Table of Contents Author Guidelines Submit a Manuscript
Neural Plasticity
Volume 2012, Article ID 964843, 12 pages
http://dx.doi.org/10.1155/2012/964843
Review Article

Activity-Dependent Plasticity of Spinal Circuits in the Developing and Mature Spinal Cord

Department of Kinesiology and Program in Neuroscience, Indiana University Bloomington, Bloomington, IN 47405-7109, USA

Received 2 March 2012; Accepted 12 June 2012

Academic Editor: Mary F. Barbe

Copyright © 2012 Behdad Tahayori and David M. Koceja. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. H. Hubel and T. N. Wiesel, “The period of susceptibility to the physiological effects of unilateral eye closure in kittens.,” Journal of Physiology, vol. 206, no. 2, pp. 419–436, 1970. View at Google Scholar · View at Scopus
  2. D. H. Hubel and T. N. Wiesel, “Receptive fields of cells in striate cortex of very young, visually inexperienced kittens,” Journal of Neurophysiology, vol. 26, pp. 994–1002, 1963. View at Google Scholar · View at Scopus
  3. T. N. Wiesel and D. H. Hubel, “Single-cell responses in striate cortex of kittens deprived of vision in one eye,” Journal of Neurophysiology, vol. 26, pp. 1003–1017, 1963. View at Google Scholar · View at Scopus
  4. D. H. Hubel and T. N. Wiesel, “Effects of monocular deprivation in kittens,” Naunyn-Schmiedebergs Archiv für Experimentelle Pathologie und Pharmakologie, vol. 248, no. 6, pp. 492–497, 1964. View at Publisher · View at Google Scholar · View at Scopus
  5. T. N. Wiesel and D. H. Hubel, “Extent of recovery from the effects of visual deprivation in kittens.,” Journal of Neurophysiology, vol. 28, no. 6, pp. 1060–1072, 1965. View at Google Scholar · View at Scopus
  6. C. Assaiante and B. Amblard, “An ontogenetic model for the sensorimotor organization of balance control in humans,” Human Movement Science, vol. 14, no. 1, pp. 13–43, 1995. View at Google Scholar · View at Scopus
  7. P. R. Zelazo, N. A. Zelazo, and S. Kolb, “‘Walking’ in the newborn,” Science, vol. 176, no. 4032, pp. 314–315, 1972. View at Google Scholar · View at Scopus
  8. J. R. Wolpaw and A. M. Tennissen, “Activity-dependent spinal cord plasticity in health and disease,” Annual Review of Neuroscience, vol. 24, pp. 807–843, 2001. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Butz, F. Wörgötter, and A. van Ooyen, “Activity-dependent structural plasticity,” Brain Research Reviews, vol. 60, no. 2, pp. 287–305, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. D. M. Koceja, C. A. Markus, and M. H. Trimble, “Postural modulation of the soleus H reflex in young and old subjects,” Electroencephalography and Clinical Neurophysiology, vol. 97, no. 6, pp. 387–393, 1995. View at Publisher · View at Google Scholar · View at Scopus
  11. M. H. Woollacott, A. Shumway-Cook, and L. M. Nashner, “Aging and posture control: changes in sensory organization and muscular coordination,” International Journal of Aging and Human Development, vol. 23, no. 2, pp. 97–114, 1986. View at Google Scholar · View at Scopus
  12. A. Nardone, R. Siliotto, M. Grasso, and M. Schieppati, “Influence of aging on leg muscle reflex responses to stance perturbation,” Archives of Physical Medicine and Rehabilitation, vol. 76, no. 2, pp. 158–165, 1995. View at Publisher · View at Google Scholar · View at Scopus
  13. D. L. Sturnieks, R. St George, and S. R. Lord, “Balance disorders in the elderly,” Neurophysiologie Clinique, vol. 38, no. 6, pp. 467–478, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. D. H. Romero and G. E. Stelmach, “Changes in postural control with aging and Parkinson's disease,” IEEE Engineering in Medicine and Biology Magazine, vol. 22, no. 2, pp. 27–31, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. E. Pierrot-Deseilligny and D. Burke, The Circuitry of the Human Spinal Cord, Cambridge University Press, Cambridge, UK, 2005.
