Table of Contents Author Guidelines Submit a Manuscript
Neural Plasticity
Volume 2012 (2012), Article ID 805830, 12 pages
Review Article

GABA Metabolism and Transport: Effects on Synaptic Efficacy

Institute of Physiology and Pathophysiology, University of Heidelberg, 69120 Heidelberg, Germany

Received 14 November 2011; Accepted 19 December 2011

Academic Editor: Dirk Bucher

Copyright © 2012 Fabian C. Roth and Andreas Draguhn. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


GABAergic inhibition is an important regulator of excitability in neuronal networks. In addition, inhibitory synaptic signals contribute crucially to the organization of spatiotemporal patterns of network activity, especially during coherent oscillations. In order to maintain stable network states, the release of GABA by interneurons must be plastic in timing and amount. This homeostatic regulation is achieved by several pre- and postsynaptic mechanisms and is triggered by various activity-dependent local signals such as excitatory input or ambient levels of neurotransmitters. Here, we review findings on the availability of GABA for release at presynaptic terminals of interneurons. Presynaptic GABA content seems to be an important determinant of inhibitory efficacy and can be differentially regulated by changing synthesis, transport, and degradation of GABA or related molecules. We will discuss the functional impact of such regulations on neuronal network patterns and, finally, point towards pharmacological approaches targeting these processes.