Table of Contents Author Guidelines Submit a Manuscript
Neural Plasticity
Volume 2012 (2012), Article ID 825364, 12 pages
http://dx.doi.org/10.1155/2012/825364
Review Article

AMPA Receptor Trafficking in Homeostatic Synaptic Plasticity: Functional Molecules and Signaling Cascades

Department of Biology, Boston University, 5 Cummington Street, Boston, MA 02215, USA

Received 23 November 2011; Revised 15 February 2012; Accepted 5 March 2012

Academic Editor: Alfredo Fontanini

Copyright © 2012 Guan Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. W. Davis, “Homeostatic control of neural activity: from phenomenology to molecular design,” Annual Review of Neuroscience, vol. 29, pp. 307–323, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. G. G. Turrigiano and S. B. Nelson, “Homeostatic plasticity in the developing nervous system,” Nature Reviews Neuroscience, vol. 5, no. 2, pp. 97–107, 2004. View at Google Scholar · View at Scopus
  3. E. Marder and J. M. Goaillard, “Variability, compensation and homeostasis in neuron and network function,” Nature Reviews Neuroscience, vol. 7, no. 7, pp. 563–574, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. G. G. Turrigiano, K. R. Leslie, N. S. Desai, L. C. Rutherford, and S. B. Nelson, “Activity-dependent scaling of quantal amplitude in neocortical neurons,” Nature, vol. 391, no. 6670, pp. 892–896, 1998. View at Publisher · View at Google Scholar · View at Scopus
  5. G. W. Davis and I. Bezprozvanny, “Maintaining the stability of neural function: a homeostatic hypothesis,” Annual Review of Physiology, vol. 63, pp. 847–869, 2001. View at Publisher · View at Google Scholar · View at Scopus
  6. G. G. Turrigiano, “The self-tuning neuron: synaptic scaling of excitatory synapses,” Cell, vol. 135, no. 3, pp. 422–435, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. K. Pozo and Y. Goda, “Unraveling mechanisms of homeostatic synaptic plasticity,” Neuron, vol. 66, no. 3, pp. 337–351, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. L. M. Yu and Y. Goda, “Dendritic signalling and homeostatic adaptation,” Current Opinion in Neurobiology, vol. 19, no. 3, pp. 327–335, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. I. Pérez-Otaño and M. D. Ehlers, “Homeostatic plasticity and NMDA receptor trafficking,” Trends in Neurosciences, vol. 28, no. 5, pp. 229–238, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. C. J. Wierenga, K. Ibata, and G. G. Turrigiano, “Postsynaptic expression of homeostatic plasticity at neocortical synapses,” Journal of Neuroscience, vol. 25, no. 11, pp. 2895–2905, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. I. Rabinowitch and I. Segev, “Two opposing plasticity mechanisms pulling a single synapse,” Trends in Neurosciences, vol. 31, no. 8, pp. 377–383, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. N. S. Desai, R. H. Cudmore, S. B. Nelson, and G. G. Turrigiano, “Critical periods for experience-dependent synaptic scaling in visual cortex,” Nature Neuroscience, vol. 5, no. 8, pp. 783–789, 2002. View at Publisher · View at Google Scholar · View at Scopus
  13. M. A. Gainey, J. R. Hurvitz-Wolff, M. E. Lambo, and G. G. Turrigiano, “Synaptic scaling requires the GluR2 subunit of the AMPA receptor,” Journal of Neuroscience, vol. 29, no. 20, pp. 6479–6489, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. N. Vitureira, M. Letellier, and Y. Goda, “Homeostatic synaptic plasticity: from single synapses to neural circuits,” Current Opinion in Neurobiology, vol. 22, pp. 1–6, 2011. View at Google Scholar
  15. J. Burrone, M. O'Byrne, and V. N. Murthy, “Multiple forms of synaptic plasticity triggered by selective suppression of activity in individual neurons,” Nature, vol. 420, no. 6914, pp. 414–418, 2002. View at Publisher · View at Google Scholar · View at Scopus
