Table of Contents Author Guidelines Submit a Manuscript
Neural Plasticity
Volume 2012, Article ID 640259, 8 pages
http://dx.doi.org/10.1155/2012/640259
Review Article

Synaptic Structure and Function in the Mouse Somatosensory Cortex during Chronic Pain: In Vivo Two-Photon Imaging

1Division of Homeostatic Development, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan
2Department of Physiology, College of Oriental Medicine, Kyung Hee University, Seoul 130-701, Republic of Korea
3Department of Physiological Sciences, The Graduate School for Advanced Study, Hayama, Kanagawa 240-0193, Japan
4Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan

Received 23 August 2011; Accepted 13 November 2011

Academic Editor: Gunnar K. Gouras

Copyright © 2012 Sun Kwang Kim et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Recent advances in two-photon microscopy and fluorescence labeling techniques have enabled us to directly see the structural and functional changes in neurons and glia, and even at synapses, in the brain of living animals. Long-term in vivo two-photon imaging studies have shown that some postsynaptic dendritic spines in the adult cortex are rapidly eliminated or newly generated, in response to altered sensory input or synaptic activity, resulting in experience/activity-dependent rewiring of neuronal circuits. In vivo Ca2+ imaging studies have revealed the distinct, input-specific response patterns of excitatory neurons in the brain. These updated in vivo approaches are just beginning to be used for the study of pathophysiological mechanisms of chronic diseases. In this paper, we introduce recent in vivo two-photon imaging studies demonstrating how plastic changes in synaptic structure and function of the mouse somatosensory cortex, following peripheral injury, contribute to chronic pain conditions, like neuropathic and inflammatory pain.