  16. B. Tahayori, N. L. Port, and D. M. Koceja, “The inflow of sensory information for the control of standing is graded and bidirectional,” Experimental Brain Research, vol. 218, no. 1, pp. 111–118, 2012. View at Publisher · View at Google Scholar · View at Scopus
  17. D. Purves and J. W. Lichtman, Principles of Neural Development, Sinauer Associates, Sunderland, Mass, USA, 1985.
  18. K. Sharma, A. E. Leonard, K. Lettieri, and S. L. Pfaff, “Genetic and epigenetic mechanisms contribute to motor neuron pathfinding,” Nature, vol. 406, no. 6795, pp. 515–519, 2000. View at Publisher · View at Google Scholar · View at Scopus
  19. T. N. Wiesel, “Postnatal development of the visual cortex and the influence of environment,” Nature, vol. 299, no. 5884, pp. 583–591, 1982. View at Google Scholar · View at Scopus
  20. S. Conradi and L. O. Ronnevi, “Ultrastructure and synaptology of the initial axon segment of cat spinal motoneurons during early postnatal development,” Journal of Neurocytology, vol. 6, no. 2, pp. 195–210, 1977. View at Google Scholar · View at Scopus
  21. S. Hockfield and R. G. Kalb, “Activity-dependent structural changes during neuronal development,” Current Opinion in Neurobiology, vol. 3, no. 1, pp. 87–92, 1993. View at Publisher · View at Google Scholar · View at Scopus
  22. R. G. Kalb and S. Hockfield, “Activity-dependent development of spinal cord motor neurons,” Brain Research Reviews, vol. 17, no. 3, pp. 283–289, 1992. View at Publisher · View at Google Scholar · View at Scopus
  23. W. J. Thompson, “Activity and synapse elimination at the neuromuscular junction,” Cellular and Molecular Neurobiology, vol. 5, no. 1-2, pp. 167–182, 1985. View at Google Scholar · View at Scopus
  24. Y. Liu, R. D. Fields, S. Fitzgerald, B. W. Festoff, and P. G. Nelson, “Proteolytic activity, synapse elimination, and the Hebb synapse,” Journal of Neurobiology, vol. 25, no. 3, pp. 325–335, 1994. View at Google Scholar · View at Scopus
  25. S. Q. González, B. S. Alegría, J. C. G. Olmos, and I. Jiménez-Estrada, “Effect of chronic undernourishment on the cord dorsum potentials and the primary afferent depolarization evoked by cutaneous nerves in the rat spinal cord,” Brain Research Bulletin, vol. 85, no. 1-2, pp. 68–74, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. R. G. Kalb and S. Hockfield, “Large diameter primary afferent input is required for expression of the Cat-301 proteoglycan on the surface of motor neurons,” Neuroscience, vol. 34, no. 2, pp. 391–401, 1990. View at Publisher · View at Google Scholar · View at Scopus
  27. R. G. Kalb and S. Hockfield, “Molecular evidence for early activity-dependent development of hamster motor neurons,” Journal of Neuroscience, vol. 8, no. 7, pp. 2350–2360, 1988. View at Google Scholar · View at Scopus
  28. S. Farkas and H. Ono, “Participation of NMDA and non-NMDA excitatory amino acid receptors in the mediation of spinal reflex potentials in rats: an in vivo study,” British Journal of Pharmacology, vol. 114, no. 6, pp. 1193–1205, 1995. View at Google Scholar · View at Scopus
  29. P. G. Nelson, R. D. Fields, C. Yu, and E. A. Neale, “Mechanisms involved in activity-dependent synapse formation in mammalian central nervous system cell cultures,” Journal of Neurobiology, vol. 21, no. 1, pp. 138–156, 1990. View at Google Scholar · View at Scopus
  30. R. D. Fields, C. Yu, and P. G. Nelson, “Calcium, network activity, and the role of NMDA channels in synaptic plasticity in vitro,” Journal of Neuroscience, vol. 11, no. 1, pp. 134–146, 1991. View at Google Scholar · View at Scopus
  31. R. G. Kalb, “Regulation of motor neuron dendrite growth by NMDA receptor activation,” Development, vol. 120, no. 11, pp. 3063–3071, 1994. View at Google Scholar · View at Scopus