  16. K. Ibata, Q. Sun, and G. G. Turrigiano, “Rapid synaptic scaling induced by changes in postsynaptic firing,” Neuron, vol. 57, no. 6, pp. 819–826, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. C. P. Goold and R. A. Nicoll, “Single-cell optogenetic excitation drives homeostatic synaptic depression,” Neuron, vol. 68, no. 3, pp. 512–528, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. Q. Hou, J. Gilbert, and H. Y. Man, “Homeostatic regulation of AMPA receptor trafficking and degradation by light-controlled single-synaptic activation,” Neuron, vol. 72, no. 5, pp. 806–818, 2011. View at Google Scholar
  19. M. A. Sutton, H. T. Ito, P. Cressy, C. Kempf, J. C. Woo, and E. M. Schuman, “Miniature Neurotransmission Stabilizes Synaptic Function via Tonic Suppression of Local Dendritic Protein Synthesis,” Cell, vol. 125, no. 4, pp. 785–799, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. Q. Hou, D. Zhang, L. Jarzylo, R. L. Huganir, and H. Y. Man, “Homeostatic regulation of AMPA receptor expression at single hippocampal synapses,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 2, pp. 775–780, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. S. Szobota, P. Gorostiza, F. Del Bene et al., “Remote control of neuronal activity with a light-gated glutamate receptor,” Neuron, vol. 54, no. 4, pp. 535–545, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. V. H. Perry, M. D. Bell, H. C. Brown, and M. K. Matyszak, “Inflammation in the nervous system,” Current Opinion in Neurobiology, vol. 5, no. 5, pp. 636–641, 1995. View at Publisher · View at Google Scholar · View at Scopus
  23. S. M. Allan and N. J. Rothwell, “Cytokines and acute neurodegeneration,” Nature Reviews Neuroscience, vol. 2, no. 10, pp. 734–744, 2001. View at Publisher · View at Google Scholar · View at Scopus
  24. D. Stellwagen and R. C. Malenka, “Synaptic scaling mediated by glial TNF-α,” Nature, vol. 440, no. 7087, pp. 1054–1059, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. C. C. Steinmetz and G. G. Turrigiano, “Tumor necrosis factor-α signaling maintains the ability of cortical synapses to express synaptic scaling,” Journal of Neuroscience, vol. 30, no. 44, pp. 14685–14690, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. E. C. Beattie, D. Stellwagen, W. Morishita et al., “Control of synaptic strength by glial TNFα,” Science, vol. 295, no. 5563, pp. 2282–2285, 2002. View at Publisher · View at Google Scholar · View at Scopus
  27. D. Stellwagen, E. C. Beattie, J. Y. Seo, and R. C. Malenka, “Differential regulation of AMPA receptor and GABA receptor trafficking by tumor necrosis factor-α,” Journal of Neuroscience, vol. 25, no. 12, pp. 3219–3228, 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. D. Leonoudakis, P. Zhao, and E. C. Beattie, “Rapid tumor necrosis factor α-induced exocytosis of glutamate receptor 2-lacking AMPA receptors to extrasynaptic plasma membrane potentiates excitotoxicity,” Journal of Neuroscience, vol. 28, no. 9, pp. 2119–2130, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. P. He, Q. Liu, J. Wu et al., “Genetic deletion of TNF receptor suppresses excitatory synaptic transmission via reducing AMPA receptor synaptic localization in cortical neurons,” The FASEB Journal, vol. 26, no. 1, pp. 334–345, 2011. View at Google Scholar
  30. H. Y. Man, “GluA2-lacking, calcium-permeable AMPA receptors—inducers of plasticity?” Current Opinion in Neurobiology, vol. 21, no. 2, pp. 291–298, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. B. L. Bloodgood and B. L. Sabatini, “Ca2+ signaling in dendritic spines,” Current Opinion in Neurobiology, vol. 17, no. 3, pp. 345–351, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. G. A. Wayman, Y. S. Lee, H. Tokumitsu, A. Silva, and T. R. Soderling, “Calmodulin-kinases: modulators of neuronal development and plasticity,” Neuron, vol. 59, no. 6, pp. 914–931, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. R. J. Colbran and A. M. Brown, “Calcium/calmodulin-dependent protein kinase II and synaptic plasticity,” Current Opinion in Neurobiology, vol. 14, no. 3, pp. 318–327, 2004. View at Publisher · View at Google Scholar · View at Scopus
