Table of Contents Author Guidelines Submit a Manuscript
Neural Plasticity
Volume 2012, Article ID 405926, 12 pages
http://dx.doi.org/10.1155/2012/405926
Research Article

Regulation of Ca2+/Calmodulin-Dependent Protein Kinase II Signaling within Hippocampal Glutamatergic Postsynapses during Flurazepam Withdrawal

1Department of Physiology and Pharmacology, The University of Toledo College of Medicine, Health Science Campus, 3000 Arlington Avenue, Mailstop 1008, Toledo, OH 43614, USA
2Department of Pathology, The University of Toledo College of Medicine, Health Science Campus, Toledo, OH 43614, USA
3Department of Neurosciences, The University of Toledo College of Medicine, Health Science Campus, 3000 Arlington Avenue, Mailstop 1008, Toledo, OH 43614, USA

Received 15 March 2012; Accepted 19 April 2012

Academic Editor: Antonio Pisani

Copyright © 2012 Damien E. Earl et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. C. Fink and T. Meyer, “Molecular mechanisms of CaMKII activation in neuronal plasticity,” Current Opinion in Neurobiology, vol. 12, no. 3, pp. 293–299, 2002. View at Publisher · View at Google Scholar · View at Scopus
  2. S. G. Miller, B. L. Patton, and M. B. Kennedy, “Sequences of autophosphorylation sites in neuronal type II CaM kinase that control Ca2+-independent activity,” Neuron, vol. 1, no. 7, pp. 593–604, 1988. View at Google Scholar · View at Scopus
  3. S. J. Coultrap, I. Buard, J. R. Kulbe, M. L. Dell'Acqua, and K. U. Bayer, “CaMKII autonomy is substrate-dependent and further stimulated by Ca2+/calmodulin,” The Journal of Biological Chemistry, vol. 285, no. 23, pp. 17930–17937, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. R. C. Malenka and R. A. Nicoll, “Long-term potentiation—a decade of progress?” Science, vol. 285, no. 5435, pp. 1870–1874, 1999. View at Publisher · View at Google Scholar · View at Scopus
  5. K. Shen and T. Meyer, “Dynamic control of caMKII translocation and localization in hippocampal neurons by NMDA receptor stimulation,” Science, vol. 284, no. 5411, pp. 162–166, 1999. View at Publisher · View at Google Scholar · View at Scopus
  6. K. Shen, M. N. Teruel, J. H. Connor, S. Shenolikar, and T. Meyer, “Molecular memory by reversible translocation of calcium/calmodulin-dependent protein kinase II,” Nature Neuroscience, vol. 3, no. 9, pp. 881–886, 2000. View at Publisher · View at Google Scholar · View at Scopus
  7. Y. Hayashi, S. H. Shi, J. A. Esteban, A. Piccini, J. C. Poncer, and R. Malinow, “Driving AMPA receptors into synapses by LTP and CaMKII: requirement for GluR1 and PDZ domain interaction,” Science, vol. 287, no. 5461, pp. 2262–2267, 2000. View at Publisher · View at Google Scholar · View at Scopus
  8. V. Derkach, A. Barria, and T. R. Soderling, “Ca2+/calmodulin-kinase II enhances channel conductance of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate type glutamate receptors,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 6, pp. 3269–3274, 1999. View at Google Scholar · View at Scopus
  9. S. M. Anderson, K. R. Famous, G. Sadri-Vakili et al., “CaMKII: a biochemical bridge linking accumbens dopamine and glutamate systems in cocaine seeking,” Nature Neuroscience, vol. 11, no. 3, pp. 344–353, 2008. View at Publisher · View at Google Scholar
  10. K. Schierberl, J. Hao, T. F. Tropea et al., “Cav1.2 L-type Ca2+ channels mediate cocaine-induced GluA1 trafficking in the nucleus accumbens, a long-term adaptation dependent on ventral tegmental area Ca(v)1.3 channels,” Journal of Neuroscience, vol. 31, no. 38, pp. 13562–13575, 2011. View at Google Scholar