  32. R. G. Kalb and A. J. Fox, “Synchronized overproduction of AMPA, Kainate, and NMDA glutamate receptors during human spinal cord development,” Journal of Comparative Neurology, vol. 384, no. 2, pp. 200–210, 1997. View at Publisher · View at Google Scholar · View at Scopus
  33. R. G. Kalb, M. S. Lidow, M. J. Halsted, and S. Hockfield, “N-methyl-D-aspartate receptors are transiently expressed in the developing spinal cord ventral horn,” Proceedings of the National Academy of Sciences of the United States of America, vol. 89, no. 18, pp. 8502–8506, 1992. View at Google Scholar · View at Scopus
  34. J. Sandkühler, J. G. Chen, G. Cheng, and M. Randić, “Low-frequency stimulation of afferent aδ-fibers induces long-term depression at primary afferent synapses with substantia gelatinosa neurons in the rat,” Journal of Neuroscience, vol. 17, no. 16, pp. 6483–6491, 1997. View at Google Scholar · View at Scopus
  35. R. L. Michaels and S. M. Rothman, “Glutamate neurotoxicity in vitro: antagonist pharmacology and intracellular calcium concentrations,” Journal of Neuroscience, vol. 10, no. 1, pp. 283–292, 1990. View at Google Scholar · View at Scopus
  36. T. M. Laughlin, T. W. Vanderah, J. Lashbrook et al., “Spinally administered dynorphin A produces long-lasting allodynia: involvement of NMDA but not opioid receptors,” Pain, vol. 72, no. 1-2, pp. 253–260, 1997. View at Publisher · View at Google Scholar · View at Scopus
  37. J. A. Eyre, “Development and plasticity of the corticospinal system in man.,” Neural Plasticity, vol. 10, no. 1-2, pp. 93–106, 2003. View at Google Scholar · View at Scopus
  38. J. A. Eyre, J. P. Taylor, F. Villagra, M. Smith, and S. Miller, “Evidence of activity-dependent withdrawal of corticospinal projections during human development,” Neurology, vol. 57, no. 9, pp. 1543–1554, 2001. View at Google Scholar · View at Scopus
  39. M. P. Galea and I. Darian-Smith, “Multiple corticospinal neuron populations in the macaque monkey are specified by their unique cortical origins, spinal terminations, and connections,” Cerebral Cortex, vol. 4, no. 2, pp. 166–194, 1994. View at Google Scholar · View at Scopus
  40. J. Uematsu, K. Ono, T. Yamano, and M. Shimada, “Development of corticospinal tract fibers and their plasticity II. Neonatal unilateral cortical damage and subsequent development of the corticospinal tract in mice,” Brain and Development, vol. 18, no. 3, pp. 173–178, 1996. View at Publisher · View at Google Scholar · View at Scopus
  41. M. Bax, M. Goldstein, P. Rosenbaun et al., “Proposed definition and classification of cerebral palsy, April 2005,” Developmental Medicine and Child Neurology, vol. 47, no. 8, pp. 571–576, 2005. View at Publisher · View at Google Scholar · View at Scopus
  42. L. J. Carr, L. M. Harrison, A. L. Evans, and J. A. Stephens, “Patterns of central motor reorganization in hemiplegic cerebral palsy,” Brain, vol. 116, no. 5, pp. 1223–1247, 1993. View at Google Scholar · View at Scopus
  43. M. Hodapp, C. Klisch, W. Berger, V. Mall, and M. Faist, “Modulation of soleus H-reflexes during gait in healthy children,” Experimental Brain Research, vol. 178, no. 2, pp. 252–260, 2007. View at Publisher · View at Google Scholar · View at Scopus
  44. M. Hodapp, J. Vry, V. Mall, and M. Faist, “Changes in soleus H-reflex modulation after treadmill training in children with cerebral palsy,” Brain, vol. 132, no. 1, pp. 37–44, 2009. View at Publisher · View at Google Scholar · View at Scopus
  45. M. Hodapp, C. Klisch, V. Mall, J. Vry, W. Berger, and M. Faist, “Modulation of soleus H-reflexes during gait in children with cerebral palsy,” Journal of Neurophysiology, vol. 98, no. 6, pp. 3263–3268, 2007. View at Publisher · View at Google Scholar · View at Scopus