  34. A. Barria, D. Muller, V. Derkach, L. C. Griffith, and T. R. Soderling, “Regulatory phosphorylation of AMPA-type glutamate receptors by CaM-KII during long-term potentiation,” Science, vol. 276, no. 5321, pp. 2042–2045, 1997. View at Publisher · View at Google Scholar · View at Scopus
  35. Y. Hayashi, S. H. Shi, J. A. Esteban, A. Piccini, J. C. Poncer, and R. Malinow, “Driving AMPA receptors into synapses by LTP and CaMKII: requirement for GluR1 and PDZ domain interaction,” Science, vol. 287, no. 5461, pp. 2262–2267, 2000. View at Publisher · View at Google Scholar · View at Scopus
  36. T. R. Soderling, “CaM-kinases: modulators of synaptic plasticity,” Current Opinion in Neurobiology, vol. 10, no. 3, pp. 375–380, 2000. View at Publisher · View at Google Scholar · View at Scopus
  37. R. Malinow and R. C. Malenka, “AMPA receptor trafficking and synaptic plasticity,” Annual Review of Neuroscience, vol. 25, pp. 103–126, 2002. View at Publisher · View at Google Scholar · View at Scopus
  38. T. C. Thiagarajan, E. S. Piedras-Renteria, and R. W. Tsien, “α- and βCaMKII: inverse regulation by neuronal activity and opposing effects on synaptic strength,” Neuron, vol. 36, no. 6, pp. 1103–1114, 2002. View at Publisher · View at Google Scholar · View at Scopus
  39. R. D. Groth, M. Lindskog, T. C. Thiagarajan, L. Li, and R. W. Tsien, “β Ca2+/CaM-dependent kinase type II triggers upregulation of GluA1 to coordinate adaptation to synaptic inactivity in hippocampal neurons,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 2, pp. 828–833, 2011. View at Publisher · View at Google Scholar · View at Scopus
  40. A. Balkowiec and D. M. Katz, “Cellular mechanisms regulating activity-dependent release of native brain-derived neurotrophic factor from hippocampal neurons,” Journal of Neuroscience, vol. 22, no. 23, pp. 10399–10407, 2002. View at Google Scholar · View at Scopus
  41. A. L. Carvalho, M. V. Caldeira, S. D. Santos, and C. B. Duarte, “Role of the brain-derived neurotrophic factor at glutamatergic synapses,” British Journal of Pharmacology, vol. 153, no. 1, pp. S310–S324, 2008. View at Publisher · View at Google Scholar · View at Scopus
  42. M. P. Mattson, “Glutamate and neurotrophic factors in neuronal plasticity and disease,” Annals of the New York Academy of Sciences, vol. 1144, pp. 97–112, 2008. View at Publisher · View at Google Scholar · View at Scopus
  43. K. Gottmann, T. Mittmann, and V. Lessmann, “BDNF signaling in the formation, maturation and plasticity of glutamatergic and GABAergic synapses,” Experimental Brain Research, vol. 199, no. 3-4, pp. 203–234, 2009. View at Publisher · View at Google Scholar · View at Scopus
  44. L. C. Rutherford, S. B. Nelson, and G. G. Turrigiano, “BDNF has opposite effects on the quantal amplitude of pyramidal neuron and interneuron excitatory synapses,” Neuron, vol. 21, no. 3, pp. 521–530, 1998. View at Publisher · View at Google Scholar · View at Scopus
  45. M. M. Bolton, A. J. Pittman, and D. C. Lo, “Brain-derived neurotrophic factor differentially regulates excitatory and inhibitory synaptic transmission in hippocampal cultures,” Journal of Neuroscience, vol. 20, no. 9, pp. 3221–3232, 2000. View at Google Scholar · View at Scopus
  46. A. Copi, K. Jüngling, and K. Gottmann, “Activity- and BDNF-induced plasticity of miniature synaptic currents in ES cell-derived neurons integrated in a neocortical network,” Journal of Neurophysiology, vol. 94, no. 6, pp. 4538–4543, 2005. View at Publisher · View at Google Scholar · View at Scopus
