, 2012. View at Publisher · View at Google Scholar · View at Scopus
  312. I. Marigo, E. Bosio, S. Solito et al., “Tumor-induced tolerance and immune suppression depend on the C/EBPβ transcription factor,” Immunity, vol. 32, no. 6, pp. 790–802, 2010. View at Publisher · View at Google Scholar · View at Scopus
  313. M. G. Lechner, D. J. Liebertz, and A. L. Epstein., “Characterization of cytokine-induced myeloid-derived suppressor cells from normal human peripheral blood mononuclear cells,” Journal of Immunology, vol. 185, no. 4, pp. 2273–2284, 2010. View at Publisher · View at Google Scholar · View at Scopus
  314. S. L. Highfill, P. C. Rodriguez, Q. Zhou et al., “Bone marrow myeloid-derived suppressor cells (MDSCs) inhibit graft-versus-host disease (GVHD) via an arginase-1-dependent mechanism that is up-regulated by interleukin-13,” Blood, vol. 116, no. 25, pp. 5738–5747, 2010. View at Publisher · View at Google Scholar · View at Scopus
  315. J. Dulos, G. J. Carven, S. J. Van Boxtel et al., “PD-1 blockade augments Th1 and Th17 and suppresses Th2 responses in peripheral blood from patients with prostate and advanced melanoma cancer,” Journal of Immunotherapy, vol. 35, no. 2, pp. 169–178, 2012. View at Publisher · View at Google Scholar · View at Scopus
  316. H. Navabi, B. Jasani, A. Reece et al., “A clinical grade poly I:C-analogue (Ampligen) promotes optimal DC maturation and Th1-type T cell responses of healthy donors and cancer patients in vitro,” Vaccine, vol. 27, no. 1, pp. 107–115, 2009. View at Publisher · View at Google Scholar · View at Scopus
  317. X. Xiang, A. Poliakov, C. Liu et al., “Induction of myeloid-derived suppressor cells by tumor exosomes,” International Journal of Cancer, vol. 124, no. 11, pp. 2621–2633, 2009. View at Publisher · View at Google Scholar · View at Scopus
  318. R. Valenti, V. Huber, P. Filipazzi et al., “Human tumor-released microvesicles promote the differentiation of myeloid cells with transforming growth factor-β-mediated suppressive activity on T lymphocytes,” Cancer Research, vol. 66, no. 18, pp. 9290–9298, 2006. View at Publisher · View at Google Scholar · View at Scopus
  319. N. Obermajer, R. Muthuswamy, J. Lesnock, R. P. Edwards, and P. Kalinski, “Positive feedback between PGE2 and COX2 redirects the differentiation of human dendritic cells toward stable myeloid-derived suppressor cells,” Blood, vol. 118, no. 20, pp. 5498–5505, 2011. View at Publisher · View at Google Scholar · View at Scopus
  320. P. U. Emeagi, S. Maenhout, N. Dang, C. Heirman, K. Thielemans, and K. Breckpot, “Downregulation of Stat3 in melanoma: reprogramming the immune microenvironment as an anticancer therapeutic strategy,” Gene Therapy, 2013. View at Publisher · View at Google Scholar
  321. J. I. Youn, V. Kumar, M. Collazo et al., “Epigenetic silencing of retinoblastoma gene regulates pathologic differentiation of myeloid cells in cancer,” Nature Immunology, vol. 14, no. 3, pp. 211–220, 2013. View at Google Scholar
  322. E. Peranzoni, S. Zilio, I. Marigo et al., “Myeloid-derived suppressor cell heterogeneity and subset definition,” Current Opinion in Immunology, vol. 22, no. 2, pp. 238–244, 2010. View at Publisher · View at Google Scholar · View at Scopus
  323. E. Apolloni, V. Bronte, A. Mazzoni et al., “Immortalized myeloid suppressor cells trigger apoptosis in antigen-activated T lymphocytes,” Journal of Immunology, vol. 165, no. 12, pp. 6723–6730, 2000. View at Google Scholar · View at Scopus