Table of Contents Author Guidelines Submit a Manuscript
Neural Plasticity
Volume 2012, Article ID 728161, 9 pages
http://dx.doi.org/10.1155/2012/728161
Review Article

Kalirin, a Key Player in Synapse Formation, Is Implicated in Human Diseases

Department of Neuroscience, University of Connecticut Health Center, Farmington, CT 06030, USA

Received 30 November 2011; Accepted 13 January 2012

Academic Editor: Irina Nikonenko

Copyright © 2012 Prashant Mandela and Xin-Ming Ma. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Rashidul Alam, B. D. Caldwell, R. G. Johnson, D. N. Darlington, R. E. Mains, and B. A. Eipper, “Novel proteins that interact with the COOH-terminal cytosolic routing determinants of an integral membrane peptide-processing enzyme,” Journal of Biological Chemistry, vol. 271, no. 45, pp. 28636–28640, 1996. View at Publisher · View at Google Scholar · View at Scopus
  2. M. R. Alam, R. C. Johnson, D. N. Darlington, T. A. Hand, R. E. Mains, and B. A. Eipper, “Kalirin, a cytosolic protein with spectrin-like and GDP/GTP exchange factor-like domains that interacts with peptidylglycine α-amidating monooxygenase, an integral membrane peptide-processing enzyme,” Journal of Biological Chemistry, vol. 272, no. 19, pp. 12667–12675, 1997. View at Publisher · View at Google Scholar · View at Scopus
  3. K. L. Rossman, C. J. Der, and J. Sondek, “GEF means go: turning on Rho GTPases with guanine nucleotide-exchange factors,” Nature Reviews Molecular Cell Biology, vol. 6, no. 2, pp. 167–180, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. M. Negishi and H. Katoh, “Rho family GTPases and dendrite plasticity,” Neuroscientist, vol. 11, no. 3, pp. 187–191, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. K. F. Tolias, J. G. Duman, and K. Um, “Control of synapse development and plasticity by Rho GTPase regulatory proteins,” Progress in Neurobiology, vol. 94, no. 2, pp. 133–148, 2011. View at Publisher · View at Google Scholar
  6. P. Penzes, K. M. Woolfrey, and D. P. Srivastava, “Epac2-mediated dendritic spine remodeling: implications for disease,” Molecular and Cellular Neuroscience, vol. 46, no. 2, pp. 368–380, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. R. C. Johnson, P. Penzes, B. A. Eipper, and R. E. Mains, “Isoforms of Kalirin, a neuronal Dbl family member, generated through use of different 5′- and 3′-ends along with an internal translational initiation site,” Journal of Biological Chemistry, vol. 275, no. 25, pp. 19324–19333, 2000. View at Publisher · View at Google Scholar · View at Scopus
  8. C. E. McPherson, B. A. Eipper, and R. E. Mains, “Genomic organization and differential expression of Kalirin isoforms,” Gene, vol. 284, no. 1-2, pp. 41–51, 2002. View at Publisher · View at Google Scholar · View at Scopus
  9. C. E. McPherson, B. A. Eipper, and R. E. Mains, “Kalirin expression is regulated by multiple promoters,” Journal of Molecular Neuroscience, vol. 22, no. 1-2, pp. 51–62, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Hayashi-Takagi, M. Takaki, N. Graziane et al., “Disrupted-in-Schizophrenia 1 (DISC1) regulates spines of the glutamate synapse via Rac1,” Nature Neuroscience, vol. 13, no. 3, pp. 327–332, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. E. A. Ratovitski, M. R. Alam, R. A. Quick et al., “Kalirin inhibition of inducible nitric-oxide synthase,” Journal of Biological Chemistry, vol. 274, no. 2, pp. 993–999, 1999. View at Publisher · View at Google Scholar · View at Scopus
  12. V. Colomer, S. Engelender, A. M. Sharp et al., “Huntingtin-associated protein 1 (HAP1) binds to a Trio-like polypeptide, with a rac1 guanine nucleotide exchange factor domain,” Human Molecular Genetics, vol. 6, no. 9, pp. 1519–1525, 1997. View at Publisher · View at Google Scholar · View at Scopus