  47. M. V. Caldeira, C. V. Melo, D. B. Pereira et al., “Brain-derived neurotrophic factor regulates the expression and synaptic delivery of α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor subunits in hippocampal neurons,” Journal of Biological Chemistry, vol. 282, no. 17, pp. 12619–12628, 2007. View at Publisher · View at Google Scholar · View at Scopus
  48. X. Li and M. E. Wolf, “Brain-derived neurotrophic factor rapidly increases AMPA receptor surface expression in rat nucleus accumbens,” European Journal of Neuroscience, vol. 34, no. 2, pp. 190–198, 2011. View at Publisher · View at Google Scholar · View at Scopus
  49. H. Nakata and S. Nakamura, “Brain-derived neurotrophic factor regulates AMPA receptor trafficking to post-synaptic densities via IP3R and TRPC calcium signaling,” FEBS Letters, vol. 581, no. 10, pp. 2047–2054, 2007. View at Publisher · View at Google Scholar · View at Scopus
  50. M. Lindskog, L. Li, R. D. Groth et al., “Postsynaptic GluA1 enables acute retrograde enhancement of presynaptic function to coordinate adaptation to synaptic inactivity,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 50, pp. 21806–21811, 2010. View at Publisher · View at Google Scholar · View at Scopus
  51. S. K. Jakawich, H. B. Nasser, M. J. Strong et al., “Local presynaptic activity gates homeostatic changes in presynaptic function driven by dendritic BDNF synthesis,” Neuron, vol. 68, no. 6, pp. 1143–1158, 2010. View at Publisher · View at Google Scholar · View at Scopus
  52. C. H. Lin, S. H. Yeh, C. H. Lin et al., “A Role for the PI-3 kinase signaling pathway in fear conditioning and synaptic plasticity in the amygdala,” Neuron, vol. 31, no. 5, pp. 841–851, 2001. View at Publisher · View at Google Scholar · View at Scopus
  53. D. Gobert, L. Topolnik, M. Azzi et al., “Forskolin induction of late-LTP and up-regulation of 5′ TOP mRNAs translation via mTOR, ERK, and PI3K in hippocampal pyramidal cells,” Journal of Neurochemistry, vol. 106, no. 3, pp. 1160–1174, 2008. View at Publisher · View at Google Scholar · View at Scopus
  54. H. Y. Man, Q. Wang, W. Y. Lu et al., “Activation of PI3-kinase is required for AMPA receptor insertion during LTP of mEPSCs in cultured hippocampal neurons,” Neuron, vol. 38, no. 4, pp. 611–624, 2003. View at Publisher · View at Google Scholar · View at Scopus
  55. G. M. Schratt, E. A. Nigh, W. G. Chen, L. Hu, and M. E. Greenberg, “BDNF regulates the translation of a select group of mRNAs by a mammalian target of rapamycin-phosphatidylinositol 3-kinase-dependent pathway during neuronal development,” Journal of Neuroscience, vol. 24, no. 33, pp. 7366–7377, 2004. View at Publisher · View at Google Scholar · View at Scopus
  56. Y. Qin, Y. Zhu, J. P. Baumgart et al., “State-dependent Ras signaling and AMPA receptor trafficking,” Genes and Development, vol. 19, no. 17, pp. 2000–2015, 2005. View at Publisher · View at Google Scholar · View at Scopus
  57. B. de Strooper, “Aph-1, Pen-2, and Nicastrin with Presenilin generate an active γ-secretase complex,” Neuron, vol. 38, no. 1, pp. 9–12, 2003. View at Publisher · View at Google Scholar · View at Scopus
  58. R. E. Tanzi and L. Bertram, “New frontiers in Alzheimer's disease genetics,” Neuron, vol. 32, no. 2, pp. 181–184, 2001. View at Publisher · View at Google Scholar · View at Scopus
  59. L. Baki, J. Shioi, P. Wen et al., “PS1 activates PI3K thus inhibiting GSK-3 activity and tau overphosphorylation: effects of FAD mutations,” The EMBO Journal, vol. 23, no. 13, pp. 2586–2596, 2004. View at Publisher · View at Google Scholar · View at Scopus
  60. K. G. Pratt, E. C. Zimmerman, D. G. Cook et al., “Presenilin 1 regulates homeostatic synaptic scaling through Akt signaling,” Nature Neuroscience, vol. 14, no. 9, pp. 1112–1114, 2011. View at Google Scholar
