Table of Contents Author Guidelines Submit a Manuscript
Neural Plasticity
Volume 2012 (2012), Article ID 415825, 10 pages
http://dx.doi.org/10.1155/2012/415825
Review Article

Linking Epigenetics to Human Disease and Rett Syndrome: The Emerging Novel and Challenging Concepts in MeCP2 Research

1Regenerative Medicine Program, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, MB, Canada R3E 0J9
2Department of Biochemistry and Medical Genetics, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, MB, Canada R3E 0J9
3Department of Immunology, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, MB, Canada R3E 0J9

Received 31 August 2011; Accepted 15 November 2011

Academic Editor: Hansen Wang

Copyright © 2012 Robby Mathew Zachariah and Mojgan Rastegar. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. P. Delcuve, M. Rastegar, and J. R. Davie, “Epigenetic control,” Journal of Cellular Physiology, vol. 219, no. 2, pp. 243–250, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. B. A. Barber and M. Rastegar, “Epigenetic control of Hox genes during neurogenesis, development, and disease,” Annals of Anatomy, vol. 192, no. 5, pp. 261–274, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. J. C. Rice and C. D. Allis, “Histone methylation versus histone acetylation: new insights into epigenetic regulation,” Current Opinion in Cell Biology, vol. 13, no. 3, pp. 263–273, 2001. View at Publisher · View at Google Scholar · View at Scopus
  4. Y. Wang, W. Fischle, W. Cheung et al., “Beyond the double helix: writing and reading the histone code,” Novartis Foundation Symposium, vol. 259, pp. 3–17, 2004. View at Google Scholar · View at Scopus
  5. J. Zhu, A. Kapoor, V. V. Sridhar, F. Agius, and J. K. Zhu, “The DNA glycosylase/lyase ROS1 functions in pruning DNA methylation patterns in arabidopsis,” Current Biology, vol. 17, no. 1, pp. 54–59, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. M. G. Goll and T. H. Bestor, “Eukaryotic cytosine methyltransferases,” Annual Review of Biochemistry, vol. 74, pp. 481–514, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. F. Song, J. F. Smith, M. T. Kimura et al., “Association of tissue-specific differentially methylated regions (TDMs) with differential gene expression,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 9, pp. 3336–3341, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. W. Reik, A. Collick, M. L. Norris, S. C. Barton, and M. A. Surani, “Genomic imprinting determines methylation of parental alleles in transgenic mice,” Nature, vol. 328, no. 6127, pp. 248–251, 1987. View at Google Scholar · View at Scopus
  9. S. F. Wolf and B. R. Migeon, “Studies of X chromosome DNA methylation in normal human cells,” Nature, vol. 295, no. 5851, pp. 667–671, 1982. View at Google Scholar · View at Scopus
  10. B. Hendrich and A. Bird, “Identification and characterization of a family of mammalian methyl-CpG binding proteins,” Molecular and Cellular Biology, vol. 18, no. 11, pp. 6538–6547, 1998. View at Google Scholar · View at Scopus
  11. M. Saito and F. Ishikawa, “The mCpG-binding domain of human MBD3 does not bind to mCpG but interacts with NuRD/Mi2 components HDAC1 and MTA2,” Journal of Biological Chemistry, vol. 277, no. 38, pp. 35434–35439, 2002. View at Publisher · View at Google Scholar · View at Scopus
  12. J. D. Lewis, R. R. Meehan, W. J. Henzel et al., “Purification, sequence, and cellular localization of a novel chromosomal protein that binds to methylated DNA,” Cell, vol. 69, no. 6, pp. 905–914, 1992. View at Publisher · View at Google Scholar · View at Scopus