  13. T. H. Koo, B. A. Eipper, and J. G. Donaldson, “Arf6 recruits the Rac GEF Kalirin to the plasma membrane facilitating Rac activation,” BMC Cell Biology, vol. 8, article no. 29, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. C. A. Rabiner, R. E. Mains, and B. A. Eipper, “Kalirin: a dual Rho guanine nucleotide exchange factor that is so much more than the sum of its many parts,” Neuroscientist, vol. 11, no. 2, pp. 148–160, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. X. Xin, C. A. Rabiner, R. E. Mains, and B. A. Eipper, “Kalirin12 interacts with dynamin,” BMC Neuroscience, vol. 10, article no. 61, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. P. Penzes, R. C. Johnson, V. Kambampati, R. E. Mains, and B. A. Eipper, “Distinct roles for the two Rho GDP/GTP exchange factor domains of Kalirin in regulation of neurite growth and neuronal morphology,” Journal of Neuroscience, vol. 21, no. 21, pp. 8426–8434, 2001. View at Google Scholar · View at Scopus
  17. M. R. Schiller, A. Blangy, J. Huang, R. E. Mains, and B. A. Eipper, “Induction of lamellipodia by Kalirin does not require its guanine nucleotide exchange factor activity,” Experimental Cell Research, vol. 307, no. 2, pp. 402–417, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. T. Kawai, H. Sanjo, and S. Akira, “Duet is a novel serine/threonine kinase with Dbl-Homology (DH) and Pleckstrin-Homology (PH) domains,” Gene, vol. 227, no. 2, pp. 249–255, 1999. View at Publisher · View at Google Scholar · View at Scopus
  19. X. M. Ma, Y. Wang, F. Ferraro, R. E. Mains, and B. A. Eipper, “Kalirin-7 is an essential component of both shaft and spine excitatory synapses in hippocampal interneurons,” Journal of Neuroscience, vol. 28, no. 3, pp. 711–724, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. D. E. Hansel, M. E. Quiñones, G. V. Ronnett, and B. A. Eipper, “Kalirin, a GDP/GTP exchange factor of the Dbl family, is localized to nerve, muscle, and endocrine tissue during embryonic rat development,” Journal of Histochemistry and Cytochemistry, vol. 49, no. 7, pp. 833–844, 2001. View at Google Scholar
  21. F. Ferraro, X. M. Ma, J. A. Sobota, B. A. Eipper, and R. E. Mains, “Kalirin/Trio Rho guanine nucleotide exchange factors regulate a novel step in secretory granule maturation,” Molecular Biology of the Cell, vol. 18, no. 12, pp. 4813–4825, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. X. M. Ma, J. Huang, Y. Wang, B. A. Eipper, and R. E. Mains, “Kalirin, a multifunctional rho guanine nucleotide exchange factor, is necessary for maintenance of hippocampal pyramidal neuron dendrites and dendritic spines,” Journal of Neuroscience, vol. 23, no. 33, pp. 10593–10603, 2003. View at Google Scholar · View at Scopus
  23. D. Muller, P. A. Buchs, and L. Stoppini, “Time course of synaptic development in hippocampal organotypic cultures,” Developmental Brain Research, vol. 71, no. 1, pp. 93–100, 1993. View at Publisher · View at Google Scholar · View at Scopus
  24. J. J. Hill, T. Hashimoto, and D. A. Lewis, “Molecular mechanisms contributing to dendritic spine alterations in the prefrontal cortex of subjects with schizophrenia,” Molecular Psychiatry, vol. 11, no. 6, pp. 557–566, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. S. Narayan, B. Tang, S. R. Head et al., “Molecular profiles of schizophrenia in the CNS at different stages of illness,” Brain Research, vol. 1239, pp. 235–248, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. I. Kushima, Y. Nakamura, B. Aleksic et al., “Resequencing and association analysis of the KALRN and EPHB1 genes and their contribution to Schizophrenia susceptibility,” Schizophrenia Bulletin. In press.