  46. T. Ohno, H. Maeda, N. Murabe et al., “Specific involvement of postsynaptic GluN2B-containing NMDA receptors in the developmental elimination of corticospinal synapses,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 34, pp. 15252–15257, 2010. View at Publisher · View at Google Scholar · View at Scopus
  47. C. Kukulka, “Principles of neuromuscular excitation,” in Electrotherapy in Rehabilitation, M. Gersh, Ed., pp. 3–25, Davis, Philadelphia, Pa, USA, 1992. View at Google Scholar
  48. M. Knikou, “The H-reflex as a probe: pathways and pitfalls,” Journal of Neuroscience Methods, vol. 171, no. 1, pp. 1–12, 2008. View at Publisher · View at Google Scholar · View at Scopus
  49. H. Morita, N. Petersen, L. O. D. Christensen, T. Sinkjær, and J. Nielsen, “Sensitivity of H-reflexes and stretch reflexes to presynaptic inhibition in humans,” Journal of Neurophysiology, vol. 80, no. 2, pp. 610–620, 1998. View at Google Scholar · View at Scopus
  50. M. Enríquez-Denton, H. Morita, L. O. D. Christensen, N. Petersen, T. Sinkjaer, and J. B. Nielsen, “Interaction between peripheral afferent activity and presynaptic inhibition of Ia afferents in the cat,” Journal of Neurophysiology, vol. 88, no. 4, pp. 1664–1674, 2002. View at Google Scholar · View at Scopus
  51. D. M. Koceja, J. R. Burke, and G. Kamen, “Organization of segmental reflexes in trained dancers,” International Journal of Sports Medicine, vol. 12, no. 3, pp. 285–289, 1991. View at Google Scholar · View at Scopus
  52. J. Nielsen, C. Crone, and H. Hultborn, “H-reflexes are smaller in dancers from the Royal Danish Ballet than in well-trained athletes,” European Journal of Applied Physiology and Occupational Physiology, vol. 66, no. 2, pp. 116–121, 1993. View at Google Scholar · View at Scopus
  53. R. Ryder, K. Kitano, and D. M. Koceja, “Spinal reflex adaptation in dancers changes with body orientation and role of pre-synaptic inhibition.,” Journal of Dance Medicine & Science, vol. 14, no. 4, pp. 155–162, 2010. View at Google Scholar · View at Scopus
  54. J. R. Wolpaw and C. L. Lee, “Memory traces in primate spinal cord produced by operant conditioning of H-reflex,” Journal of Neurophysiology, vol. 61, no. 3, pp. 563–572, 1989. View at Google Scholar · View at Scopus
  55. J. R. Wolpaw, “The education and re-education of the spinal cord,” Progress in Brain Research, vol. 157, pp. 261–280, 2006. View at Publisher · View at Google Scholar · View at Scopus
  56. J. R. Wolpaw, D. J. Braitman, and R. F. Seegal, “Adaptive plasticity in primate spinal stretch reflex: initial development,” Journal of Neurophysiology, vol. 50, no. 6, pp. 1296–1311, 1983. View at Google Scholar · View at Scopus
  57. D. L. Glanzman, “Common mechanisms of synaptic plasticity in vertebrates and invertebrates,” Current Biology, vol. 20, no. 1, pp. R31–R36, 2010. View at Publisher · View at Google Scholar · View at Scopus
  58. F. B. Krasne and J. S. Bryan, “Habituation: regulation through presynaptic inhibition,” Science, vol. 182, no. 4112, pp. 590–592, 1973. View at Google Scholar · View at Scopus
  59. R. Melzack and P. D. Wall, “Pain mechanisms: a new theory,” Science, vol. 150, no. 3699, pp. 971–979, 1965. View at Google Scholar · View at Scopus
  60. H. Hultborn, S. Lindstrom, and H. Wigstrom, “On the function of recurrent inhibition in the spinal cord,” Experimental Brain Research, vol. 37, no. 2, pp. 399–403, 1979. View at Google Scholar · View at Scopus
  61. H. Hultborn, M. Illert, J. Nielsen, A. Paul, M. Ballegaard, and H. Wiese, “On the mechanism of the post-activation depression of the H-reflex in human subjects,” Experimental Brain Research, vol. 108, no. 3, pp. 450–462, 1996. View at Google Scholar · View at Scopus