  13. R. E. Amir, I. B. van den Veyver, M. Wan, C. Q. Tran, U. Francke, and H. Y. Zoghbi, “Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2,” Nature Genetics, vol. 23, no. 2, pp. 185–188, 1999. View at Publisher · View at Google Scholar · View at Scopus
  14. J. L. Neul, P. Fang, J. Barrish et al., “Specific mutations in methyl-CpG-binding protein 2 confer different severity in Rett syndrome,” Neurology, vol. 70, no. 16, pp. 1313–1321, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. A. Rett, “Rett syndrome: history and general overview,” American Journal of Medical Genetics, vol. 24, supplement 1, pp. 21–25, 1986. View at Google Scholar · View at Scopus
  16. P. Couvert, T. Bienvenu, C. Aquaviva et al., “MECP2 is highly mutated in X-linked mental retardation,” Human Molecular Genetics, vol. 10, no. 9, pp. 941–946, 2001. View at Google Scholar · View at Scopus
  17. C. W. Lam, W. L. Yeung, C. H. Ko et al., “Spectrum of mutations in the MECP2 gene in patients with infantile autism and Rett syndrome,” Journal of Medical Genetics, vol. 37, no. 12, p. E41, 2000. View at Google Scholar · View at Scopus
  18. K. S. Beyer, F. Blasi, E. Bacchelli, S. M. Klauck, E. Maestrini, and A. Poustka, “Mutation analysis of the coding sequence of the MECP2 gene in infantile autism,” Human Genetics, vol. 111, no. 4-5, pp. 305–309, 2002. View at Publisher · View at Google Scholar · View at Scopus
  19. N. C. Schanen, T. W. Kurczynski, D. Brunelle, M. M. Woodcock, L. S. Dure, and A. K. Percy, “Neonatal encephalopathy in two boys in families with recurrent Rett syndrome,” Journal of Child Neurology, vol. 13, no. 5, pp. 229–231, 1998. View at Google Scholar · View at Scopus
  20. R. R. Meehan, J. D. Lewis, and A. P. Bird, “Characterization of MeCP2, a vertebrate DNA binding protein with affinity for methylated DNA,” Nucleic Acids Research, vol. 20, no. 19, pp. 5085–5092, 1992. View at Google Scholar · View at Scopus
  21. X. Nan, H. H. Ng, C. A. Johnson et al., “Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex,” Nature, vol. 393, no. 6683, pp. 386–389, 1998. View at Publisher · View at Google Scholar · View at Scopus
  22. P. L. Jones, G. J. C. Veenstra, P. A. Wade et al., “Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription,” Nature Genetics, vol. 19, no. 2, pp. 187–191, 1998. View at Publisher · View at Google Scholar · View at Scopus
  23. M. Chahrour, Y. J. Sung, C. Shaw et al., “MeCP2, a key contributor to neurological disease, activates and represses transcription,” Science, vol. 320, no. 5880, pp. 1224–1229, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. M. D'Esposito, N. A. Quaderi, A. Ciccodicola et al., “Isolation, physical mapping, and northern analysis of the X-linked human gene encoding methyl CpG-binding protein, MECP2,” Mammalian Genome, vol. 7, no. 7, pp. 533–535, 1996. View at Google Scholar · View at Scopus
  25. N. Sirianni, S. Naidu, J. Pereira, R. F. Pillotto, and E. P. Hoffman, “Rett syndrome: confirmation of X-linked dominant inheritance, and localization of the gene to Xq28,” American Journal of Human Genetics, vol. 63, no. 5, pp. 1552–1558, 1998. View at Publisher · View at Google Scholar · View at Scopus
  26. S. Kriaucionis and A. Bird, “The major form of MeCP2 has a novel N-terminus generated by alternative splicing,” Nucleic Acids Research, vol. 32, no. 5, pp. 1818–1823, 2004. View at Publisher · View at Google Scholar · View at Scopus
