Table of Contents Author Guidelines Submit a Manuscript
Neural Plasticity
Volume 2013, Article ID 145387, 12 pages
http://dx.doi.org/10.1155/2013/145387
Review Article

GluN3A: An NMDA Receptor Subunit with Exquisite Properties and Functions

1Department of Neuroscience, University of Geneva, CMU, 1211 Geneve 4, Switzerland
2Cellular Neurobiology, Departamento de Neurociencias, Centro de Investigacion Médica Aplicada (CIMA), Universidad de Navarra, 31008 Pamplona, Spain

Received 20 September 2013; Accepted 12 November 2013

Academic Editor: Irina Nikonenko

Copyright © 2013 Laura A. Kehoe et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. C. Malenka and R. A. Nicoll, “NMDA-receptor-dependent synaptic plasticity: multiple forms and mechanisms,” Trends in Neurosciences, vol. 16, no. 12, pp. 521–527, 1993. View at Publisher · View at Google Scholar · View at Scopus
  2. R. Malinow, Z. F. Mainen, and Y. Hayashi, “LTP mechanisms: from silence to four-lane traffic,” Current Opinion in Neurobiology, vol. 10, no. 3, pp. 352–357, 2000. View at Publisher · View at Google Scholar · View at Scopus
  3. R. C. Malenka and M. F. Bear, “LTP and LTD: an embarrassment of riches,” Neuron, vol. 44, no. 1, pp. 5–21, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. Q. Zhou, K. J. Homma, and M.-M. Poo, “Shrinkage of dendritic spines associated with long-term depression of hippocampal synapses,” Neuron, vol. 44, no. 5, pp. 749–757, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Matsuzaki, N. Honkura, G. C. R. Ellis-Davies, and H. Kasai, “Structural basis of long-term potentiation in single dendritic spines,” Nature, vol. 429, no. 6993, pp. 761–766, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. N. Toni, P.-A. Buchs, I. Nikonenko, C. R. Bron, and D. Muller, “LTP promotes formation of multiple spine synapses between a single axon terminal and a dendrite,” Nature, vol. 402, no. 6760, pp. 421–425, 1999. View at Publisher · View at Google Scholar · View at Scopus
  7. C. J. Mcbain and M. L. Mayer, “N-methyl-D-aspartic acid receptor structure and function,” Physiological Reviews, vol. 74, no. 3, pp. 723–760, 1994. View at Google Scholar · View at Scopus
  8. E. M. Quinlan, D. H. Olstein, and M. F. Bear, “Bidirectional, experience-dependent regulation of N-methyl-D-aspartate receptor subunit composition in the rat visual cortex during postnatal development,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 22, pp. 12876–12880, 1999. View at Publisher · View at Google Scholar · View at Scopus
  9. A. Barria and R. Malinow, “Subunit-specific NMDA receptor trafficking to synapses,” Neuron, vol. 35, no. 2, pp. 345–353, 2002. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Sheng, J. Cummings, L. A. Roldan, Y. N. Jan, and L. Y. Jan, “Changing subunit composition of heteromeric NMDA receptors during development of rat cortex,” Nature, vol. 368, no. 6467, pp. 144–147, 1994. View at Publisher · View at Google Scholar · View at Scopus
  11. R. Dingledine, K. Borges, D. Bowie, and S. F. Traynelis, “The glutamate receptor ion channels,” Pharmacological Reviews, vol. 51, no. 1, pp. 7–61, 1999. View at Google Scholar · View at Scopus
  12. S. F. Traynelis, L. P. Wollmuth, C. J. McBain et al., “Glutamate receptor ion channels: structure, regulation, and function,” Pharmacological Reviews, vol. 62, no. 3, pp. 405–496, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. G. Tong, H. Takahashi, S. Tu et al., “Modulation of NMDA receptor properties and synaptic transmission by the NR3A subunit in mouse hippocampal and cerebrocortical neurons,” Journal of Neurophysiology, vol. 99, no. 1, pp. 122–132, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. I. Pérez-Otaño, C. T. Schulteis, A. Contractor et al., “Assembly with the NR1 subunit is required for surface expression of NR3A-containing NMDA receptors,” Journal of Neuroscience, vol. 21, no. 4, pp. 1228–1237, 2001. View at Google Scholar · View at Scopus
  15. A. M. Ciabarra, J. M. Sullivan, L. G. Gahn, G. Pecht, S. Heinemann, and K. A. Sevarino, “Cloning and characterization of χ-1: a developmentally regulated member of a novel class of the ionotropic glutamate receptor family,” Journal of Neuroscience, vol. 15, no. 10, pp. 6498–6508, 1995. View at Google Scholar · View at Scopus