  62. C. Crone and J. Nielsen, “Spinal mechanisms in man contributing to reciprocal inhibition during voluntary dorsiflexion of the foot,” Journal of Physiology, vol. 416, pp. 255–272, 1989. View at Google Scholar · View at Scopus
  63. H. Hultborn, S. Meunier, E. Pierrot-Deseilligny, and M. Shindo, “Changes in presynaptic inhibition of Ia fibres at the onset of voluntary contraction in man,” Journal of Physiology, vol. 389, pp. 757–772, 1987. View at Google Scholar · View at Scopus
  64. D. R. Earles, D. M. Koceja, and C. W. Shively, “Environmental changes in soleus H-reflex excitability in young and elderly subjects,” International Journal of Neuroscience, vol. 105, no. 1-4, pp. 1–13, 2000. View at Google Scholar · View at Scopus
  65. J. Duysens, A. A. M. Taxl, B. Van der Doelen, M. Trippel, and V. Dietz, “Selective activation of human soleus or gastrocnemius in reflex responses during walking and running,” Experimental Brain Research, vol. 87, no. 1, pp. 193–204, 1991. View at Google Scholar · View at Scopus
  66. B. Larsen, N. Mrachacz-Kersting, B. A. Lavoie, and M. Voigt, “The amplitude modulation of the quadriceps H-reflex in relation to the knee joint action during walking,” Experimental Brain Research, vol. 170, no. 4, pp. 555–566, 2006. View at Publisher · View at Google Scholar · View at Scopus
  67. N. Mrachacz-Kersting, B. A. Lavoie, J. B. Andersen, and T. Sinkjaer, “Characterisation of the quadriceps stretch reflex during the transition from swing to stance phase of human walking,” Experimental Brain Research, vol. 159, no. 1, pp. 108–122, 2004. View at Publisher · View at Google Scholar · View at Scopus
  68. K. Frank and M. G. F. Fuortes, “Presynaptic and postsynaptic inhibition of monosynaptic reflexes,” Federation Proceedings, vol. 16, pp. 39–40, 1957. View at Google Scholar
  69. K. Frank, “Basic mechanisms of synaptic transmission in the central nervous system,” IRE Transitions on Medical Electronics, vol. 6, no. 2, pp. 85–88, 1959. View at Google Scholar
  70. P. Rudomin and R. F. Schmidt, “Presynaptic inhibition in the vertebrate spinal cord revisited,” Experimental Brain Research, vol. 129, no. 1, pp. 1–37, 1999. View at Publisher · View at Google Scholar · View at Scopus
  71. W. D. Willis, “John Eccles' studies of spinal cord presynaptic inhibition,” Progress in Neurobiology, vol. 78, no. 3-5, pp. 189–214, 2006. View at Publisher · View at Google Scholar · View at Scopus
  72. J. C. Eccles, “Presynaptic inhibition in the spinal cord,” in Progress in Brain Research, J. C. Eccles and J. P. Schadé, Eds., pp. 65–91, Elsevier, 1964. View at Google Scholar
  73. J. Eccles, F. Magni, and W. Willis, “Depolarization of central terminals of Group I afferent fibres from muscle,” The Journal of Physiology, vol. 160, no. 1, pp. 62–93, 1962. View at Google Scholar
  74. B. Graham and S. Redman, “A simulation of action potentials in synaptic boutons during presynaptic inhibition,” Journal of Neurophysiology, vol. 71, no. 2, pp. 538–549, 1994. View at Google Scholar · View at Scopus
  75. R. J. Miller, “Presynaptic receptors,” Annual Review of Pharmacology and Toxicology, vol. 38, pp. 201–227, 1998. View at Google Scholar · View at Scopus
  76. J. D. Clements, I. D. Forsythe, and S. J. Redman, “Presynaptic inhibition of synaptic potentials evoked in cat spinal motoneurones by impulses in single group Ia axons,” Journal of Physiology, vol. 383, pp. 153–169, 1987. View at Google Scholar · View at Scopus
  77. P. Rudomin, “In search of lost presynaptic inhibition,” Experimental Brain Research, vol. 196, no. 1, pp. 139–151, 2009. View at Publisher · View at Google Scholar · View at Scopus
