Table of Contents Author Guidelines Submit a Manuscript
Neural Plasticity
Volume 2012, Article ID 415825, 10 pages
http://dx.doi.org/10.1155/2012/415825
Review Article

Linking Epigenetics to Human Disease and Rett Syndrome: The Emerging Novel and Challenging Concepts in MeCP2 Research

1Regenerative Medicine Program, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, MB, Canada R3E 0J9
2Department of Biochemistry and Medical Genetics, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, MB, Canada R3E 0J9
3Department of Immunology, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, MB, Canada R3E 0J9

Received 31 August 2011; Accepted 15 November 2011

Academic Editor: Hansen Wang

Copyright © 2012 Robby Mathew Zachariah and Mojgan Rastegar. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Epigenetics refer to inheritable changes beyond DNA sequence that control cell identity and morphology. Epigenetics play key roles in development and cell fate commitments and highly impact the etiology of many human diseases. A well-known link between epigenetics and human disease is the X-linked MECP2 gene, mutations in which lead to the neurological disorder, Rett Syndrome. Despite the fact that MeCP2 was discovered about 20 years ago, our current knowledge about its molecular function is not comprehensive. While MeCP2 was originally found to bind methylated DNA and interact with repressor complexes to inhibit and silence its genomic targets, recent studies have challenged this idea. Indeed, depending on its interacting protein partners and target genes, MeCP2 can act either as an activator or as a repressor. Furthermore, it is becoming evident that although Rett Syndrome is a progressive and postnatal neurological disorder, the consequences of MeCP2 deficiencies initiate much earlier and before birth. To comprehend the novel and challenging concepts in MeCP2 research and to design effective therapeutic strategies for Rett Syndrome, a targeted collaborative effort from scientists in multiple research areas to clinicians is required.