  16. N. J. Sucher, S. Akbarian, C. L. Chi et al., “Developmental and regional expression pattern of a novel NMDA receptor-like subunit (NMDAR-L) in the rodent brain,” Journal of Neuroscience, vol. 15, no. 10, pp. 6509–6520, 1995. View at Google Scholar · View at Scopus
  17. S. Das, Y. F. Sasaki, T. Rothe et al., “Increased NMDA current and spine density in mice lacking the NMDA receptor subunit NR3A,” Nature, vol. 393, no. 6683, pp. 377–381, 1998. View at Publisher · View at Google Scholar · View at Scopus
  18. A. C. Roberts, J. Díez-García, R. M. Rodriguiz et al., “Downregulation of NR3A-containing NMDARs is required for synapse maturation and memory consolidation,” Neuron, vol. 63, no. 3, pp. 342–356, 2009. View at Publisher · View at Google Scholar
  19. T. Yuan and C. Bellone, “Glutamatergic receptors at developing synapses: the role of GluN3A-containing NMDA receptors and GluA2-lacking AMPA receptors,” European Journal of Pharmacology, 2013. View at Publisher · View at Google Scholar
  20. A. Volterra and J. Meldolesi, “Astrocytes, from brain glue to communication elements: the revolution continues,” Nature Reviews Neuroscience, vol. 6, no. 8, pp. 626–640, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. A. Reichenbach, A. Derouiche, and F. Kirchhoff, “Morphology and dynamics of perisynaptic glia,” Brain Research Reviews, vol. 63, no. 1-2, pp. 11–25, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. T. Fellin, O. Pascual, S. Gobbo, T. Pozzan, P. G. Haydon, and G. Carmignoto, “Neuronal synchrony mediated by astrocytic glutamate through activation of extrasynaptic NMDA receptors,” Neuron, vol. 43, no. 5, pp. 729–743, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. A. Panatier, D. T. Theodosis, J.-P. Mothet et al., “Glia-derived d-serine controls NMDA receptor activity and synaptic memory,” Cell, vol. 125, no. 4, pp. 775–784, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. I. Pérez-Otaño, R. Luján, S. J. Tavalin et al., “Endocytosis and synaptic removal of NR3A-containing NMDA receptors by PACSIN1/syndapin1,” Nature Neuroscience, vol. 9, no. 5, pp. 611–621, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. M.-C. Lee, K. K. Ting, S. Adams, B. J. Brew, R. Chung, and G. J. Guillemin, “Characterisation of the expression of NMDA receptors in human astrocytes,” PLoS ONE, vol. 5, no. 11, Article ID e14123, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. A. Sanz-Clemente, R. A. Nicoll, and K. W. Roche, “Diversity in NMDA receptor composition: many regulators, many consequences,” Neuroscientist, vol. 19, no. 1, pp. 62–75, 2013. View at Publisher · View at Google Scholar
  27. J. A. Gray, Y. Shi, H. Usui, M. J. During, K. Sakimura, and R. A. Nicoll, “Distinct modes of AMPA receptor suppression at developing synapses by GluN2A and GluN2B: single-cell NMDA receptor subunit deletion in vivo,” Neuron, vol. 71, no. 6, pp. 1085–1101, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. M. Farrant, D. Feldmeyer, T. Takahashi, and S. G. Cull-Candy, “NMDA-receptor channel diversity in the developing cerebellum,” Nature, vol. 368, no. 6469, pp. 335–339, 1994. View at Publisher · View at Google Scholar · View at Scopus
  29. H. Monyer, R. Sprengel, R. Schoepfer et al., “Heteromeric NMDA receptors: molecular and functional distinction of subtypes,” Science, vol. 256, no. 5060, pp. 1217–1221, 1992. View at Google Scholar · View at Scopus
  30. T. Ishii, K. Moriyoshi, H. Sugihara et al., “Molecular characterization of the family of the N-methyl-D-aspartate receptor subunits,” Journal of Biological Chemistry, vol. 268, no. 4, pp. 2836–2843, 1993. View at Google Scholar · View at Scopus
  31. S. L. C. Brothwell, J. L. Barber, D. T. Monaghan, D. E. Jane, A. J. Gibb, and S. Jones, “NR2B- and NR2D-containing synaptic NMDA receptors in developing rat substantia nigra pars compacta dopaminergic neurones,” Journal of Physiology, vol. 586, no. 3, pp. 739–750, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. B. Sommer, M. Köhler, R. Sprengel, and P. H. Seeburg, “RNA editing in brain controls a determinant of ion flow in glutamate-gated channels,” Cell, vol. 67, no. 1, pp. 11–19, 1991. View at Google Scholar · View at Scopus