  78. J. C. Eccles, The Physiology of Synapses, Springer, Berlin, Germany, 1964.
  79. P. Rudomin, I. Jimenez, M. Solodkin, and S. Duenas, “Sites of action of segmental and descending control of transmission on pathways mediating PAD of Ia- and Ib-afferent fibers in cat spinal cord,” Journal of Neurophysiology, vol. 50, no. 4, pp. 743–769, 1983. View at Google Scholar · View at Scopus
  80. K. Seki, S. I. Perlmutter, and E. E. Fetz, “Sensory input to primate spinal cord is presynaptically inhibited during voluntary movement,” Nature Neuroscience, vol. 6, no. 12, pp. 1309–1316, 2003. View at Publisher · View at Google Scholar · View at Scopus
  81. T. Hongo, E. Jankowska, and A. Lundberg, “The rubrospinal tract. III. Effects on primary afferent terminals,” Experimental Brain Research, vol. 15, no. 1, pp. 39–53, 1972. View at Publisher · View at Google Scholar · View at Scopus
  82. J. Nielsen and N. Petersen, “Is presynaptic inhibition distributed to corticospinal fibres in man?” Journal of Physiology, vol. 477, no. 1, pp. 47–58, 1994. View at Google Scholar · View at Scopus
  83. S. Meunier and E. Pierrot-Deseilligny, “Cortical control of presynaptic inhibition of Ia afferents in humans,” Experimental Brain Research, vol. 119, no. 4, pp. 415–426, 1998. View at Publisher · View at Google Scholar · View at Scopus
  84. C. Capaday and R. B. Stein, “Amplitude modulation of the soleus H-reflex in the human during walking and standing,” Journal of Neuroscience, vol. 6, no. 5, pp. 1308–1313, 1986. View at Google Scholar · View at Scopus
  85. R. B. Stein and C. Capaday, “The modulation of human reflexes during functional motor tasks,” Trends in Neurosciences, vol. 11, no. 7, pp. 328–332, 1988. View at Google Scholar · View at Scopus
  86. H. Hultborn, S. Meunier, C. Morin, and E. Pierrot-Deseilligny, “Assessing changes in presynaptic inhibition of Ia fibres: a study in man and the cat,” Journal of Physiology, vol. 389, pp. 729–756, 1987. View at Google Scholar · View at Scopus
  87. J. Nielsen and Y. Kagamihara, “The regulation of presynaptic inhibition during co-contraction of antagonistic muscles in man,” Journal of Physiology, vol. 464, pp. 575–593, 1993. View at Google Scholar · View at Scopus
  88. J. F. Iles, “Evidence for cutaneous and corticospinal modulation of presynaptic inhibition of Ia afferents from the human lower limb,” Journal of Physiology, vol. 491, no. 1, pp. 197–207, 1996. View at Google Scholar · View at Scopus
  89. J. B. Nielsen, “Sensorimotor integration at spinal level as a basis for muscle coordination during voluntary movement in humans,” Journal of Applied Physiology, vol. 96, no. 5, pp. 1961–1967, 2004. View at Publisher · View at Google Scholar · View at Scopus
  90. A. Prochazka, F. Clarac, G. E. Loeb, J. C. Rothwell, and J. R. Wolpaw, “What do reflex and voluntary mean? Modern views on an ancient debate,” Experimental Brain Research, vol. 130, no. 4, pp. 417–432, 2000. View at Google Scholar · View at Scopus
  91. H. Hultborn and E. Pierrot-Deseilligny, “Changes in recurrent inhibition during voluntary soleus contractions in man studied by an H-reflex technique,” Journal of Physiology, vol. 297, pp. 229–251, 1979. View at Google Scholar · View at Scopus
  92. H. Morita, C. Crone, D. Christenhuis, N. T. Petersen, and J. B. Nielsen, “Modulation of presynaptic inhibition and disynaptic reciprocal Ia inhibition during voluntary movement in spasticity,” Brain, vol. 124, no. 4, pp. 826–837, 2001. View at Google Scholar · View at Scopus
  93. T. Kasai, M. Kawanishi, and S. Yahagi, “Posture-dependent modulation of reciprocal inhibition upon initiation of ankle dorsiflexion in man,” Brain Research, vol. 792, no. 1, pp. 159–163, 1998. View at Publisher · View at Google Scholar · View at Scopus
  94. D. R. Earles, J. T. Dierking, C. T. Robertson, and D. M. Koceja, “Pre- and post-synaptic control of motoneuron excitability in athletes,” Medicine and Science in Sports and Exercise, vol. 34, no. 11, pp. 1766–1772, 2002. View at Google Scholar · View at Scopus