  61. M. B. Dalva, A. C. McClelland, and M. S. Kayser, “Cell adhesion molecules: signalling functions at the synapse,” Nature Reviews Neuroscience, vol. 8, no. 3, pp. 206–220, 2007. View at Publisher · View at Google Scholar · View at Scopus
  62. A. Dityatev, M. Schachner, and P. Sonderegger, “The dual role of the extracellular matrix in synaptic plasticity and homeostasis,” Nature Reviews Neuroscience, vol. 11, no. 11, pp. 735–746, 2010. View at Publisher · View at Google Scholar · View at Scopus
  63. S. Cull-Candy, L. Kelly, and M. Farrant, “Regulation of Ca2+-permeable AMPA receptors: synaptic plasticity and beyond,” Current Opinion in Neurobiology, vol. 16, no. 3, pp. 288–297, 2006. View at Publisher · View at Google Scholar · View at Scopus
  64. I. Song and R. L. Huganir, “Regulation of AMPA receptors during synaptic plasticity,” Trends in Neurosciences, vol. 25, no. 11, pp. 578–588, 2002. View at Publisher · View at Google Scholar · View at Scopus
  65. P. Chavis and G. Westbrook, “Integrins mediate functional pre- and postsynaptic maturation at a hippocampal synapse,” Nature, vol. 411, no. 6835, pp. 317–321, 2001. View at Publisher · View at Google Scholar · View at Scopus
  66. M. E. Williams, S. A. Wilke, A. Daggett et al., “Cadherin-9 regulates synapse-specific differentiation in the developing hippocampus,” Neuron, vol. 71, no. 4, pp. 640–655, 2011. View at Google Scholar
  67. S. P. Mysore, C. Y. Tai, and E. M. Schuman, “N-cadherin, spine dynamics, and synaptic function,” Frontiers in Neuroscience, vol. 2, no. 2, pp. 168–175, 2008. View at Google Scholar
  68. L. P. Elia, M. Yamamoto, K. Zang, and L. F. Reichardt, “p120 catenin regulates dendritic spine and synapse development through Rho-family GTPases and cadherins,” Neuron, vol. 51, no. 1, pp. 43–56, 2006. View at Publisher · View at Google Scholar · View at Scopus
  69. M. Nuriya and R. L. Huganir, “Regulation of AMPA receptor trafficking by N-cadherin,” Journal of Neurochemistry, vol. 97, no. 3, pp. 652–661, 2006. View at Publisher · View at Google Scholar · View at Scopus
  70. J. D. Shepherd and R. L. Huganir, “The cell biology of synaptic plasticity: AMPA receptor trafficking,” Annual Review of Cell and Developmental Biology, vol. 23, pp. 613–643, 2007. View at Publisher · View at Google Scholar · View at Scopus
  71. L. Saglietti, C. Dequidt, K. Kamieniarz et al., “Extracellular interactions between GluR2 and N-cadherin in spine regulation,” Neuron, vol. 54, no. 3, pp. 461–477, 2007. View at Publisher · View at Google Scholar · View at Scopus
  72. T. Okuda, L. M. Y. Yu, L. A. Cingolani, R. Kemler, and Y. Goda, “β-Catenin regulates excitatory postsynaptic strength at hippocampal synapses,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 33, pp. 13479–13484, 2007. View at Publisher · View at Google Scholar · View at Scopus
  73. N. Vitureira, M. Letellier, I. J. White et al., “Differential control of presynaptic efficacy by postsynaptic N-cadherin and beta-catenin,” Nature Neuroscience, vol. 15, no. 1, pp. 81–89, 2012. View at Google Scholar
  74. B. M. Chen and A. D. Grinnell, “Integrins and modulation of transmitter release from motor nerve terminals by stretch,” Science, vol. 269, no. 5230, pp. 1578–1580, 1995. View at Google Scholar · View at Scopus
  75. L. A. Cingolani, A. Thalhammer, L. M. Y. Yu et al., “Activity-dependent regulation of synaptic AMPA receptor composition and abundance by β3 integrins,” Neuron, vol. 58, no. 5, pp. 749–762, 2008. View at Publisher · View at Google Scholar · View at Scopus
  76. J. J. Zhu, Y. Qin, M. Zhao, L. van Aelst, and R. Malinow, “Ras and Rap control AMPA receptor trafficking during synaptic plasticity,” Cell, vol. 110, no. 4, pp. 443–455, 2002. View at Publisher · View at Google Scholar · View at Scopus