  27. G. J. Pelka, C. M. Watson, J. Christodoulou, and P. P. L. Tam, “Distinct expression profiles of Mecp2 transcripts with different lengths of 3UTR in the brain and visceral organs during mouse development,” Genomics, vol. 85, no. 4, pp. 441–452, 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. J. M. Dragich, Y. H. Kim, A. P. Arnold, and N. C. Schanen, “Differential distribution of the Mecp2 splice variants in the postnatal mouse brain,” Journal of Comparative Neurology, vol. 501, no. 4, pp. 526–542, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. M. D. Shahbazian, B. Antalffy, D. L. Armstrong, and H. Y. Zoghbi, “Insight into Rett syndrome: MeCP2 levels display tissue-and cell-specific differences and correlate with neuronal maturation,” Human Molecular Genetics, vol. 11, no. 2, pp. 115–124, 2002. View at Google Scholar · View at Scopus
  30. B. Kerr, C. J. Soto, M. Saez, A. Abrams, K. Walz, and J. I. Young, “Transgenic complementation of MeCP2 deficiency: phenotypic rescue of Mecp2-null mice by isoform-specific transgenes,” European Journal of Human Genetics, vol. 20, no. 1, pp. 69–76, 2011. View at Publisher · View at Google Scholar
  31. R. J. Klose, S. A. Sarraf, L. Schmiedeberg, S. M. McDermott, I. Stancheva, and A. P. Bird, “DNA binding selectivity of MeCP2 due to a requirement for A/T sequences adjacent to methyl-CpG,” Molecular Cell, vol. 19, no. 5, pp. 667–678, 2005. View at Publisher · View at Google Scholar · View at Scopus
  32. T. C. Galvão and J. O. Thomas, “Structure-specific binding of MeCP2 to four-way junction DNA through its methyl CpG-binding domain,” Nucleic Acids Research, vol. 33, no. 20, pp. 6603–6609, 2005. View at Publisher · View at Google Scholar · View at Scopus
  33. K. Kokura, S. C. Kaul, R. Wadhwa et al., “The Ski protein family is required for MeCP2-mediated transcriptional repression,” Journal of Biological Chemistry, vol. 276, no. 36, pp. 34115–34121, 2001. View at Publisher · View at Google Scholar · View at Scopus
  34. G. Forlani, E. Giarda, U. Ala et al., “The MeCP2/YY1 interaction regulates ANT1 expression at 4q35: novel hints for Rett syndrome pathogenesis,” Human Molecular Genetics, vol. 19, no. 16, Article ID ddq214, pp. 3114–3123, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. J. I. Young, E. P. Hong, J. C. Castle et al., “Regulation of RNA splicing by the methylation-dependent transcriptional repressor methyl-CpG binding protein 2,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 49, pp. 17551–17558, 2005. View at Publisher · View at Google Scholar · View at Scopus
  36. M. D. Shahbazian, J. I. Young, L. A. Yuva-Paylor et al., “Mice with truncated MeCP2 recapitulate many Rett syndrome features and display hyperacetylation of histone H3,” Neuron, vol. 35, no. 2, pp. 243–254, 2002. View at Publisher · View at Google Scholar · View at Scopus
  37. P. T. Georgel, R. A. Horowitz-Scherer, N. Adkins, C. L. Woodcock, P. A. Wade, and J. C. Hansen, “Chromatin compaction by human MeCP2. Assembly of novel secondary chromatin structures in the absence of DNA methylation,” Journal of Biological Chemistry, vol. 278, no. 34, pp. 32181–32188, 2003. View at Publisher · View at Google Scholar · View at Scopus
  38. A. R. Muotri, M. C. N. Marchetto, N. G. Coufal et al., “L1 retrotransposition in neurons is modulated by MeCP2,” Nature, vol. 468, no. 7322, pp. 443–446, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. P. J. Skene, R. S. Illingworth, S. Webb et al., “Neuronal MeCP2 is expressed at near histone-octamer levels and globally alters the chromatin state,” Molecular Cell, vol. 37, no. 4, pp. 457–468, 2010. View at Publisher · View at Google Scholar · View at Scopus
  40. Z. Zhou, E. J. Hong, S. Cohen et al., “Brain-specific phosphorylation of MeCP2 regulates activity-dependent Bdnf transcription, dendritic growth, and spine maturation,” Neuron, vol. 52, no. 2, pp. 255–269, 2006. View at Publisher · View at Google Scholar · View at Scopus