  95. D. M. Koceja, M. H. Trimble, and D. R. Earles, “Inhibition of the soleus H-reflex in standing man,” Brain Research, vol. 629, no. 1, pp. 155–158, 1993. View at Publisher · View at Google Scholar · View at Scopus
  96. R. G. Mynark and D. M. Koceja, “Down training of the elderly soleus H reflex with the use of a spinally induced balance perturbation,” Journal of Applied Physiology, vol. 93, no. 1, pp. 127–133, 2002. View at Google Scholar · View at Scopus
  97. M. H. Trimble and D. M. Koceja, “Modulation of the triceps surae H-reflex with training,” International Journal of Neuroscience, vol. 76, no. 3-4, pp. 293–303, 1994. View at Google Scholar · View at Scopus
  98. M. H. Trimble and D. M. Koceja, “Effect of a reduced base of support in standing and balance training on the soleus H-reflex,” International Journal of Neuroscience, vol. 106, no. 1-2, pp. 1–20, 2001. View at Google Scholar · View at Scopus
  99. R. V. Ung, M. A. Imbeault, C. Ethier, L. Brizzi, and C. Capaday, “On the potential role of the corticospinal tract in the control and progressive adaptation of the soleus H-reflex during backward walking,” Journal of Neurophysiology, vol. 94, no. 2, pp. 1133–1142, 2005. View at Publisher · View at Google Scholar · View at Scopus
  100. R. M. Angulo-Kinzler, R. G. Mynark, and D. M. Koceja, “Soleus H-reflex gain in elderly and young adults: modulation due to body position,” Journals of Gerontology A, vol. 53, no. 2, pp. M120–M125, 1998. View at Google Scholar · View at Scopus
  101. A. Eichenberger and D. G. Ruegg, “Relation between the specific H reflex facilitation preceding a voluntary movement and movement parameters in man,” Journal of Physiology, vol. 347, pp. 545–559, 1984. View at Google Scholar · View at Scopus
  102. M. Faist, V. Dietz, and E. Pierrot-Deseilligny, “Modulation, probably presynaptic in origin, of monosynaptic Ia excitation during human gait,” Experimental Brain Research, vol. 109, no. 3, pp. 441–449, 1996. View at Google Scholar · View at Scopus
  103. J. R. Wolpaw, “The complex structure of a simple memory,” Trends in Neurosciences, vol. 20, no. 12, pp. 588–594, 1997. View at Publisher · View at Google Scholar · View at Scopus
  104. A. K. Thompson, Y. C. Xiang, and J. R. Wolpaw, “Acquisition of a simple motor skill: task-dependent adaptation plus long-term change in the human soleus H-reflex,” Journal of Neuroscience, vol. 29, no. 18, pp. 5784–5792, 2009. View at Publisher · View at Google Scholar · View at Scopus
  105. Y. Chen, Y. C. Xiang, L. B. Jakeman, L. Chen, B. T. Stokes, and J. R. Wolpaw, “Operant conditioning of H-reflex can correct a locomotor abnormality after spinal cord injury in rats,” Journal of Neuroscience, vol. 26, no. 48, pp. 12537–12543, 2006. View at Publisher · View at Google Scholar · View at Scopus
  106. A. K. Thompson, R. B. Stein, X. Y. Chen, and J. R. Wolpaw, “Modulation in spinal circuits and corticospinal connections following nerve stimulation and operant conditioning,” in Proceedings of the 28th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS '06), pp. 2138–2141, September 2006. View at Publisher · View at Google Scholar · View at Scopus
  107. P. Aagaard, E. B. Simonsen, J. L. Andersen, P. Magnusson, and P. Dyhre, “Neural adaptation to resistance training: changes in evoked V-wave and H-reflex responses,” Journal of Applied Physiology, vol. 92, no. 6, pp. 2309–2318, 2002. View at Google Scholar · View at Scopus
  108. O. Lagerquist, E. P. Zehr, and D. Docherty, “Increased spinal reflex excitability is not associated with neural plasticity underlying the cross-education effect,” Journal of Applied Physiology, vol. 100, no. 1, pp. 83–90, 2006. View at Publisher · View at Google Scholar · View at Scopus
  109. K. C. Feng-Chen and J. R. Wolpaw, “Operant conditioning of H-reflex changes synaptic terminals on primate motoneurons,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 17, pp. 9206–9211, 1996. View at Publisher · View at Google Scholar · View at Scopus