  33. Y. Yao and M. L. Mayer, “Characterization of a soluble ligand binding domain of the NMDA receptor regulatory subunit NR3A,” Journal of Neuroscience, vol. 26, no. 17, pp. 4559–4566, 2006. View at Publisher · View at Google Scholar · View at Scopus
  34. T. Kuner, L. P. Wollmuth, A. Karlin, P. H. Seeburg, and B. Sakmann, “Structure of the NMDA receptor channel M2 segment inferred from the accessibility of substituted cysteines,” Neuron, vol. 17, no. 2, pp. 343–352, 1996. View at Publisher · View at Google Scholar · View at Scopus
  35. A. I. Sobolevsky, L. Rooney, and L. P. Wollmuth, “Staggering of subunits in NMDAR channels,” Biophysical Journal, vol. 83, no. 6, pp. 3304–3314, 2002. View at Google Scholar · View at Scopus
  36. A. I. Sobolevsky, C. Beck, and L. P. Wollmuth, “Molecular rearrangements of the extracellular vestibule in NMDAR channels during gating,” Neuron, vol. 33, no. 1, pp. 75–85, 2002. View at Publisher · View at Google Scholar · View at Scopus
  37. A. Wada, H. Takahashi, S. A. Lipton, and H.-S. V. Chen, “NR3A modulates the outer vestibule of the “NMDA” receptor channel,” Journal of Neuroscience, vol. 26, no. 51, pp. 13156–13166, 2006. View at Publisher · View at Google Scholar · View at Scopus
  38. Y. F. Sasaki, T. Rothe, L. S. Premkumar et al., “Characterization and comparison of the NR3A subunit of the NMDA receptor in recombinant systems and primary cortical neurons,” Journal of Neurophysiology, vol. 87, no. 4, pp. 2052–2063, 2002. View at Google Scholar · View at Scopus
  39. C.-M. Low and K. S.-L. Wee, “New insights into the not-so-new NR3 subunits of N-methyl-D-aspartate receptor: localization, structure, and function,” Molecular Pharmacology, vol. 78, no. 1, pp. 1–11, 2010. View at Publisher · View at Google Scholar · View at Scopus
  40. S. Pachernegg, N. Strutz-Seebohm, and M. Hollmann, “GluN3 subunit-containing NMDA receptors: not just one-trick ponies,” Trends in Neurosciences, vol. 35, no. 4, pp. 240–249, 2012. View at Publisher · View at Google Scholar · View at Scopus
  41. M. A. Henson, A. C. Roberts, I. Pérez-Otaño, and B. D. Philpot, “Influence of the NR3A subunit on NMDA receptor functions,” Progress in Neurobiology, vol. 91, no. 1, pp. 23–37, 2010. View at Publisher · View at Google Scholar
  42. K. Matsuda, Y. Kamiya, S. Matsuda, and M. Yuzaki, “Cloning and characterization of a novel NMDA receptor subunit NR3B: a dominant subunit that reduces calcium permeability,” Molecular Brain Research, vol. 100, no. 1-2, pp. 43–52, 2002. View at Publisher · View at Google Scholar · View at Scopus
  43. H. Furukawa, S. K. Singh, R. Mancusso, and E. Gouaux, “Subunit arrangement and function in NMDA receptors,” Nature, vol. 438, no. 7065, pp. 185–192, 2005. View at Publisher · View at Google Scholar · View at Scopus
  44. S. Schorge and D. Colquhoun, “Studies of NMDA receptor function and stoichiometry with truncated and tandem subunits,” Journal of Neuroscience, vol. 23, no. 4, pp. 1151–1158, 2003. View at Google Scholar · View at Scopus
  45. P. T. Atlason, M. L. Garside, E. Meddows, P. Whiting, and R. A. J. McIlhinney, “N-methyl-D-aspartate (NMDA) receptor subunit NR1 forms the substrate for oligomeric assembly of the NMDA receptor,” Journal of Biological Chemistry, vol. 282, no. 35, pp. 25299–25307, 2007. View at Publisher · View at Google Scholar · View at Scopus
  46. R. A. Al-Hallaq, B. R. Jarabek, Z. Fu, S. Vicini, B. B. Wolfe, and R. P. Yasuda, “Association of NR3A with the N-methyl-D-aspartate receptor NR1 and NR2 subunits,” Molecular Pharmacology, vol. 62, no. 5, pp. 1119–1127, 2002. View at Publisher · View at Google Scholar · View at Scopus
  47. T. Schüler, I. Mesic, C. Madry, I. Bartholoma, and B. Laube, “Formation of NR1/NR2 and NR1/NR3 heterodimers constitutes the initial step in N-methyl-D-aspartate receptor assembly,” Journal of Biological Chemistry, vol. 283, no. 1, pp. 37–46, 2008. View at Publisher · View at Google Scholar · View at Scopus
  48. M. H. Ulbrich and E. Y. Isacoff, “Rules of engagement for NMDA receptor subunits,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 37, pp. 14163–14168, 2008. View at Publisher · View at Google Scholar · View at Scopus
  49. J. E. Chatterton, M. Awobuluyi, L. S. Premkumar et al., “Excitatory glycine receptors containing the NR3 family of NMDA receptor subunits,” Nature, vol. 415, no. 6873, pp. 793–798, 2002. View at Google Scholar · View at Scopus