  41. J. Tao, K. Hu, Q. Chang et al., “Phosphorylation of MeCP2 at serine 80 regulates its chromatin association and neurological function,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 12, pp. 4882–4887, 2009. View at Publisher · View at Google Scholar · View at Scopus
  42. W. Fischle, Y. Wang, and C. D. Allis, “Histone and chromatin cross-talk,” Current Opinion in Cell Biology, vol. 15, no. 2, pp. 172–183, 2003. View at Publisher · View at Google Scholar · View at Scopus
  43. S. Winter and W. Fischle, “Epigenetic markers and their cross-talk,” Essays in Biochemistry, vol. 48, no. 1, pp. 45–61, 2010. View at Google Scholar
  44. S. Akbarian, R. Z. Chen, J. Gribnau et al., “Expression pattern of the Rett syndrome gene MeCP2 in primate prefrontal cortex,” Neurobiology of Disease, vol. 8, no. 5, pp. 784–791, 2001. View at Publisher · View at Google Scholar · View at Scopus
  45. J. M. LaSalle, J. Goldstine, D. Balmer, and C. M. Greco, “Quantitative localization of heterogeneous methyl-CpG-binding protein 2 (MeCP2) expression phenotypes in normal and Rett syndrome brain by laser scanning cytometry,” Human Molecular Genetics, vol. 10, no. 17, pp. 1729–1740, 2001. View at Google Scholar · View at Scopus
  46. D. Balmer, J. Goldstine, Y. M. Rao, and J. M. LaSalle, “Elevated methyl-CpG-binding protein 2 expression is acquired during postnatal human brain development and is correlated with alternative polyadenylation,” Journal of Molecular Medicine, vol. 81, no. 1, pp. 61–68, 2003. View at Google Scholar · View at Scopus
  47. D. R. S. Cohen, V. Matarazzo, A. M. Palmer et al., “Expression of MeCP2 in olfactory receptor neurons is developmentally regulated and occurs before synaptogenesis,” Molecular and Cellular Neuroscience, vol. 22, no. 4, pp. 417–429, 2003. View at Publisher · View at Google Scholar · View at Scopus
  48. S. Cassel, M. O. Revel, C. Kelche, and J. Zwiller, “Expression of the methyl-CpG-binding protein MeCP2 in rat brain. An ontogenetic study,” Neurobiology of Disease, vol. 15, no. 2, pp. 206–211, 2004. View at Publisher · View at Google Scholar · View at Scopus
  49. D. Braunschweig, T. Simcox, R. C. Samaco, and J. M. LaSalle, “X-chromosome inactivation ratios affect wild-type MeCP2 expression within mosaic Rett syndrome and Mecp2-/+ mouse brain,” Human Molecular Genetics, vol. 13, no. 12, pp. 1275–1286, 2004. View at Publisher · View at Google Scholar · View at Scopus
  50. B. C. Mullaney, M. V. Johnston, and M. E. Blue, “Developmental expression of methyl-CpG binding protein 2 is dynamically regulated in the rodent brain,” Neuroscience, vol. 123, no. 4, pp. 939–949, 2004. View at Publisher · View at Google Scholar · View at Scopus
  51. N. Ballas, D. T. Lioy, C. Grunseich, and G. Mandel, “Non-cell autonomous influence of MeCP2-deficient glia on neuronal dendritic morphology,” Nature Neuroscience, vol. 12, no. 3, pp. 311–317, 2009. View at Publisher · View at Google Scholar · View at Scopus
  52. N. Kishi and J. D. Macklis, “MECP2 is progressively expressed in post-migratory neurons and is involved in neuronal maturation rather than cell fate decisions,” Molecular and Cellular Neuroscience, vol. 27, no. 3, pp. 306–321, 2004. View at Publisher · View at Google Scholar · View at Scopus
  53. R. Z. Chen, S. Akbarian, M. Tudor, and R. Jaenisch, “Deficiency of methyl-CpG binding protein-2 in CNS neurons results in a Rett-like phenotype in mice,” Nature Genetics, vol. 27, no. 3, pp. 327–331, 2001. View at Publisher · View at Google Scholar · View at Scopus