  110. J. R. Wolpaw and J. A. O'Keefe, “Adaptive plasticity in the primate spinal stretch reflex: evidence for a two-phase process,” Journal of Neuroscience, vol. 4, no. 11, pp. 2718–2724, 1984. View at Google Scholar · View at Scopus
  111. Y. C. Xiang, J. S. Carp, L. Chen, and J. R. Wolpaw, “Corticospinal tract transection prevents operantly conditioned H-reflex increase in rats,” Experimental Brain Research, vol. 144, no. 1, pp. 88–94, 2002. View at Publisher · View at Google Scholar · View at Scopus
  112. A. Frigon, M. D. Johnson, and C. J. Heckman, “Altered activation patterns by triceps surae stretch reflex pathways in acute and chronic spinal cord injury,” Journal of Neurophysiology, vol. 106, no. 4, pp. 1669–1678, 2011. View at Publisher · View at Google Scholar · View at Scopus
  113. G. Barrière, A. Frigon, H. Leblond, J. Provencher, and S. Rossignol, “Dual spinal lesion paradigm in the cat: evolution of the kinematic locomotor pattern,” Journal of Neurophysiology, vol. 104, no. 2, pp. 1119–1133, 2010. View at Publisher · View at Google Scholar · View at Scopus
  114. C. J. Dy, Y. P. Gerasimenko, V. R. Edgerton, P. Dyhre, G. Courtine, and S. J. Harkema, “Phase-dependent modulation of percutaneously elicited multisegmental muscle responses after spinal cord injury,” Journal of Neurophysiology, vol. 103, no. 5, pp. 2808–2820, 2010. View at Publisher · View at Google Scholar · View at Scopus
  115. S. Meunier, J. Kwon, H. Russmann, S. Ravindran, R. Mazzocchio, and L. Cohen, “Spinal use-dependent plasticity of synaptic transmission in humans after a single cycling session,” Journal of Physiology, vol. 579, no. 2, pp. 375–388, 2007. View at Publisher · View at Google Scholar · View at Scopus
  116. X. Y. Chen and J. R. Wolpaw, “Probable corticospinal tract control of spinal cord plasticity in the rat,” Journal of Neurophysiology, vol. 87, no. 2, pp. 645–652, 2002. View at Google Scholar · View at Scopus
  117. X. Y. Chen, L. Chen, and J. R. Wolpaw, “Conditioned H-reflex increase persists after transection of the main corticospinal tract in rats,” Journal of Neurophysiology, vol. 90, no. 5, pp. 3572–3578, 2003. View at Publisher · View at Google Scholar · View at Scopus
  118. J. S. Carp and J. R. Wolpaw, “Motoneuron properties after operantly conditioned increase in primate H- reflex,” Journal of Neurophysiology, vol. 73, no. 4, pp. 1365–1373, 1995. View at Google Scholar · View at Scopus
  119. H. Markram, J. Lübke, M. Frotscher, and B. Sakmann, “Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs,” Science, vol. 275, no. 5297, pp. 213–215, 1997. View at Publisher · View at Google Scholar · View at Scopus
  120. M. Ranclic, M. C. Jiang, and R. Cerne, “Long-term potentiation and long-term depression of primary afferent neurotransmission in the rat spinal cord,” Journal of Neuroscience, vol. 13, no. 12, pp. 5228–5241, 1993. View at Google Scholar · View at Scopus
  121. S. Pockett, “Long-term potentiation and depression in the intermediate gray matter of rat spinal cord in vitro,” Neuroscience, vol. 67, no. 4, pp. 791–798, 1995. View at Publisher · View at Google Scholar · View at Scopus
  122. S. Pockett and A. Figurov, “Long-term potentiation and depression in the ventral horn of rat spinal cord in vitro,” NeuroReport, vol. 4, no. 1, pp. 97–99, 1993. View at Google Scholar · View at Scopus
  123. O. Donchin, L. Sawaki, G. Madupu, L. G. Cohen, and R. Shadmehr, “Mechanisms influencing acquisition and recall of motor memories,” Journal of Neurophysiology, vol. 88, no. 4, pp. 2114–2123, 2002. View at Google Scholar · View at Scopus
  124. R. Mazzocchio, T. Kitago, G. Liuzzi, J. R. Wolpaw, and L. G. Cohen, “Plastic changes in the human H-reflex pathway at rest following skillful cycling training,” Clinical Neurophysiology, vol. 117, no. 8, pp. 1682–1691, 2006. View at Publisher · View at Google Scholar · View at Scopus
  125. M. Knikou, “Plasticity of corticospinal neural control after locomotor training in human spinal cord injury,” Neural Plasticity, vol. 2012, Article ID 254948, 13 pages, 2012. View at Publisher · View at Google Scholar