  77. P. L. Peng, X. Zhong, W. Tu et al., “ADAR2-dependent RNA editing of AMPA receptor subunit GluR2 determines vulnerability of neurons in forebrain ischemia,” Neuron, vol. 49, no. 5, pp. 719–733, 2006. View at Publisher · View at Google Scholar · View at Scopus
  78. S. S. Kumar, A. Bacci, V. Kharazia, and J. R. Huguenard, “A developmental switch of AMPA receptor subunits in neocortical pyramidal neurons,” Journal of Neuroscience, vol. 22, no. 8, pp. 3005–3015, 2002. View at Google Scholar · View at Scopus
  79. K. Plant, K. A. Pelkey, Z. A. Bortolotto et al., “Transient incorporation of native GluR2-lacking AMPA receptors during hippocampal long-term potentiation,” Nature Neuroscience, vol. 9, no. 5, pp. 602–604, 2006. View at Publisher · View at Google Scholar · View at Scopus
  80. S. Q. J. Liu and S. G. Cull-Candy, “Synaptic activity at calcium-permeable AMPA receptors induces a switch in receptor subtype,” Nature, vol. 405, no. 6785, pp. 454–458, 2000. View at Publisher · View at Google Scholar · View at Scopus
  81. W. Ju, W. Morishita, J. Tsui et al., “Activity-dependent regulation of dendritic synthesis and trafficking of AMPA receptors,” Nature Neuroscience, vol. 7, no. 3, pp. 244–253, 2004. View at Publisher · View at Google Scholar · View at Scopus
  82. J. Aoto, C. I. Nam, M. M. Poon, P. Ting, and L. Chen, “Synaptic signaling by all-trans retinoic acid in homeostatic synaptic plasticity,” Neuron, vol. 60, no. 2, pp. 308–320, 2008. View at Publisher · View at Google Scholar · View at Scopus
  83. T. C. Thiagarajan, M. Lindskog, and R. W. Tsien, “Adaptation to synaptic inactivity in hippocampal neurons,” Neuron, vol. 47, no. 5, pp. 725–737, 2005. View at Publisher · View at Google Scholar · View at Scopus
  84. F. Ogoshi, H. Z. Yin, Y. Kuppumbatti, B. Song, S. Amindari, and J. H. Weiss, “Tumor necrosis-factor-alpha (TNF-α) induces rapid insertion of Ca2+-permeable α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA)/kainate (Ca-A/K) channels in a subset of hippocampal pyramidal neurons,” Experimental Neurology, vol. 193, no. 2, pp. 384–393, 2005. View at Publisher · View at Google Scholar · View at Scopus
  85. J. D. Shepherd, G. Rumbaugh, J. Wu et al., “Arc/Arg3.1 mediates homeostatic synaptic scaling of AMPA receptors,” Neuron, vol. 52, no. 3, pp. 475–484, 2006. View at Publisher · View at Google Scholar · View at Scopus
  86. O. Steward and P. F. Worley, “Selective targeting of newly synthesized Arc mRNA to active synapses requires NMDA receptor activation,” Neuron, vol. 30, no. 1, pp. 227–240, 2001. View at Publisher · View at Google Scholar · View at Scopus
  87. E. M. Rial Verde, J. Lee-Osbourne, P. Worley, R. Malinow, and H. Cline, “Increased expression of the immediate-early gene Arc/Arg3.1 reduces AMPA receptor-mediated synaptic transmission,” Neuron, vol. 52, no. 3, pp. 461–474, 2006. View at Publisher · View at Google Scholar · View at Scopus
  88. C. R. Bramham, P. F. Worley, M. J. Moore, and J. F. Guzowski, “The immediate early gene Arc/Arg3.1: regulation, mechanisms, and function,” Journal of Neuroscience, vol. 28, no. 46, pp. 11760–11767, 2008. View at Publisher · View at Google Scholar · View at Scopus
  89. S. Chowdhury, J. D. Shepherd, H. Okuno et al., “Arc/Arg3.1 interacts with the endocytic machinery to regulate AMPA receptor trafficking,” Neuron, vol. 52, no. 3, pp. 445–459, 2006. View at Publisher · View at Google Scholar · View at Scopus
  90. J. C. Béïque, Y. Na, D. Kuhl, P. F. Worley, and R. L. Huganir, “Arc-dependent synapse-specific homeostatic plasticity,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 2, pp. 816–821, 2011. View at Publisher · View at Google Scholar · View at Scopus
  91. M. Maden, “Retinoic acid in the development, regeneration and maintenance of the nervous system,” Nature Reviews Neuroscience, vol. 8, no. 10, pp. 755–765, 2007. View at Publisher · View at Google Scholar · View at Scopus