  54. H. T. Chao, H. Chen, R. C. Samaco et al., “Dysfunction in GABA signalling mediates autism-like stereotypies and Rett syndrome phenotypes,” Nature, vol. 468, no. 7321, pp. 263–269, 2010. View at Publisher · View at Google Scholar · View at Scopus
  55. R. C. Samaco, C. Mandel-Brehm, H. T. Chao et al., “Loss of MeCP2 in aminergic neurons causes cell-autonomous defects in neurotransmitter synthesis and specific behavioral abnormalities,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 51, pp. 21966–21971, 2009. View at Publisher · View at Google Scholar · View at Scopus
  56. M. Rastegar, A. Hotta, P. Pasceri et al., “MECP2 isoform-specific vectors with regulated expression for Rett Syndrome gene therapy,” PLoS ONE, vol. 4, no. 8, Article ID e6810, 2009. View at Publisher · View at Google Scholar · View at Scopus
  57. I. Maezawa, S. Swanberg, D. Harvey, J. M. LaSalle, and L. W. Jin, “Rett syndrome astrocytes are abnormal and spread MeCP2 deficiency through gap junctions,” Journal of Neuroscience, vol. 29, no. 16, pp. 5051–5061, 2009. View at Publisher · View at Google Scholar · View at Scopus
  58. D. T. Lioy, S. K. Garg, C. E. Monaghan et al., “A role for glia in the progression of Rett-syndrome,” Nature, vol. 475, no. 7357, pp. 497–500, 2011. View at Publisher · View at Google Scholar
  59. A. L. Olins and D. E. Olins, “Spheroid chromatin units (v bodies),” Science, vol. 183, no. 4122, pp. 330–332, 1974. View at Google Scholar · View at Scopus
  60. E. Li, “Chromatin modification and epigenetic reprogramming in mammalian development,” Nature Reviews Genetics, vol. 3, no. 9, pp. 662–673, 2002. View at Publisher · View at Google Scholar · View at Scopus
  61. A. Ramachandran, M. Omar, P. Cheslock, and G. R. Schnitzler, “Linker histone H1 modulates nucleosome remodeling by human SWI/SNF,” Journal of Biological Chemistry, vol. 278, no. 49, pp. 48590–48601, 2003. View at Publisher · View at Google Scholar · View at Scopus
  62. Y. Fan, T. Nikitina, E. M. Morin-Kensicki et al., “H1 linker histones are essential for mouse development and affect nucleosome spacing in vivo,” Molecular and Cellular Biology, vol. 23, no. 13, pp. 4559–4572, 2003. View at Publisher · View at Google Scholar · View at Scopus
  63. Y. Fan, T. Nikitina, J. Zhao et al., “Histone H1 depletion in mammals alters global chromatin structure but causes specific changes in gene regulation,” Cell, vol. 123, no. 7, pp. 1199–1212, 2005. View at Publisher · View at Google Scholar · View at Scopus
  64. X. Nan, F. J. Campoy, and A. Bird, “MeCP2 is a transcriptional repressor with abundant binding sites in genomic chromatin,” Cell, vol. 88, no. 4, pp. 471–481, 1997. View at Publisher · View at Google Scholar · View at Scopus
  65. T. Ishibashi, A. A. Thambirajah, and J. Ausió, “MeCP2 preferentially binds to methylated linker DNA in the absence of the terminal tail of histone H3 and independently of histone acetylation,” FEBS Letters, vol. 582, no. 7, pp. 1157–1162, 2008. View at Publisher · View at Google Scholar · View at Scopus
  66. T. Misteli, A. Gunjan, R. Hock, M. Bustin, and D. T. Brown, “Dynamic binding of histone H1 to chromatin in living cells,” Nature, vol. 408, no. 6814, pp. 877–881, 2000. View at Publisher · View at Google Scholar · View at Scopus
  67. A. Kumar, S. Kamboj, B. M. Malone et al., “Analysis of protein domains and Rett syndrome mutations indicate that multiple regions influence chromatin-binding dynamics of the chromatin-associated protein MECP2 in vivo,” Journal of Cell Science, vol. 121, no. 7, pp. 1128–1137, 2008. View at Publisher · View at Google Scholar · View at Scopus