  11. K. Xiang and E. I. Tietz, “Benzodiazepine-induced hippocampal CA1 neuron α-amino-3-hydroxy-5- methylisoxasole-4-propionic acid (AMPA) receptor plasticity linked to severity of withdrawal anxiety: differential role of voltage-gated calcium channels and N-methyl-D-aspartic acid receptors,” Behavioural Pharmacology, vol. 18, no. 5-6, pp. 447–460, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. K. Xiang and E. I. Tietz, “Chronic benzodiazepine-induced reduction in GABAA receptor-mediated synaptic currents in hippocampal CA1 pyramidal neurons prevented by prior nimodipine injection,” Neuroscience, vol. 157, no. 1, pp. 153–163, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. G. Shen, B. J. van Sickle, and E. I. Tietz, “Calcium/calmodulin-dependent protein kinase II mediates hippocampal glutamatergic plasticity during benzodiazepine withdrawal,” Neuropsychopharmacology, vol. 35, no. 9, pp. 1897–1909, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. R. R. Griffiths and M. W. Johnson, “Relative abuse liability of hypnotic drugs: a conceptual framework and algorithm for differentiating among compounds,” Journal of Clinical Psychiatry, vol. 66, supplement 9, pp. 31–41, 2005. View at Google Scholar · View at Scopus
  15. E. Izzo, J. Auta, F. Impagnatiello, C. Pesold, A. Guidotti, and E. Costa, “Glutamic acid decarboxylase and glutamate receptor changes during tolerance and dependence to benzodiazepines,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 6, pp. 3483–3488, 2001. View at Publisher · View at Google Scholar · View at Scopus
  16. B. J. van Sickle, K. Xiang, and E. I. Tietz, “Transient plasticity of hippocampal CA1 neuron glutamate receptors contributes to benzodiazepine withdrawal-anxiety,” Neuropsychopharmacology, vol. 29, no. 11, pp. 1994–2006, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. C. Allison, J. A. Pratt, T. L. Ripley, and D. N. Stephens, “α-amino-3-hydroxy-5-methylisoxazole-4-propionate receptor autoradiography in mouse brain after single and repeated withdrawal from diazepam,” European Journal of Neuroscience, vol. 21, no. 4, pp. 1045–1056, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. J. Song, G. Shen, L. J. Greenfield Jr., and E. I. Tietz, “Benzodiazepine withdrawal-induced glutamatergic plasticity involves up-regulation of GluR1-containing α-amino-3-hydroxy-5-methylisoxazole-4- propionic acid receptors in hippocampal CA1 neurons,” Journal of Pharmacology and Experimental Therapeutics, vol. 322, no. 2, pp. 569–581, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. G. Shen, M. S. Mohamed, P. Das, and E. I. Tietz, “Positive allosteric activation of GABAA receptors bi-directionally modulates hippocampal glutamate plasticity and behaviour,” Biochemical Society Transactions, vol. 37, no. 6, pp. 1394–1398, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. P. Das, R. Zerda, F. J. Alvarez, and E. I. Tietz, “Immunogold electron microscopic evidence of differential regulation of GluN1, GluN2A, and GluN2B, NMDA-type glutamate receptor subunits in rat hippocampal CA1 synapses during benzodiazepine withdrawal,” Journal of Comparative Neurology, vol. 518, no. 21, pp. 4311–4328, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. G. Shen and E. I. Tietz, “Down-regulation of synaptic GluN2B subunit-containing N-methyl-D-aspartate receptors: a physiological brake on CA1 neuron α-amino-3-hydroxy-5-methyl- 4-isoxazolepropionic acid hyperexcitability during benzodiazepine withdrawal,” Journal of Pharmacology and Experimental Therapeutics, vol. 336, no. 1, pp. 265–273, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. K. U. Bayer, E. LeBel, G. L. McDonald, H. O'Leary, H. Schulman, and P. de Koninck, “Transition from reversible to persistent binding of CaMKII to postsynaptic sites and NR2B,” Journal of Neuroscience, vol. 26, no. 4, pp. 1164–1174, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. C. E. Lau, J. L. Falk, S. Dolan, and M. Tang, “Simultaneous determination of flurazepam and five metabolites in serum by high-performance liquid chromatography and its application to pharmacokinetic studies in rats,” Journal of Chromatography, vol. 423, pp. 251–259, 1987. View at Publisher · View at Google Scholar · View at Scopus