  50. N. A. Cavara, A. Orth, and M. Hollmann, “Effects of NR1 splicing on NR1/NR3B-type excitatory glycine receptors,” BMC Neuroscience, vol. 10, article 32, 2009. View at Publisher · View at Google Scholar · View at Scopus
  51. P. Paoletti, A. M. Vergnano, B. Barbour, and M. Casado, “Zinc at glutamatergic synapses,” Neuroscience, vol. 158, no. 1, pp. 126–136, 2009. View at Publisher · View at Google Scholar · View at Scopus
  52. C. Madry, H. Betz, J. R. P. Geiger, and B. Laube, “Supralinear potentiation of NR1/NR3A excitatory glycine receptors by Zn2+ and NR1 antagonist,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 34, pp. 12563–12568, 2008. View at Publisher · View at Google Scholar · View at Scopus
  53. R. A. J. McIlhinney, E. Molnár, J. R. Atack, and P. J. Whiting, “Cell surface expression of the human N-methyl-D-aspartate receptor subunit 1a requires the co-expression of the NR2A subunit in transfected cells,” Neuroscience, vol. 70, no. 4, pp. 989–997, 1996. View at Publisher · View at Google Scholar · View at Scopus
  54. V. A. Alvarez, D. A. Ridenour, and B. L. Sabatini, “Distinct structural and ionotropic roles of NMDA receptors in controlling spine and synapse stability,” Journal of Neuroscience, vol. 27, no. 28, pp. 7365–7376, 2007. View at Publisher · View at Google Scholar · View at Scopus
  55. H.-K. Wong, X.-B. Liu, M. F. Matos et al., “Temporal and regional expression of NMDA receptor subunit NR3A in the mammalian brain,” Journal of Comparative Neurology, vol. 450, no. 4, pp. 303–317, 2002. View at Publisher · View at Google Scholar · View at Scopus
  56. L. Sun, F. L. Margolis, M. T. Shipley, and M. S. Lidow, “Identification of a long variant of mRNA encoding the NR3 subunit of the NMDA receptor: its regional distribution and developmental expression in the rat brain,” FEBS Letters, vol. 441, no. 3, pp. 392–396, 1998. View at Publisher · View at Google Scholar · View at Scopus
  57. D. J. Goebel and M. S. Poosch, “NMDA receptor subunit gene expression in the rat brain: a quantitative analysis of endogenous mRNA levels of NR1(Com), NR2A, NR2B, NR2C, NR2D and NR3A,” Molecular Brain Research, vol. 69, no. 2, pp. 164–170, 1999. View at Publisher · View at Google Scholar · View at Scopus
  58. H. T. Mueller and J. H. Meador-Woodruff, “Distribution of the NMDA receptor NR3A subunit in the adult pig-tail macaque brain,” Journal of Chemical Neuroanatomy, vol. 29, no. 3, pp. 157–172, 2005. View at Publisher · View at Google Scholar · View at Scopus
  59. M. Eriksson, A. Nilsson, S. Froelich-Fabre et al., “Cloning and expression of the human N-methyl-D-aspartate receptor subunit NR3A,” Neuroscience Letters, vol. 321, no. 3, pp. 177–181, 2002. View at Publisher · View at Google Scholar · View at Scopus
  60. N. J. Sucher, K. Kohler, L. Tenneti et al., “N-methyl-D-aspartate receptor subunit NR3A in the retina: developmental expression, cellular localization, and functional aspects,” Investigative Ophthalmology and Visual Science, vol. 44, no. 10, pp. 4451–4456, 2003. View at Publisher · View at Google Scholar · View at Scopus
  61. R. S. Larsen, R. J. Corlew, M. A. Henson et al., “NR3A-containing NMDARs promote neurotransmitter release and spike timing-dependent plasticity,” Nature Neuroscience, vol. 14, no. 3, pp. 338–344, 2011. View at Publisher · View at Google Scholar · View at Scopus
  62. D. W. McClymont, J. Harris, and I. R. Mellor, “Open-channel blockade is less effective on GluN3B than GluN3A subunit-containing NMDA receptors,” European Journal of Pharmacology, vol. 686, no. 1–3, pp. 22–31, 2012. View at Publisher · View at Google Scholar
  63. K. M. On and N. J. Sucher, “Molecular interaction of NMDA receptor subunit NR3A with protein phosphatase 2A,” NeuroReport, vol. 15, no. 9, pp. 1447–1450, 2004. View at Publisher · View at Google Scholar · View at Scopus
  64. S. F. Chan and N. J. Sucher, “An NMDA receptor signaling complex with protein phosphatase 2A,” Journal of Neuroscience, vol. 21, no. 20, pp. 7985–7992, 2001. View at Google Scholar · View at Scopus