  68. K. Miyake, T. Hirasawa, M. Soutome et al., “The protocadherins, PCDHB1 and PCDH7, are regulated by MeCP2 in neuronal cells and brain tissues: implication for pathogenesis of Rett syndrome,” BMC Neuroscience, vol. 12, p. 81, 2011. View at Publisher · View at Google Scholar
  69. J. H. Gibson, B. Slobedman, H. KN et al., “Downstream targets of methyl CpG binding protein 2 and their abnormal expression in the frontal cortex of the human Rett syndrome brain,” BMC Neuroscience, vol. 11, p. 53, 2010. View at Publisher · View at Google Scholar · View at Scopus
  70. K. Martinowich, D. Hattori, H. Wu et al., “DNA methylation-related chromatin remodeling in activity-dependent Bdnf gene regulation,” Science, vol. 302, no. 5646, pp. 890–893, 2003. View at Publisher · View at Google Scholar · View at Scopus
  71. W. G. Chen, Q. Chang, Y. Lin et al., “Derepression of BDNF transcription involves calcium-dependent phosphorylation of MeCP2,” Science, vol. 302, no. 5646, pp. 885–889, 2003. View at Publisher · View at Google Scholar · View at Scopus
  72. C. R. Jordan, H. H. Li, H. C. Kwan, and U. Francke, “Cerebellar gene expression profiles of mouse models for Rett syndrome reveal novel MeCP2 targets,” BMC Medical Genetics, vol. 8, p. 36, 2007. View at Publisher · View at Google Scholar · View at Scopus
  73. V. Deng, V. Matagne, F. Banine et al., “FXYD1 is an MeCP2 target gene overexpressed in the brains of Rett syndrome patients and Mecp2-null mice,” Human Molecular Genetics, vol. 16, no. 6, pp. 640–650, 2007. View at Publisher · View at Google Scholar · View at Scopus
  74. S. Peddada, D. H. Yasui, and J. M. LaSalle, “Inhibitors of differentiation (ID1, ID2, ID3 and ID4) genes are neuronal targets of MeCP2 that are elevated in Rett syndrome,” Human Molecular Genetics, vol. 15, no. 12, pp. 2003–2014, 2006. View at Publisher · View at Google Scholar · View at Scopus
  75. M. Itoh, S. Ide, S. Takashima et al., “Methyl CpG-binding protein 2 (a mutation of which causes Rett syndrome) directly regulates insulin-like growth factor binding protein 3 in mouse and human brains,” Journal of Neuropathology and Experimental Neurology, vol. 66, no. 2, pp. 117–123, 2007. View at Publisher · View at Google Scholar · View at Scopus
  76. R. C. Samaco, A. Hogart, and J. M. LaSalle, “Epigenetic overlap in autism-spectrum neurodevelopmental disorders: MECP2 deficiency causes reduced expression of UBE3A and GABRB3,” Human Molecular Genetics, vol. 14, no. 4, pp. 483–492, 2005. View at Publisher · View at Google Scholar · View at Scopus
  77. I. Stancheva, A. L. Collins, I. B. van den Veyver, H. Zoghbi, and R. R. Meehan, “A mutant form of MeCP2 protein associated with human Rett syndrome cannot be displaced from methylated DNA by Notch in Xenopus embryos,” Molecular Cell, vol. 12, no. 2, pp. 425–435, 2003. View at Publisher · View at Google Scholar · View at Scopus
  78. U. A. Nuber, S. Kriaucionis, T. C. Roloff et al., “Up-regulation of glucocorticoid-regulated genes in a mouse model of Rett syndrome,” Human Molecular Genetics, vol. 14, no. 15, pp. 2247–2256, 2005. View at Publisher · View at Google Scholar · View at Scopus
  79. S. Kriaucionis, A. Paterson, J. Curtis, J. Guy, N. MacLeod, and A. Bird, “Gene expression analysis exposes mitochondrial abnormalities in a mouse model of Rett syndrome,” Molecular and Cellular Biology, vol. 26, no. 13, pp. 5033–5042, 2006. View at Publisher · View at Google Scholar · View at Scopus