  24. X. H. Xie and E. I. Tietz, “Reduction in potency of selective γ-aminobutyric acidA agonists and diazepam in CA1 region of in vitro hippocampal slices from chronic flurazepam-treated rats,” Journal of Pharmacology and Experimental Therapeutics, vol. 262, no. 1, pp. 204–211, 1992. View at Google Scholar · View at Scopus
  25. M. B. Kennedy, M. K. Bennett, and N. E. Erondu, “Biochemical and immunochemical evidence that the “major postsynaptic density protein” is a subunit of a calmodulin-dependent protein kinase,” Proceedings of the National Academy of Sciences of the United States of America, vol. 80, no. 23 I, pp. 7357–7361, 1983. View at Google Scholar · View at Scopus
  26. M. B. Kennedy, T. McGuinness, and P. Greengard, “A calcium/calmodulin-dependent protein kinase from mammalian brain that phosphorylates Synapsin I: partial purification and characterization,” Journal of Neuroscience, vol. 3, no. 4, pp. 818–831, 1983. View at Google Scholar · View at Scopus
  27. A. J. Silva, C. F. Stevens, S. Tonegawa, and Y. Wang, “Deficient hippocampal long-term potentiation in α-calcium-calmodulin kinase II mutant mice,” Science, vol. 257, no. 5067, pp. 201–206, 1992. View at Google Scholar · View at Scopus
  28. J. M. Lorenz, M. H. Riddervold, E. A. Beckett, S. A. Baker, and B. A. Perrino, “Differential autophosphorylation of CaM kinase II from phasic and tonic smooth muscle tissues,” American Journal of Physiology, vol. 283, no. 5, pp. C1399–C1413, 2002. View at Google Scholar · View at Scopus
  29. M. Larsson and J. Broman, “Pathway-specific bidirectional regulation of Ca2+/calmodulin-dependent protein kinase II at spinal nociceptive synapses after acute noxious stimulation,” Journal of Neuroscience, vol. 26, no. 16, pp. 4198–4205, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. S. Taha, J. L. Hanover, A. J. Silva, and M. P. Stryker, “Autophosphorylation of αCaMKII Is required for ocular dominance plasticity,” Neuron, vol. 36, no. 3, pp. 483–491, 2002. View at Publisher · View at Google Scholar · View at Scopus
  31. A. Dosemeci, L. Vinade, C. A. Winters, T. S. Reese, and J. H. Tao-Cheng, “Inhibition of phosphatase activity prolongs NMDA-induced modification of the postsynaptic density,” Journal of Neurocytology, vol. 31, no. 8-9, pp. 605–612, 2002. View at Google Scholar · View at Scopus
  32. M. Megías, Z. Emri, T. F. Freund, and A. I. Gulyás, “Total number and distribution of inhibitory and excitatory synapses on hippocampal CA1 pyramidal cells,” Neuroscience, vol. 102, no. 3, pp. 527–540, 2001. View at Publisher · View at Google Scholar · View at Scopus
  33. P. Das, S. M. Lilly, R. Zerda, W. T. Gunning III, F. J. Alvarez, and E. I. Tietz, “Increased AMPA receptor GluR1 subunit incorporation in rat hippocampal CA1 synapses during benzodiazepine withdrawal,” Journal of Comparative Neurology, vol. 511, no. 6, pp. 832–846, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. K. Xiang, D. E. Earl, K. M. Davis, D. R. Giovannucci, L. J. Greenfield Jr., and E. I. Tietz, “Chronic benzodiazepine administration potentiates high voltage-activated calcium currents in hippocampal CA1 neurons,” Journal of Pharmacology and Experimental Therapeutics, vol. 327, no. 3, pp. 872–883, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. J. D. Petersen, X. Chen, L. Vinade, A. Dosemeci, J. E. Lisman, and T. S. Reese, “Distribution of postsynaptic density (PSD)-95 and Ca2+/calmodulin-dependent protein kinase II at the PSD,” Journal of Neuroscience, vol. 23, no. 35, pp. 11270–11278, 2003. View at Google Scholar · View at Scopus