  65. G. N. Barnes, J. T. Slevin, and T. C. Vanaman, “Rat brain protein phosphatase 2A: an enzyme that may regulate autophosphorylated protein kinases,” Journal of Neurochemistry, vol. 64, no. 1, pp. 340–353, 1995. View at Google Scholar · View at Scopus
  66. M. Eriksson, H. Samuelsson, S. Björklund et al., “MAP1B binds to the NMDA receptor subunit NR3A and affects NR3A protein concentrations,” Neuroscience Letters, vol. 475, no. 1, pp. 33–37, 2010. View at Publisher · View at Google Scholar · View at Scopus
  67. M. Eriksson, H. Samuelsson, E.-B. Samuelsson et al., “The NMDAR subunit NR3A interacts with microtubule-associated protein 1S in the brain,” Biochemical and Biophysical Research Communications, vol. 361, no. 1, pp. 127–132, 2007. View at Publisher · View at Google Scholar · View at Scopus
  68. S. Halpain, A. Hipolito, and L. Saffer, “Regulation of F-actin stability in dendritic spines by glutamate receptors and calcineurin,” Journal of Neuroscience, vol. 18, no. 23, pp. 9835–9844, 1998. View at Google Scholar · View at Scopus
  69. Y. Jiang, V. T. Puliyappadamba, L. Zhang et al., “A novel mechanism of cell growth regulation by Cell Cycle and Apoptosis Regulatory Protein (CARP)-1,” Journal of Molecular Signaling, vol. 5, article 7, 2010. View at Publisher · View at Google Scholar · View at Scopus
  70. M. Eriksson, A. Nilsson, H. Samuelsson et al., “On the role of NR3A in human NMDA receptors,” Physiology and Behavior, vol. 92, no. 1-2, pp. 54–59, 2007. View at Publisher · View at Google Scholar · View at Scopus
  71. A. M. Arsham and T. P. Neufeld, “Thinking globally and acting locally with TOR,” Current Opinion in Cell Biology, vol. 18, no. 6, pp. 589–597, 2006. View at Publisher · View at Google Scholar · View at Scopus
  72. M. F. Bear, G. Dölen, E. Osterweil, and N. Nagarajan, “Fragile X: translation in action,” Neuropsychopharmacology, vol. 33, no. 1, pp. 84–87, 2008. View at Publisher · View at Google Scholar · View at Scopus
  73. N. J. Sucher, E. Yu, S. F. Chan et al., “Association of the small GTPase Rheb with the NMDA receptor subunit NR3A,” NeuroSignals, vol. 18, no. 4, pp. 203–209, 2011. View at Publisher · View at Google Scholar · View at Scopus
  74. U. Narayanan, V. Nalavadi, M. Nakamoto et al., “FMRP phosphorylation reveals an immediate-early signaling pathway triggered by group I mGluR and mediated by PP2A,” Journal of Neuroscience, vol. 27, no. 52, pp. 14349–14357, 2007. View at Publisher · View at Google Scholar · View at Scopus
  75. U. Narayanan, V. Nalavadi, M. Nakamoto et al., “S6K1 phosphorylates and regulates fragile X mental retardation protein (FMRP) with the neuronal protein synthesis-dependent mammalian target of rapamycin (mTOR) signaling cascade,” Journal of Biological Chemistry, vol. 283, no. 27, pp. 18478–18482, 2008. View at Publisher · View at Google Scholar · View at Scopus
  76. D. Chowdhury, S. Marco, I. M. Brooks et al., “Tyrosine Phosphorylation Regulates the Endocytosis and Surface Expression of GluN3A-Containing NMDA Receptors,” Journal of Neuroscience, vol. 33, no. 9, pp. 4151–4164, 2013. View at Publisher · View at Google Scholar
  77. B. Qualmann, J. Roos, P. J. DiGregorio, and R. B. Kelly, “Syndapin I, a synaptic dynamin-binding protein that associates with the neural Wiskott-Aldrich syndrome protein,” Molecular Biology of the Cell, vol. 10, no. 2, pp. 501–513, 1999. View at Google Scholar · View at Scopus
  78. F. Simpson, N. K. Hussain, B. Qualmann et al., “SH3-domain-containing proteins function at distinct steps in clathrin-coated vesicle formation,” Nature Cell Biology, vol. 1, no. 2, pp. 119–124, 1999. View at Google Scholar · View at Scopus
  79. M. M. Kessels and B. Qualmann, “Syndapin oligomers interconnect the machineries for endocytic vesicle formation and actin polymerization,” Journal of Biological Chemistry, vol. 281, no. 19, pp. 13285–13299, 2006. View at Publisher · View at Google Scholar · View at Scopus
  80. A. Halbach, M. Mörgelin, M. Baumgarten, M. Milbrandt, M. Paulsson, and M. Plomann, “PACSIN 1 forms tetramers via its N-terminal F-BAR domain,” FEBS Journal, vol. 274, no. 3, pp. 773–782, 2007. View at Publisher · View at Google Scholar · View at Scopus
  81. S. Schael, J. Nuechel, S. Mueller et al., “Casein kinase 2 phosphorylation of PACSIN 1 regulates neuronal spine formation,” Journal of Biological Chemistry, 2013. View at Publisher · View at Google Scholar