  27. H. Youn, I. Ji, H. P. Ji, W. R. Markesbery, and T. H. Ji, “Under-expression of Kalirin-7 increases iNOS activity in cultured cells and correlates to elevated iNOS activity in Alzheimer's disease hippocampus,” Journal of Alzheimer's Disease, vol. 12, no. 3, pp. 271–281, 2007. View at Google Scholar · View at Scopus
  28. H. Youn, M. Jeoung, Y. Koo et al., “Kalirin is under-expressed in Alzheimer's disease hippocampus,” Journal of Alzheimer's Disease, vol. 11, no. 3, pp. 385–397, 2007. View at Google Scholar · View at Scopus
  29. A. Alttoa, K. Kõiv, T. A. Hinsley, A. Brass, and J. Harro, “Differential gene expression in a rat model of depression based on persistent differences in exploratory activity,” European Neuropsychopharmacology, vol. 20, no. 5, pp. 288–300, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. X. M. Ma, R. E. Mains, and B. A. Eipper, “Plasticity in hippocampal peptidergic systems induced by repeated electroconvulsive shock,” Neuropsychopharmacology, vol. 27, no. 1, pp. 55–71, 2002. View at Publisher · View at Google Scholar · View at Scopus
  31. W. Li, Q. J. Li, and S. C. An, “Preventive effect of estrogen on depression-like behavior induced by chronic restraint stress,” Neuroscience Bulletin, vol. 26, no. 2, pp. 140–146, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. A. K. Sharma, G. H. Searfoss, R. Y. Reams et al., “Kainic acid-induced f-344 rat model of Mesial temporal lobe epilepsy: gene expression and canonical Pathways,” Toxicologic Pathology, vol. 37, no. 6, pp. 776–789, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. K.-P. Lesch, N. Timmesfeld, T. J. Renner et al., “Molecular genetics of adult ADHD: converging evidence from genome-wide association and extended pedigree linkage studies,” Journal of Neural Transmission, vol. 115, no. 11, pp. 1573–1585, 2008. View at Publisher · View at Google Scholar
  34. M. Berȩsewicz, J. E. Kowalczyk, and B. Zabłocka, “Kalirin-7, a protein enriched in postsynaptic density, is involved in ischemic signal transduction,” Neurochemical Research, vol. 33, no. 9, pp. 1789–1794, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. T. Krug, H. Manso, L. Gouveia et al., “Kalirin: a novel genetic risk factor for ischemic stroke,” Human Genetics, vol. 127, no. 5, pp. 513–523, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. L. Wang, E. R. Hauser, S. H. Shah et al., “Peakwide mapping on chromosome 3q13 identifies the kalirin gene as a novel candidate gene for coronary artery disease,” American Journal of Human Genetics, vol. 80, no. 4, pp. 650–663, 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. R. E. Mains, D. D. Kiraly, J. E. Eipper-Mains, X. Ma, and B. A. Eipper, “Kalrn promoter usage and isoform expression respond to chronic cocaine exposure,” BMC Neuroscience, vol. 12, article 20, 2011. View at Publisher · View at Google Scholar
  38. D. D. Kiraly, X. M. Ma, C. M. Mazzone, X. Xin, R. E. Mains, and B. A. Eipper, “Behavioral and morphological responses to cocaine require Kalirin7,” Biological Psychiatry, vol. 68, no. 3, pp. 249–255, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. P. Penzes, R. C. Johnson, R. Sattler et al., “The neuronal Rho-GEF Kalirin-7 interacts with PDZ domain-containing proteins and regulates dendritic morphogenesis,” Neuron, vol. 29, no. 1, pp. 229–242, 2001. View at Publisher · View at Google Scholar · View at Scopus