  80. B. E. McGill, S. F. Bundle, M. B. Yaylaoglu, J. P. Carson, C. Thaller, and H. Y. Zoghbi, “Enhanced anxiety and stress-induced corticosterone release are associated with increased Crh expression in a mouse model of Rett syndrome,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 48, pp. 18267–18272, 2006. View at Publisher · View at Google Scholar · View at Scopus
  81. S. I. Horike, S. Cai, M. Miyano, J. F. Cheng, and T. Kohwi-Shigematsu, “Loss of silent-chromatin looping and impaired imprinting of DLX5 in Rett syndrome,” Nature Genetics, vol. 37, no. 1, pp. 31–40, 2005. View at Publisher · View at Google Scholar · View at Scopus
  82. D. H. Yasui, S. Peddada, M. C. Bieda et al., “Integrated epigenomic analyses of neuronal MeCP2 reveal a role for long-range interaction with active genes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 49, pp. 19416–19421, 2007. View at Publisher · View at Google Scholar · View at Scopus
  83. Q. Chang, G. Khare, V. Dani, S. Nelson, and R. Jaenisch, “The disease progression of Mecp2 mutant mice is affected by the level of BDNF expression,” Neuron, vol. 49, no. 3, pp. 341–348, 2006. View at Publisher · View at Google Scholar · View at Scopus
  84. M. Girard, P. Couvert, A. Carrié et al., “Parental origin of de novo MECP2 mutations in Rett syndrome,” European Journal of Human Genetics, vol. 9, no. 3, pp. 231–236, 2001. View at Publisher · View at Google Scholar · View at Scopus
  85. R. Trappe, F. Laccone, J. Cobilanschi et al., “MECP2 mutations in sporadic cases of Rett syndrome are almost exclusively of paternal origin,” American Journal of Human Genetics, vol. 68, no. 5, pp. 1093–1101, 2001. View at Publisher · View at Google Scholar · View at Scopus
  86. H. G. Dunn, “Importance of Rett syndrome in child neurology,” Brain and Development, vol. 23, supplement 1, pp. S38–S43, 2001. View at Publisher · View at Google Scholar · View at Scopus
  87. J. L. Neul, W. E. Kaufmann, D. G. Glaze et al., “Rett syndrome: revised diagnostic criteria and nomenclature,” Annals of Neurology, vol. 68, no. 6, pp. 944–950, 2010. View at Publisher · View at Google Scholar · View at Scopus
  88. M. Chahrour and H. Y. Zoghbi, “The story of Rett syndrome: from clinic to neurobiology,” Neuron, vol. 56, no. 3, pp. 422–437, 2007. View at Publisher · View at Google Scholar · View at Scopus
  89. P. Kankirawatana, H. Leonard, C. Ellaway et al., “Early progressive encephalopathy in boys and MECP2 mutations,” Neurology, vol. 67, no. 1, pp. 164–166, 2006. View at Publisher · View at Google Scholar · View at Scopus
  90. A. K. Percy and J. B. Lane, “Rett syndrome: model of neurodevelopmental disorders,” Journal of Child Neurology, vol. 20, no. 9, pp. 718–721, 2005. View at Google Scholar · View at Scopus
  91. R. E. Amir, V. R. Sutton, and I. B. van den Veyver, “Newborn screening and prenatal diagnosis for Rett syndrome: implications for therapy,” Journal of Child Neurology, vol. 20, no. 9, pp. 779–783, 2005. View at Google Scholar · View at Scopus
  92. L. Villard, A. Kpebe, C. Cardoso, J. Chelly, M. Tardieu, and M. Fontes, “Two affected boys in a Rett syndrome family: clinical and molecular findings,” Neurology, vol. 55, no. 8, pp. 1188–1193, 2000. View at Google Scholar · View at Scopus
  93. K. Ravn, J. B. Nielsen, P. Uldall, F. J. Hansen, and M. Schwartz, “No correlation between phenotype and genotype in boys with a truncating MECP2 mutation,” Journal of Medical Genetics, vol. 40, no. 1, p. e5, 2003. View at Google Scholar · View at Scopus
  94. T. Bienvenu, A. Carrié, N. de Roux et al., “MECP2 mutations account for most cases of typical forms of Rett syndrome,” Human Molecular Genetics, vol. 9, no. 9, pp. 1377–1384, 2000. View at Google Scholar · View at Scopus