  82. D. S. Macdonald, M. Weerapura, M. A. Beazely et al., “Modulation of NMDA receptors by pituitary adenylate cyclase activating peptide in CA1 neurons requires Gαq, protein kinase C, and activation of Src,” Journal of Neuroscience, vol. 25, no. 49, pp. 11374–11384, 2005. View at Publisher · View at Google Scholar · View at Scopus
  83. T. Nakazawa, S. Komai, T. Tezuka et al., “Characterization of Fyn-mediated tyrosine phosphorylation sites on GluRε2 (NR2B) subunit of the N-methyl-D-aspartate receptor,” Journal of Biological Chemistry, vol. 276, no. 1, pp. 693–699, 2001. View at Publisher · View at Google Scholar · View at Scopus
  84. P. Caroni, F. Donato, and D. Muller, “Structural plasticity upon learning: regulation and functions,” Nature Reviews Neuroscience, vol. 13, no. 7, pp. 478–490, 2012. View at Google Scholar
  85. M. Maletic-Savatic, R. Malinow, and K. Svoboda, “Rapid dendritic morphogenesis in CA1 hippocampal dendrites induced by synaptic activity,” Science, vol. 283, no. 5409, pp. 1923–1927, 1999. View at Publisher · View at Google Scholar · View at Scopus
  86. A. Holtmaat and K. Svoboda, “Experience-dependent structural synaptic plasticity in the mammalian brain,” Nature Reviews Neuroscience, vol. 10, no. 9, pp. 647–658, 2009. View at Publisher · View at Google Scholar · View at Scopus
  87. M. de Roo, P. Klauser, and D. Muller, “LTP promotes a selective long-term stabilization and clustering of dendritic spines,” PLoS Biology, vol. 6, no. 9, article e219, 2008. View at Publisher · View at Google Scholar · View at Scopus
  88. A. T. U. Schaefers and G. Teuchert-Noodt, “Developmental neuroplasticity and the origin of neurodegenerative diseases,” The World Journal of Biological Psychiatry, 2013. View at Publisher · View at Google Scholar
  89. H. T. Mueller and J. H. Meador-Woodruff, “NR3A NMDA receptor subunit mRNA expression in schizophrenia, depression and bipolar disorder,” Schizophrenia Research, vol. 71, no. 2-3, pp. 361–370, 2004. View at Publisher · View at Google Scholar · View at Scopus
  90. M. A. Snyder and W. J. Gao, “NMDA hypofunction as a convergence point for progression and symptoms of schizophrenia,” Frontiers in Cellular Neuroscience, vol. 7, article 31, 2013. View at Publisher · View at Google Scholar
  91. D. C. Mathews, I. D. Henter, and C. A. Zarate Jr., “Targeting the glutamatergic system to treat major depressive disorder,” Drugs, vol. 72, no. 10, pp. 1313–1333, 2012. View at Publisher · View at Google Scholar
  92. R. A. C. Roos, “Huntington's disease: a clinical review,” Orphanet Journal of Rare Diseases, vol. 5, no. 1, article 40, 2010. View at Publisher · View at Google Scholar · View at Scopus
  93. M. DiFiglia, M. Sena-Esteves, K. Chase et al., “Therapeutic silencing of mutant huntingtin with siRNA attenuates striatal and cortical neuropathology and behavioral deficits,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 43, pp. 17204–17209, 2007. View at Publisher · View at Google Scholar · View at Scopus
  94. M. DiFiglia, E. Sapp, K. O. Chase et al., “Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain,” Science, vol. 277, no. 5334, pp. 1990–1993, 1997. View at Publisher · View at Google Scholar · View at Scopus
  95. G. Schaffar, P. Breuer, R. Boteva et al., “Cellular toxicity of polyglutamine expansion proteins: mechanism of transcription factor deactivation,” Molecular Cell, vol. 15, no. 1, pp. 95–105, 2004. View at Publisher · View at Google Scholar · View at Scopus
  96. J.-Y. Li, M. Plomann, and P. Brundin, “Huntington's disease: a synaptopathy?” Trends in Molecular Medicine, vol. 9, no. 10, pp. 414–420, 2003. View at Publisher · View at Google Scholar · View at Scopus
  97. S. Marco, A. Giralt, M. M. Petrovic et al., “Suppressing aberrant GluN3A expression rescues synaptic and behavioral impairments in Huntington's disease models,” Nature Medicine, vol. 19, pp. 1030–1038, 2013. View at Publisher · View at Google Scholar
  98. M. A. Ungless, J. L. Whistler, R. C. Malenka, and A. Bonci, “Single cocaine exposure in vivo induces long-term potentiation in dopamine neurons,” Nature, vol. 411, no. 6837, pp. 583–587, 2001. View at Publisher · View at Google Scholar · View at Scopus