  40. X.-M. Ma, J.-P. Huang, E.-J. Kim et al., “Kalirin-7, an important component of excitatory synapses, is regulated by estradiol in hippocampal neurons,” Hippocampus, vol. 21, no. 6, pp. 661–677, 2011. View at Publisher · View at Google Scholar
  41. D. D. Kiraly, F. Lemtiri-Chlieh, E. S. Levine, R. E. Mains, and B. A. Eipper, “Kalirin binds the NR2B subunit of the NMDA receptor, altering its synaptic localization and function,” Journal of Neuroscience, vol. 31, no. 35, pp. 12554–12565, 2011. View at Publisher · View at Google Scholar
  42. Z. Xie, D. P. Srivastava, H. Photowala et al., “Kalirin-7 controls activity-dependent structural and functional plasticity of dendritic spines,” Neuron, vol. 56, no. 4, pp. 640–656, 2007. View at Publisher · View at Google Scholar · View at Scopus
  43. X. Xin, Y. Wang, X. M. Ma et al., “Regulation of Kalirin by Cdk5,” Journal of Cell Science, vol. 121, no. 15, pp. 2601–2611, 2008. View at Publisher · View at Google Scholar · View at Scopus
  44. M. E. Cahill, K. A. Jones, I. Rafalovich et al., “Control of interneuron dendritic growth through NRG1/erbB4-mediated kalirin-7 disinhibition,” Molecular Psychiatry, vol. 17, no. 1, pp. 99–107, 2012. View at Publisher · View at Google Scholar
  45. D. D. Kiraly, K. L. Stone, C. M. Colangelo et al., “Identification of kalirin-7 as a potential post-synaptic density signaling hub,” Journal of Proteome Research, vol. 10, no. 6, pp. 2828–2841, 2011. View at Publisher · View at Google Scholar
  46. X. M. Ma, R. C. Johnson, R. E. Mains, and B. A. Eipper, “Expression of Kalirin, a neuronal GDP/GTP exchange factor of the trio family, in the central nervous system of the adult rat,” Journal of Comparative Neurology, vol. 429, no. 3, pp. 388–402, 2001. View at Publisher · View at Google Scholar · View at Scopus
  47. R. T. Fremeau, M. D. Troyer, I. Pahner et al., “The expression of vesicular glutamate transporters defines two classes of excitatory synapse,” Neuron, vol. 31, no. 2, pp. 247–260, 2001. View at Publisher · View at Google Scholar · View at Scopus
  48. R. T. Fremeau, K. Kam, Y. Qureshi et al., “Vesicular glutamate transporters 1 and 2 target to functionally distinct synaptic release sites,” Science, vol. 304, no. 5678, pp. 1815–1819, 2004. View at Publisher · View at Google Scholar · View at Scopus
  49. G. Maccaferri and J. C. Lacaille, “Interneuron Diversity series: hippocampal interneuron classifications—making things as simple as possible, not simpler,” Trends in Neurosciences, vol. 26, no. 10, pp. 564–571, 2003. View at Publisher · View at Google Scholar · View at Scopus
  50. F. M. Benes and S. Berretta, “GABAergic interneurons: implications for understanding schizophrenia and bipolar disorder,” Neuropsychopharmacology, vol. 25, no. 1, pp. 1–27, 2001. View at Publisher · View at Google Scholar · View at Scopus
  51. E. M. Powell, D. B. Campbell, G. D. Stanwood, C. Davis, J. L. Noebels, and P. Levitt, “Genetic disruption of cortical interneuron development causes region- and GABA cell type-specific deficits, epilepsy, and behavioral dysfunction,” Journal of Neuroscience, vol. 23, no. 2, pp. 622–631, 2003. View at Google Scholar · View at Scopus
  52. D. A. Lewis, T. Hashimoto, and D. W. Volk, “Cortical inhibitory neurons and schizophrenia,” Nature Reviews Neuroscience, vol. 6, no. 4, pp. 312–324, 2005. View at Publisher · View at Google Scholar · View at Scopus