  92. E. Bonnet, K. Touyarot, S. Alfos, V. Pallet, P. Higueret, and D. N. Abrous, “Retinoic acid restores adult hippocampal neurogenesis and reverses spatial memory deficit in vitamin A deprived rats,” PLoS ONE, vol. 3, no. 10, Article ID e3487, 2008. View at Publisher · View at Google Scholar · View at Scopus
  93. B. Maghsoodi, M. M. Poon, C. I. Nam, J. Aoto, P. Ting, and L. Chen, “Retinoic acid regulates RARα-mediated control of translation in dendritic RNA granules during homeostatic synaptic plasticity,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 41, pp. 16015–16020, 2008. View at Publisher · View at Google Scholar · View at Scopus
  94. M. E. Soden and L. Chen, “Fragile X protein FMRP is required for homeostatic plasticity and regulation of synaptic strength by retinoic acid,” Journal of Neuroscience, vol. 30, no. 50, pp. 16910–16921, 2010. View at Publisher · View at Google Scholar · View at Scopus
  95. E. W. Khandjian, “Biology of the fragile X mental retardation protein, an RNA-binding protein,” Biochemistry and Cell Biology, vol. 77, no. 4, pp. 331–342, 1999. View at Publisher · View at Google Scholar · View at Scopus
  96. R. Mazroui, M. E. Hout, S. Tremblay, C. Fillion, Y. Labelle, and E. W. Khandjian, “Trapping of messenger RNA by Fragile X Mental Retardation protein into cytoplasmic granules induces translation repression,” Human Molecular Genetics, vol. 11, no. 24, pp. 3007–3017, 2002. View at Google Scholar · View at Scopus
  97. J. Xia, X. Zhang, J. Staudinger, and R. L. Huganir, “Clustering of AMPA receptors by the synaptic PD domain-containing protein PICK1,” Neuron, vol. 22, no. 1, pp. 179–187, 1999. View at Publisher · View at Google Scholar · View at Scopus
  98. K. K. Dev, A. Nishimune, J. M. Henley, and S. Nakanishi, “The protein kinase Cα binding protein PICK1 interacts with short but not long form alternative splice variants of AMPA receptor subunits,” Neuropharmacology, vol. 38, no. 5, pp. 635–644, 1999. View at Publisher · View at Google Scholar · View at Scopus
  99. W. Lu and E. B. Ziff, “PICK1 interacts with ABP/GRIP to regulate AMPA receptor trafficking,” Neuron, vol. 47, no. 3, pp. 407–421, 2005. View at Publisher · View at Google Scholar · View at Scopus
  100. J. P. Steinberg, K. Takamiya, Y. Shen et al., “Targeted in vivo mutations of the AMPA receptor subunit GluR2 and its interacting protein PICK1 eliminate cerebellar long-term depression,” Neuron, vol. 49, no. 6, pp. 845–860, 2006. View at Publisher · View at Google Scholar · View at Scopus
  101. L. Volk, C. H. Kim, K. Takamiya, Y. Yu, and R. L. Huganir, “Developmental regulation of protein interacting with C kinase 1 (PICK1) function in hippocampal synaptic plasticity and learning,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 50, pp. 21784–21789, 2010. View at Publisher · View at Google Scholar · View at Scopus
  102. A. Terashima, L. Cotton, K. K. Dev et al., “Regulation of synaptic strength and AMPA receptor subunit composition by PICK1,” Journal of Neuroscience, vol. 24, no. 23, pp. 5381–5390, 2004. View at Publisher · View at Google Scholar · View at Scopus
  103. J. G. Hanley, “PICK1: a multi-talented modulator of AMPA receptor trafficking,” Pharmacology and Therapeutics, vol. 118, no. 1, pp. 152–160, 2008. View at Publisher · View at Google Scholar · View at Scopus
  104. S. M. Gardner, K. Takamiya, J. Xia et al., “Calcium-permeable AMPA receptor plasticity is mediated by subunit-specific interactions with PICK1 and NSF,” Neuron, vol. 45, no. 6, pp. 903–915, 2005. View at Publisher · View at Google Scholar · View at Scopus
  105. C. Bellone and C. Luscher, “Cocaine triggered AMPA receptor redistribution is reversed in vivo by mGluR-dependent long-term depression,” Nature Neuroscience, vol. 9, no. 5, pp. 636–641, 2006. View at Google Scholar
