Table of Contents Author Guidelines Submit a Manuscript
Neural Plasticity
Volume 2013 (2013), Article ID 873278, 7 pages
http://dx.doi.org/10.1155/2013/873278
Review Article

Neurobiology of Major Depressive Disorder

Servicio de Psiquiatría, Hospital Universitario La Paz, 28046 Madrid, Spain

Received 16 August 2013; Accepted 11 September 2013

Academic Editor: Michel Baudry

Copyright © 2013 Rosa Villanueva. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. J. Fitzgerald, “Gray colored glasses: is major depression partially a sensory perceptual disorder?” Journal of Affective Disorders, 2013. View at Publisher · View at Google Scholar
  2. U. E. Lang and S. Borgwardt, “Molecular mechanisms of depression: perspectives on new treatment strategies,” Cell Physiol Biochem, vol. 31, pp. 761–777, 2013. View at Google Scholar
  3. J. C. Fournier, M. T. Keener, J. Almeida, D. M. Kronhaus, and M. L. Phillips, “Amygdala and whole-brain activity to emotional faces distinguishes major depressive disorder and bipolar disorder,” Bipolar Disorder, 2013. View at Publisher · View at Google Scholar
  4. L. Mandelli and A. Serretti, “Gene environment interaction studies in depression and suicidal behavior: an update,” Neuroscience and Biobehavioral Reviews, 2013. View at Publisher · View at Google Scholar
  5. M. M. Lee, A. Reif, and A. G. Schmitt, “Major depression: a role for hippocampal neurogenesis?” in Behavioral Neurobiology of Depression and Its Treatment, vol. 14 of Current Topics in Behavioral Neurosciences, pp. 153–179, Springer, Berlin, Germany. View at Publisher · View at Google Scholar
  6. F. Katelin Hansen and K. Obrietan, “MicroRNA as therapeutic targets for treatment of depression,” Neuropsychiatric Disease and Treatment, vol. 2013, pp. 1011–1021, 2013. View at Google Scholar
  7. C. A. Altar, M. P. Vawter, and S. D. Ginsberg, “Target identification for CNS diseases by transcriptional profiling,” Neuropsychopharmacology, vol. 34, no. 1, pp. 18–54, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. J. H. Meyer, N. Ginovart, A. Boovariwala et al., “Elevated monoamine oxidase a levels in the brain: an explanation for the monoamine imbalance of major depression,” Archives of General Psychiatry, vol. 63, no. 11, pp. 1209–1216, 2006. View at Google Scholar · View at Scopus
  9. V. Krishnan and E. J. Nestler, “Linking molecules to mood: new insight into the biology of depression,” American Journal of Psychiatry, vol. 167, no. 11, pp. 1305–1320, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. J. B. Aimone, W. Deng, and F. H. Gage, “Adult neurogenesis: integrating theories and separating functions,” Trends in Cognitive Sciences, vol. 14, no. 7, pp. 325–337, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. R.S. Wainwright and A. M. L. Galea, “The neural plasticity theory of depression: assessing the roles of adult neurogenesis and PSA-NCAM within the hippocampus,” Neural Plasticity, vol. 2013, Article ID 805497, 14 pages, 2013. View at Google Scholar
  12. A. Kenneson, J. S. Funderburk, and S. A. Maisto, “Substance use disorders increase the odds of subsequent mood disorders,” Drug and Alcohol Dependence, 2013. View at Publisher · View at Google Scholar
  13. M. Fava and K. S. Kendler, “Major depressive disorder,” Neuron, vol. 28, no. 2, pp. 335–341, 2000. View at Google Scholar · View at Scopus
  14. G. Rajkowska, “Histopathology of the prefrontal cortex in major depression: what does it tell us about dysfunctional monoaminergic circuits?” Progress in Brain Research, vol. 126, pp. 397–412, 2000. View at Publisher · View at Google Scholar · View at Scopus
  15. D. Cotter, D. Mackay, S. Landau, R. Kerwin, and I. Everall, “Reduced glial cell density and neuronal size in the anterior cingulate cortex in major depressive disorder,” Archives of General Psychiatry, vol. 58, no. 6, pp. 545–553, 2001. View at Google Scholar · View at Scopus
  16. D. Cotter, D. Mackay, G. Chana, C. Beasley, S. Landau, and I. P. Everall, “Reduced neuronal size and glial cell density in area 9 of the dorsolateral prefrontal cortex in subjects with major depressive disorder,” Cerebral Cortex, vol. 12, no. 4, pp. 386–394, 2002. View at Google Scholar · View at Scopus
  17. S. Campbell and G. MacQueen, “An update on regional brain volume differences associated with mood disorders,” Current Opinion in Psychiatry, vol. 19, no. 1, pp. 25–33, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. R. S. Duman, “Pathophysiology of depression: the concept of synaptic plasticity,” European Psychiatry, vol. 17, no. 3, pp. 306–310, 2002. View at Publisher · View at Google Scholar · View at Scopus