  53. B. Ramos, D. Baglietto-Vargas, J. C. D. Rio et al., “Early neuropathology of somatostatin/NPY GABAergic cells in the hippocampus of a PS1 × APP transgenic model of Alzheimer's disease,” Neurobiology of Aging, vol. 27, no. 11, pp. 1658–1672, 2006. View at Publisher · View at Google Scholar · View at Scopus
  54. X. M. Ma, D. D. Kiraly, E. D. Gaier et al., “Kalirin-7 is required for synaptic structure and function,” Journal of Neuroscience, vol. 28, no. 47, pp. 12368–12382, 2008. View at Publisher · View at Google Scholar · View at Scopus
  55. M. E. Cahill, Z. Xie, M. Day et al., “Kalirin regulates cortical spine morphogenesis and disease-related behavioral phenotypes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 31, pp. 13058–13063, 2009. View at Publisher · View at Google Scholar · View at Scopus
  56. K. O. Lai and N. Y. Ip, “Recent advances in understanding the roles of Cdk5 in synaptic plasticity,” Biochimica et Biophysica Acta, vol. 1792, no. 8, pp. 741–745, 2009. View at Publisher · View at Google Scholar · View at Scopus
  57. K. Akashi, T. Kakizaki, H. Kamiya et al., “NMDA receptor GluN2B (GluRε2/NR2B) subunit is crucial for channel function, postsynaptic macromolecular organization, and actin cytoskeleton at hippocampal CA3 synapses,” Journal of Neuroscience, vol. 29, no. 35, pp. 10869–10882, 2009. View at Publisher · View at Google Scholar · View at Scopus
  58. J. L. Brigman, T. Wright, G. Talani et al., “Loss of GluN2B-containing NMD A receptors in CA1 hippocampus and cortex impairs long-term depression, reduces dendritic spine density, and disrupts learning,” Journal of Neuroscience, vol. 30, no. 13, pp. 4590–4600, 2010. View at Publisher · View at Google Scholar · View at Scopus
  59. T. Ohno, H. Maeda, N. Murabe et al., “Specific involvement of postsynaptic GluN2B-containing NMDA receptors in the developmental elimination of corticospinal synapses,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 34, pp. 15252–15257, 2010. View at Publisher · View at Google Scholar · View at Scopus
  60. A. C. Gambrill and A. Barria, “NMDA receptor subunit composition controls synaptogenesis and synapse stabilization,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 14, pp. 5855–5860, 2011. View at Publisher · View at Google Scholar
  61. Z. Xie, M. E. Cahill, J. Radulovic et al., “Hippocampal phenotypes in kalirin-deficient mice,” Molecular and Cellular Neuroscience, vol. 46, no. 1, pp. 45–54, 2011. View at Publisher · View at Google Scholar · View at Scopus
  62. J. Martínez-Raga, C. Knecht, and S. Cepeda, “Modafinil: a useful medication for cocaine addiction? Review of the evidence from neuropharmacological, experimental and clinical studies,” Current drug abuse reviews, vol. 1, no. 2, pp. 213–221, 2008. View at Google Scholar · View at Scopus
  63. M. J. Smith, J. Thirthalli, A. B. Abdallah, R. M. Murray, and L. B. Cottler, “Prevalence of psychotic symptoms in substance users: a comparison across substances,” Comprehensive Psychiatry, vol. 50, no. 3, pp. 245–250, 2009. View at Publisher · View at Google Scholar · View at Scopus
  64. M. D. Majewska, “Cocaine addiction as a neurological disorder: implications for treatment,” NIDA research monograph, vol. 163, pp. 1–26, 1996. View at Google Scholar · View at Scopus
  65. J. H. Mendelson and N. K. Mello, “Drug therapy: management of cocaine abuse and dependence,” New England Journal of Medicine, vol. 334, no. 15, pp. 965–972, 1996. View at Google Scholar · View at Scopus