  106. V. Anggono, R. L. Clem, and R. L. Huganir, “PICK1 loss of function occludes homeostatic synaptic scaling,” Journal of Neuroscience, vol. 31, no. 6, pp. 2188–2196, 2011. View at Publisher · View at Google Scholar · View at Scopus
  107. A. N. Hegde, “Ubiquitin-proteasome-mediated local protein degradation and synaptic plasticity,” Progress in Neurobiology, vol. 73, no. 5, pp. 311–357, 2004. View at Publisher · View at Google Scholar · View at Scopus
  108. B. Bingol and E. M. Schuman, “Activity-dependent dynamics and sequestration of proteasomes in dendritic spines,” Nature, vol. 441, no. 7097, pp. 1144–1148, 2006. View at Publisher · View at Google Scholar · View at Scopus
  109. A. DiAntonio, A. P. Haghighi, S. L. Portman, J. D. Lee, A. M. Amaranto, and C. S. Goodman, “Ubiquitination-dependent mechanisms regulate synaptic growth and function,” Nature, vol. 412, no. 6845, pp. 449–452, 2001. View at Publisher · View at Google Scholar · View at Scopus
  110. M. Ding and K. Shen, “The role of the ubiquitin proteasome system in synapse remodeling and neurodegenerative diseases,” BioEssays, vol. 30, no. 11-12, pp. 1075–1083, 2008. View at Publisher · View at Google Scholar · View at Scopus
  111. M. D. Ehlers, “Activity level controls postsynaptic composition and signaling via the ubiquitin-proteasome system,” Nature Neuroscience, vol. 6, no. 3, pp. 231–242, 2003. View at Publisher · View at Google Scholar · View at Scopus
  112. M. Colledge, E. M. Snyder, R. A. Crozier et al., “Ubiquitination regulates PSD-95 degradation and AMPA receptor surface expression,” Neuron, vol. 40, no. 3, pp. 595–607, 2003. View at Publisher · View at Google Scholar · View at Scopus
  113. B. Bingol and E. M. Schuman, “A proteasome-sensitive connection between PSD-95 and GluR1 endocytosis,” Neuropharmacology, vol. 47, no. 5, pp. 755–763, 2004. View at Publisher · View at Google Scholar · View at Scopus
  114. L. Guo and Y. Wang, “Glutamate stimulates glutamate receptor interacting protein 1 degradation by ubiquitin-proteasome system to regulate surface expression of GluR2,” Neuroscience, vol. 145, no. 1, pp. 100–109, 2007. View at Publisher · View at Google Scholar · View at Scopus
  115. L. A. Schwarz, B. J. Hall, and G. N. Patrick, “Activity-dependent ubiquitination of GluA1 mediates a distinct AMPA receptor endocytosis and sorting pathway,” Journal of Neuroscience, vol. 30, no. 49, pp. 16718–16729, 2010. View at Publisher · View at Google Scholar · View at Scopus
  116. A. Lin, Q. Hou, L. Jarzylo et al., “Nedd4-mediated AMPA receptor ubiquitination regulates receptor turnover and trafficking,” Journal of Neurochemistry, vol. 119, no. 1, pp. 27–39, 2011. View at Google Scholar
  117. M. P. Lussier, Y. Nasu-Nishimura, and K. W. Roche, “Activity-dependent ubiquitination of the AMPA receptor subunit GluA2,” Journal of Neuroscience, vol. 31, no. 8, pp. 3077–3081, 2011. View at Publisher · View at Google Scholar · View at Scopus
  118. A. Kato, N. Rouach, R. A. Nicoll, and D. S. Bredt, “Activity-dependent NMDA receptor degradation mediated by retrotranslocation and ubiquitination,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 15, pp. 5600–5605, 2005. View at Publisher · View at Google Scholar · View at Scopus
  119. S. K. Jakawich, R. M. Neely, S. N. Djakovic, G. N. Patrick, and M. A. Sutton, “An essential postsynaptic role for the ubiquitin proteasome system in slow homeostatic synaptic plasticity in cultured hippocampal neurons,” Neuroscience, vol. 171, no. 4, pp. 1016–1031, 2010. View at Publisher · View at Google Scholar · View at Scopus
  120. D. Zhang, Q. Hou, M. Wang et al., “Na,K-ATPase activity regulates AMPA receptor turnover through proteasome-mediated proteolysis,” Journal of Neuroscience, vol. 29, no. 14, pp. 4498–4511, 2009. View at Publisher · View at Google Scholar · View at Scopus