  36. A. Dosemeci, T. S. Reese, J. Petersen, and J. H. Tao-Cheng, “A novel particulate form of Ca2+/calmodulin-dependent [correction of Ca2+/CaMKII-dependent] protein kinase II in neurons,” Journal of Neuroscience, vol. 20, no. 9, pp. 3076–3084, 2000. View at Google Scholar · View at Scopus
  37. K. U. Bayer, P. de Koninck, A. S. Leonard, J. W. Hell, and H. Schulman, “Interaction with the NMDA receptor locks CaMKII in an active conformation,” Nature, vol. 411, no. 6839, pp. 801–805, 2001. View at Publisher · View at Google Scholar · View at Scopus
  38. M. K. Bennett, N. E. Erondu, and M. B. Kennedy, “Purification and characterization of a calmodulin-dependent protein kinase that is highly concentrated in brain,” The Journal of Biological Chemistry, vol. 258, no. 20, pp. 12735–12744, 1983. View at Google Scholar · View at Scopus
  39. N. E. Erondu and M. B. Kennedy, “Regional distribution of type II Ca2+/calmodulin-dependent protein kinase in rat brain,” Journal of Neuroscience, vol. 5, no. 12, pp. 3270–3277, 1985. View at Google Scholar · View at Scopus
  40. T. Meyer, P. I. Hanson, L. Stryer, and H. Schulman, “Calmodulin trapping by calcium-calmodulin-dependent protein kinase,” Science, vol. 256, no. 5060, pp. 1199–1202, 1992. View at Google Scholar · View at Scopus
  41. A. Hudmon, H. Schulman, J. Kim, J. M. Maltez, R. W. Tsien, and G. S. Pitt, “CaMKII tethers to L-type Ca2+ channels, establishing a local and dedicated integrator of Ca2+ signals for facilitation,” Journal of Cell Biology, vol. 171, no. 3, pp. 537–547, 2005. View at Publisher · View at Google Scholar · View at Scopus
  42. M. A. Jenkins, C. J. Christel, Y. Jiao et al., “Ca2+-dependent facilitation of cav1.3 Ca2+ channels by densin and Ca2+/calmodulin-dependent protein kinase II,” Journal of Neuroscience, vol. 30, no. 15, pp. 5125–5135, 2010. View at Publisher · View at Google Scholar · View at Scopus
  43. D. E. Earl, P. Das, W. T. Gunning III, and E. I. Tietz, “Ca2+/calmodulin-dependent protein kinase II localization and autophosphorylation within hippocampal CA1 excitatory postsynapses during flurazepam withdrawal, Program No 68.02,” in Neuroscience Meeting Planner, Society for Neuroscience, Washington, DC, USA, 2011. View at Google Scholar
  44. R. D. Blitzer, J. H. Connor, G. P. Brown et al., “Gating of CaMKII by cAMP-regulated protein phosphatase activity during LTP,” Science, vol. 280, no. 5371, pp. 1940–1943, 1998. View at Publisher · View at Google Scholar · View at Scopus
  45. P. L. Hoffman and B. Tabakoff, “Ethanol, sedative hypnotics and glutamate receptor function in brain and cultured cells,” Alcohol and Alcoholism, vol. 2, pp. 345–351, 1993. View at Google Scholar · View at Scopus
  46. J. Ulrichsen, B. Bech, B. Ebert, N. H. Diemer, P. Allerup, and R. Hemmingsen, “Glutamate and benzodiazepine receptor autoradiography in rat brain after repetition of alcohol dependence,” Psychopharmacology, vol. 126, no. 1, pp. 31–41, 1996. View at Publisher · View at Google Scholar · View at Scopus
  47. J. Nagy, “The NR2B subtype of NMDA receptor: a potential target for the treatment of alcohol dependence,” Current Drug Targets, vol. 3, no. 3, pp. 169–179, 2004. View at Publisher · View at Google Scholar · View at Scopus
  48. G. C. Hodding, M. Jann, and I. P. Ackerman, “Drug withdrawal syndromes—a literature review,” Western Journal of Medicine, vol. 133, no. 5, pp. 383–391, 1980. View at Google Scholar · View at Scopus
  49. A. McKeon, M. A. Frye, and N. Delanty, “The alcohol withdrawal syndrome,” Journal of Neurology, Neurosurgery and Psychiatry, vol. 79, no. 8, pp. 854–862, 2008. View at Publisher · View at Google Scholar · View at Scopus