  66. A. Büttner, “Review: the neuropathology of drug abuse,” Neuropathology and Applied Neurobiology, vol. 37, no. 2, pp. 118–134, 2011. View at Publisher · View at Google Scholar
  67. D. D. Kiraly, X. M. Ma, C. M. Mazzone, X. Xin, R. E. Mains, and B. A. Eipper, “Behavioral and morphological responses to cocaine require Kalirin7,” Biological Psychiatry, vol. 68, no. 3, pp. 249–255, 2010. View at Publisher · View at Google Scholar · View at Scopus
  68. J. K. Millar, S. Christie, and D. J. Porteous, “Yeast two-hybrid screens implicate DISC1 in brain development and function,” Biochemical and Biophysical Research Communications, vol. 311, no. 4, pp. 1019–1025, 2003. View at Publisher · View at Google Scholar · View at Scopus
  69. N. J. Bradshaw and D. J. Porteous, “DISC1-binding proteins in neural development, signalling and schizophrenia,” Neuropharmacology, vol. 62, no. 3, pp. 1230–1241, 2012. View at Publisher · View at Google Scholar
  70. M. L. Berlanga, D. L. Price, B. S. Phung et al., “Multiscale imaging characterization of dopamine transporter knockout mice reveals regional alterations in spine density of medium spiny neurons,” Brain Research, vol. 1390, pp. 41–49, 2011. View at Publisher · View at Google Scholar
  71. V. Jensen, J. E. Rinholm, T. J. Johansen et al., “N-methyl-d-aspartate receptor subunit dysfunction at hippocampal glutamatergic synapses in an animal model of attention-deficit/hyperactivity disorder,” Neuroscience, vol. 158, no. 1, pp. 353–364, 2009. View at Publisher · View at Google Scholar · View at Scopus
  72. C. Tackenberg, A. Ghori, and R. Brandt, “Thin, stubby or mushroom: spine pathology in alzheimer's disease,” Current Alzheimer Research, vol. 6, no. 3, pp. 261–268, 2009. View at Publisher · View at Google Scholar · View at Scopus
  73. S. J. Baloyannis, “Dendritic pathology in Alzheimer's disease,” Journal of the Neurological Sciences, vol. 283, no. 1-2, pp. 153–157, 2009. View at Publisher · View at Google Scholar · View at Scopus
  74. I. A. Mavroudis, D. F. Fotiou, M. G. Manani et al., “Dendritic pathology and spinal loss in the visual cortex in Alzheimer's disease: a Golgi study in pathology,” International Journal of Neuroscience, vol. 121, no. 7, pp. 347–354, 2011. View at Publisher · View at Google Scholar
  75. C. Perez-Cruz, M. W. Nolte, M. M. Van Gaalen et al., “Reduced spine density in specific regions of CA1 pyramidal neurons in two transgenic mouse models of Alzheimer's disease,” Journal of Neuroscience, vol. 31, no. 10, pp. 3926–3934, 2011. View at Publisher · View at Google Scholar
  76. O. von Bohlen und Halbach, “Structure and function of dendritic spines within the hippocampus,” Annals of Anatomy, vol. 191, no. 6, pp. 518–531, 2009. View at Publisher · View at Google Scholar · View at Scopus
  77. A. J. Law, C. S. Weickert, T. M. Hyde, J. E. Kleinman, and P. J. Harrison, “Reduced spinophilin but not microtubule-associated protein 2 expression in the hippocampal formation in schizophrenia and mood disorders: molecular evidence for a pathology of dendritic spines,” American Journal of Psychiatry, vol. 161, no. 10, pp. 1848–1855, 2004. View at Publisher · View at Google Scholar · View at Scopus