  95. C. Schanen, E. J. F. Houwink, N. Dorrani et al., “Phenotypic manifestations of MECP2 mutations in classical and atypical Rett syndrome,” American Journal of Medical Genetics Part A, vol. 126, no. 2, pp. 129–140, 2004. View at Google Scholar · View at Scopus
  96. A. Bebbington, A. Anderson, D. Ravine et al., “Investigating genotype-phenotype relationships in Rett syndrome using an international data set,” Neurology, vol. 70, no. 11, pp. 868–875, 2008. View at Publisher · View at Google Scholar · View at Scopus
  97. R. C. Samaco, R. P. Nagarajan, D. Braunschweig, and J. M. LaSalle, “Multiple pathways regulate MeCP2 expression in normal brain development and exhibit defects in autism-spectrum disorders,” Human Molecular Genetics, vol. 13, no. 6, pp. 629–639, 2004. View at Publisher · View at Google Scholar · View at Scopus
  98. P. Watson, G. Black, S. Ramsden et al., “Angelman syndrome phenotype associated with mutations in MECP2, a gene encoding a methyl CpG binding protein,” Journal of Medical Genetics, vol. 38, no. 4, pp. 224–228, 2001. View at Google Scholar · View at Scopus
  99. G. Miltenberger-Miltenyi and F. Laccone, “Mutations and polymorphisms in the human methyl CpG-binding protein MECP2,” Human Mutation, vol. 22, no. 2, pp. 107–115, 2003. View at Publisher · View at Google Scholar · View at Scopus
  100. H. Y. Zoghbi, “MeCP2 dysfunction in humans and mice,” Journal of Child Neurology, vol. 20, no. 9, pp. 736–740, 2005. View at Google Scholar · View at Scopus
  101. E. Giacometti, S. Luikenhuis, C. Beard, and R. Jaenisch, “Partial rescue of MeCP2 deficiency by postnatal activation of MeCP2,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 6, pp. 1931–1936, 2007. View at Publisher · View at Google Scholar · View at Scopus
  102. J. Guy, J. Gan, J. Selfridge, S. Cobb, and A. Bird, “Reversal of neurological defects in a mouse model of Rett syndrome,” Science, vol. 315, no. 5815, pp. 1143–1147, 2007. View at Publisher · View at Google Scholar · View at Scopus
  103. M. J. Friez, J. R. Jones, K. Clarkson et al., “Recurrent infections, hypotonia, and mental retardation caused by duplication of MECP2 and adjacent region in Xq28,” Pediatrics, vol. 118, no. 6, pp. e1687–e1695, 2006. View at Publisher · View at Google Scholar · View at Scopus
  104. M. Meins, J. Lehmann, F. Gerresheim et al., “Submicroscopic duplication in Xq28 causes increased expression of the MECP2 gene in a boy with severe mental retardation and features of Rett syndrome,” Journal of Medical Genetics, vol. 42, no. 2, p. e12, 2005. View at Google Scholar · View at Scopus
  105. H. van Esch, M. Bauters, J. Ignatius et al., “Duplication of the MECP2 region is a frequent cause of severe mental retardation and progressive neurological symptoms in males,” American Journal of Human Genetics, vol. 77, no. 3, pp. 442–453, 2005. View at Publisher · View at Google Scholar · View at Scopus
  106. D. Tropea, E. Giacometti, N. R. Wilson et al., “Partial reversal of Rett syndrome-like symptoms in MeCP2 mutant mice,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 6, pp. 2029–2034, 2009. View at Publisher · View at Google Scholar · View at Scopus
  107. A. Hotta, A. Y. L. Cheung, N. Farra et al., “Isolation of human iPS cells using EOS lentiviral vectors to select for pluripotency,” Nature Methods, vol. 6, no. 5, pp. 370–376, 2009. View at Publisher · View at Google Scholar · View at Scopus
  108. M. C. N. Marchetto, C. Carromeu, A. Acab et al., “A model for neural development and treatment of rett syndrome using human induced pluripotent stem cells,” Cell, vol. 143, no. 4, pp. 527–539, 2010. View at Publisher · View at Google Scholar · View at Scopus