  99. B. Schilström, R. Yaka, E. Argilli et al., “Cocaine enhances NMDA receptor-mediated currents in ventral tegmental area cells via dopamine D5 receptor-dependent redistribution of NMDA receptors,” Journal of Neuroscience, vol. 26, no. 33, pp. 8549–8558, 2006. View at Publisher · View at Google Scholar · View at Scopus
  100. M. Mameli, C. Bellone, M. T. C. Brown, and C. Lüscher, “Cocaine inverts rules for synaptic plasticity of glutamate transmission in the ventral tegmental area,” Nature Neuroscience, vol. 14, no. 4, pp. 414–416, 2011. View at Publisher · View at Google Scholar · View at Scopus
  101. C. Bellone and C. Lüscher, “Cocaine triggered AMPA receptor redistribution is reversed in vivo by mGluR-dependent long-term depression,” Nature Neuroscience, vol. 9, no. 5, pp. 636–641, 2006. View at Publisher · View at Google Scholar · View at Scopus
  102. T. Yuan, M. Mameli, E. C. O’Connor et al., “Expression of cocaine-evoked synaptic plasticity by GluN3A-containing NMDA receptors,” Neuron, vol. 80, no. 4, pp. 1025–1038, 2013. View at Publisher · View at Google Scholar
  103. N. Nakanishi, S. Tu, Y. Shin et al., “Neuroprotection by the NR3A subunit of the NMDA receptor,” Journal of Neuroscience, vol. 29, no. 16, pp. 5260–5265, 2009. View at Publisher · View at Google Scholar · View at Scopus
  104. R. Martínez-Turrillas, E. Puerta, D. Chowdhury et al., “The NMDA receptor subunit GluN3A protects against 3-nitroproprionic-induced striatal lesions via inhibition of calpain activation,” Neurobiology of Disease, vol. 48, no. 3, pp. 290–298, 2012. View at Publisher · View at Google Scholar
  105. Y. Terasaki, T. Sasaki, Y. Yagita et al., “Activation of NR2A receptors induces ischemic tolerance through CREB signaling,” Journal of Cerebral Blood Flow and Metabolism, vol. 30, no. 8, pp. 1441–1449, 2010. View at Publisher · View at Google Scholar · View at Scopus
  106. Y. Liu, P. W. Tak, M. Aarts et al., “NMDA receptor subunits have differential roles in mediating excitotoxic neuronal death both in vitro and in vivo,” Journal of Neuroscience, vol. 27, no. 11, pp. 2846–2857, 2007. View at Publisher · View at Google Scholar · View at Scopus
  107. H. Wang, H. Yan, S. Zhang, X. Wei, J. Zheng, and J. Lee, “GluN3A subunit exerts a neuroprotective effect in brain ischemia and hypoxia process,” ASN Neuro, vol. 5, no. 4, Article ID e00120, 2013. View at Publisher · View at Google Scholar
  108. A. Derouiche, E. Anlauf, G. Aumann, B. Mühlstädt, and M. Lavialle, “Anatomical aspects of glia-synapse interaction: the perisynaptic glial sheath consists of a specialized astrocyte compartment,” Journal of Physiology Paris, vol. 96, no. 3-4, pp. 177–182, 2002. View at Publisher · View at Google Scholar · View at Scopus
  109. M. Lavialle, G. Aumann, E. Anlauf, F. Pröls, M. Arpin, and A. Derouiche, “Structural plasticity of perisynaptic astrocyte processes involves ezrin and metabotropic glutamate receptors,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 31, pp. 12915–12919, 2011. View at Publisher · View at Google Scholar · View at Scopus
  110. W. Sun, E. McConnell, J.-F. Pare et al., “Glutamate-dependent neuroglial calcium signaling differs between young and adult brain,” Science, vol. 339, no. 6116, pp. 197–200, 2013. View at Publisher · View at Google Scholar
  111. A. Panatier, J. Vallée, M. Haber, K. K. Murai, J.-C. Lacaille, and R. Robitaille, “Astrocytes are endogenous regulators of basal transmission at central synapses,” Cell, vol. 146, no. 5, pp. 785–798, 2011. View at Publisher · View at Google Scholar · View at Scopus
  112. J. T. Porter and K. D. McCarthy, “Hippocampal astrocytes in situ respond to glutamate released from synaptic terminals,” Journal of Neuroscience, vol. 16, no. 16, pp. 5073–5081, 1996. View at Google Scholar · View at Scopus
  113. P. Bezzi, V. Gundersen, J. L. Galbete et al., “Astrocytes contain a vesicular compartment that is competent for regulated exocytosis of glutamate,” Nature Neuroscience, vol. 7, no. 6, pp. 613–620, 2004. View at Publisher · View at Google Scholar · View at Scopus
  114. J.-P. Mothet, L. Pollegioni, G. Ouanounou, M. Martineau, P. Fossier, and G. Baux, “Glutamate receptor activation triggers a calcium-dependent and SNARE protein-dependent release of the gliotransmitter D-serine,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 15, pp. 5606–5611, 2005. View at Publisher · View at Google Scholar · View at Scopus