  78. S. D. Norrholm and C. C. Ouimet, “Altered dendritic spine density in animal models of depression and in response to antidepressant treatment,” Synapse, vol. 42, no. 3, pp. 151–163, 2001. View at Publisher · View at Google Scholar · View at Scopus
  79. F. Chen, T. M. Madsen, G. Wegener, and J. R. Nyengaard, “Repeated electroconvulsive seizures increase the total number of synapses in adult male rat hippocampus,” European Neuropsychopharmacology, vol. 19, no. 5, pp. 329–338, 2009. View at Publisher · View at Google Scholar · View at Scopus
  80. M. Fink, “Convulsive therapy: a review of the first 55 years,” Journal of Affective Disorders, vol. 63, no. 1–3, pp. 1–15, 2001. View at Publisher · View at Google Scholar · View at Scopus
  81. S. M. McClintock, A. R. Brandon, M. M. Husain, and R. B. Jarrett, “A systematic review of the combined use of electroconvulsive therapy and psychotherapy for depression,” The Journal of ECT, vol. 27, pp. 236–243, 2011. View at Publisher · View at Google Scholar · View at Scopus
  82. J. C. Fiala, J. Spacek, and K. M. Harris, “Dendritic spine pathology: cause or consequence of neurological disorders?” Brain Research Reviews, vol. 39, no. 1, pp. 29–54, 2002. View at Publisher · View at Google Scholar · View at Scopus
  83. C. Sgobio, V. Ghiglieri, C. Costa et al., “Hippocampal synaptic plasticity, memory, and epilepsy: effects of long-term valproic acid treatment,” Biological Psychiatry, vol. 67, no. 6, pp. 567–574, 2010. View at Publisher · View at Google Scholar · View at Scopus
  84. L. L. Y. Wu and X. F. Zhou, “Huntingtin associated protein 1 and its functions,” Cell Adhesion and Migration, vol. 3, no. 1, pp. 71–76, 2009. View at Publisher · View at Google Scholar · View at Scopus
  85. J.-P. Vonsattel, R. H. Myers, and T. J. Stevens, “Neuropathological classification of Huntington's disease,” Journal of Neuropathology and Experimental Neurology, vol. 44, no. 6, pp. 559–577, 1985. View at Google Scholar
  86. G. A. Graveland, R. S. Williams, and M. DiFiglia, “Evidence for degenerative and regenerative changes in neostriatal spiny neurons in Huntington's disease,” Science, vol. 227, no. 4688, pp. 770–773, 1985. View at Google Scholar · View at Scopus
  87. R. J. Ferrante, N. W. Kowall, and E. P. Richardson, “Proliferative and degenerative changes in striatal spiny neurons in Huntington's disease: a combined study using the section-Golgi method and calbindin D28k immunocytochemistry,” Journal of Neuroscience, vol. 11, no. 12, pp. 3877–3887, 1991. View at Google Scholar · View at Scopus
  88. T. L. Spires, H. E. Grote, S. Garry et al., “Dendritic spine pathology and deficits in experience-dependent dendritic plasticity in R6/1 Huntington's disease transgenic mice,” European Journal of Neuroscience, vol. 19, no. 10, pp. 2799–2807, 2004. View at Publisher · View at Google Scholar · View at Scopus
  89. M. I. Boulware, B. A. Kent, and K. M. Frick, “The impact of age-related ovarian hormone loss on cognitive and neural function,” Current Topics in Behavioral Neurosciences. In press.
  90. E. Scott, Q.-G. Zhang, R. Wang, R. Vadlamudi, and D. Brann, “Estrogen neuroprotection and the critical period hypothesis,” Frontiers in Neuroendocrinology, vol. 33, no. 1, pp. 85–104, 2012. View at Publisher · View at Google Scholar
  91. A. Riecher-Rössler and J. Kulkarni, “Estrogens and gonadal function in schizophrenia and related psychoses,” Current topics in behavioral neurosciences, vol. 8, pp. 155–171, 2011. View at Google Scholar