  115. A. Araque, V. Parpura, R. P. Sanzgiri, and P. G. Haydon, “Tripartite synapses: glia, the unacknowledged partner,” Trends in Neurosciences, vol. 22, no. 5, pp. 208–215, 1999. View at Publisher · View at Google Scholar · View at Scopus
  116. E. Brand-Schieber and P. Werner, “AMPA/kainate receptors in mouse spinal cord cell-specific display of receptor subunits by oligodendrocytes and astrocytes and at the nodes of Ranvier,” Glia, vol. 42, no. 1, pp. 12–24, 2003. View at Publisher · View at Google Scholar · View at Scopus
  117. R. Káradóttir, P. Cavelier, L. H. Bergersen, and D. Attwell, “NMDA receptors are expressed in oligodendrocytes and activated in ischaemia,” Nature, vol. 438, no. 7071, pp. 1162–1166, 2005. View at Publisher · View at Google Scholar · View at Scopus
  118. U. Lalo, Y. Pankratov, F. Kirchhoff, R. A. North, and A. Verkhratsky, “NMDA receptors mediate neuron-to-glia signaling in mouse cortical astrocytes,” Journal of Neuroscience, vol. 26, no. 10, pp. 2673–2683, 2006. View at Publisher · View at Google Scholar · View at Scopus
  119. C. Agulhon, J. Petravicz, A. B. McMullen et al., “What is the role of astrocyte calcium in neurophysiology?” Neuron, vol. 59, no. 6, pp. 932–946, 2008. View at Publisher · View at Google Scholar · View at Scopus
  120. O. Palygin, U. Lalo, and Y. Pankratov, “Distinct pharmacological and functional properties of NMDA receptors in mouse cortical astrocytes,” British Journal of Pharmacology, vol. 163, no. 8, pp. 1755–1766, 2011. View at Publisher · View at Google Scholar · View at Scopus
  121. M. Haber and K. K. Murai, “Reshaping neuron-glial communication at hippocampal synapses,” Neuron Glia Biology, vol. 2, no. 1, pp. 59–66, 2006. View at Publisher · View at Google Scholar · View at Scopus
  122. H. Nishida and S. Okabe, “Direct astrocytic contacts regulate local maturation of dendritic spines,” Journal of Neuroscience, vol. 27, no. 2, pp. 331–340, 2007. View at Publisher · View at Google Scholar · View at Scopus
  123. M. W. Nestor, L.-P. Mok, M. E. Tulapurkar, and S. M. Thompson, “Plasticity of neuron-glial interactions mediated by astrocytic EphARs,” Journal of Neuroscience, vol. 27, no. 47, pp. 12817–12828, 2007. View at Publisher · View at Google Scholar · View at Scopus
  124. D. Verbich, G. A. Prenosil, P. K.-Y. Chang, K. K. Murai, and R. A. Mckinney, “Glial glutamate transport modulates dendritic spine head protrusions in the hippocampus,” Glia, vol. 60, no. 7, pp. 1067–1077, 2012. View at Publisher · View at Google Scholar · View at Scopus
  125. I. Lushnikova, G. Skibo, D. Muller, and I. Nikonenko, “Synaptic potentiation induces increased glial coverage of excitatory synapses in CA1 hippocampus,” Hippocampus, vol. 19, no. 8, pp. 753–762, 2009. View at Publisher · View at Google Scholar · View at Scopus
  126. J. J. Lippman, T. Lordkipanidze, M. E. Buell, S. O. Yoon, and A. Dunaevsky, “Morphogenesis and regulation of Bergmann glial processes during Purkinje cell dendritic spine ensheathment and synaptogenesis,” Glia, vol. 56, no. 13, pp. 1463–1477, 2008. View at Publisher · View at Google Scholar · View at Scopus
  127. D. Kalman, S. N. Gomperts, S. Hardy, M. Kitamura, and J. M. Bishop, “Ras family GTPases control growth of astrocyte processes,” Molecular Biology of the Cell, vol. 10, no. 5, pp. 1665–1683, 1999. View at Google Scholar · View at Scopus
  128. Z. Xie, D. P. Srivastava, H. Photowala et al., “Kalirin-7 controls activity-dependent structural and functional plasticity of dendritic spines,” Neuron, vol. 56, no. 4, pp. 640–656, 2007. View at Publisher · View at Google Scholar · View at Scopus
  129. A. Tashiro and R. Yuste, “Regulation of dendritic spine motility and stability by Rac1 and Rho kinase: evidence for two forms of spine motility,” Molecular and Cellular Neuroscience, vol. 26, no. 3, pp. 429–440, 2004. View at Publisher · View at Google Scholar · View at Scopus
  130. M. Plomann, R. Lange, G. Vopper et al., “PACSIN, a brain protein that is upregulated upon differentiation into neuronal cells,” European Journal of Biochemistry, vol. 256, no. 1, pp. 201–211, 1998. View at Google Scholar · View at Scopus