  19. S. L. Oliveira, M. M. Pillat, A. Cheffer, C. Lameu, T. T. Schwindt, and H. Ulrich, “Functions of neurotrophins and growth factors in neurogenesis and brain repair,” Journal of the Intrnational Society for Advancement Cytometry, vol. 83, no. 1, pp. 76–89, 2013. View at Publisher · View at Google Scholar
  20. C. K. Callaghan and A. M. Kelly, “Neurotrophins play differential roles in short and long-term recognition memory,” Neurobiology of Learning and Memory, vol. 104, pp. 39–48. View at Publisher · View at Google Scholar
  21. C. Jiang and S. R. Salton, “The role of neurotrophins in major depressive disorder,” Translational Neuroscience, vol. 4, no. 1, pp. 46–58, 2013. View at Publisher · View at Google Scholar
  22. M. A. Smith, S. Makino, R. Kvetnansky, and R. M. Post, “Stress and glucocorticoids affect the expression of brain-derived neurotrophic factor and neurotrophin-3 mRNAs in the hippocampus,” Journal of Neuroscience, vol. 15, no. 3 I, pp. 1768–1777, 1995. View at Google Scholar · View at Scopus
  23. Y. Dwivedi, “Brain-derived neurotrophic factor: role in depression and suicide,” Neuropsychiatric Disease and Treatment, vol. 5, no. 1, pp. 433–449, 2009. View at Google Scholar · View at Scopus
  24. B.-H. Lee and Y.-K. Kim, “The roles of BDNF in the pathophysiology of major depression and in antidepressant treatment,” Psychiatry Investigation, vol. 7, no. 4, pp. 231–235, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. A. Tripp, H. Oh, J. P. Guilloux, K. Martinowich, D. A. Lewis, and E. Sibille, “Brain-derived neurotrophic factor signaling and subgenual anterior cingulate cortex dysfunction in major depressive disorder,” American Journal of Psychiatry, vol. 169, no. 11, pp. 1194–1202, 2012. View at Publisher · View at Google Scholar
  26. G. N. Pandey, Y. Dwivedi, H. S. Rizavi, X. Ren, H. Zhang, and M. N. Pavuluri, “Brain-derived neurotrophic factor gene and protein expression in pediatric and adult depressed subjects,” Progress in Neuro-Psychopharmacology and Biological Psychiatry, vol. 34, no. 4, pp. 645–651, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. F. Karege, G. Perret, G. Bondolfi, M. Schwald, G. Bertschy, and J.-M. Aubry, “Decreased serum brain-derived neurotrophic factor levels in major depressed patients,” Psychiatry Research, vol. 109, no. 2, pp. 143–148, 2002. View at Publisher · View at Google Scholar · View at Scopus
  28. Y.-K. Kim, S.-D. Won, J.-W. Hur et al., “Exploration of biological markers of suicidal behavior in major depressive disorder,” Psychiatry Investigation, vol. 4, no. 1, pp. 13–21, 2007. View at Google Scholar · View at Scopus
  29. Y. Lee, S. W. Lim, S. Y. Kim et al., “Association between the BDNF Val66Met polymorphism and chronicity of depression,” Psychiatry Investigation, vol. 10, pp. 56–61, 2013. View at Publisher · View at Google Scholar
  30. B. Chen, D. Dowlatshahi, G. M. MacQueen, J.-F. Wang, and L. T. Young, “Increased hippocampal BDNF immunoreactivity in subjects treated with antidepressant medication,” Biological Psychiatry, vol. 50, no. 4, pp. 260–265, 2001. View at Publisher · View at Google Scholar · View at Scopus
  31. C. A. Altar, R. E. Whitehead, R. Chen, G. Wörtwein, and T. M. Madsen, “Effects of electroconvulsive seizures and antidepressant drugs on brain-derived neurotrophic factor protein in rat brain,” Biological Psychiatry, vol. 54, no. 7, pp. 703–709, 2003. View at Publisher · View at Google Scholar · View at Scopus
  32. M. B. Müller, N. Toschi, A. E. Kresse, A. Post, and M. E. Keck, “Long-term repetitive transcranial magnetic stimulation increases the expression of brain-derived neurotrophic factor and cholecystokinin mRNA, but not neuropeptide tyrosine mRNA in specific areas of rat brain,” Neuropsychopharmacology, vol. 23, no. 2, pp. 205–215, 2000. View at Publisher · View at Google Scholar · View at Scopus
  33. A. S. Gonul, F. Akdeniz, F. Taneli, O. Donat, Ç. Eker, and S. Vahip, “Effect of treatment on serum brain-derived neurotrophic factor levels in depressed patients,” European Archives of Psychiatry and Clinical Neuroscience, vol. 255, no. 6, pp. 381–386, 2005. View at Publisher · View at Google Scholar · View at Scopus
  34. U. E. Lang, M. Bajbouj, J. Gallinat, and R. Hellweg, “Brain-derived neurotrophic factor serum concentrations in depressive patients during vagus nerve stimulation and repetitive transcranial magnetic stimulation,” Psychopharmacology, vol. 187, no. 1, pp. 56–59, 2006. View at Publisher · View at Google Scholar · View at Scopus
  35. J. A. Siuciak, D. R. Lewis, S. J. Wiegand, and R. M. Lindsay, “Antidepressant-like effect of brain-derived neurotrophic factor (BDNF),” Pharmacology Biochemistry and Behavior, vol. 56, no. 1, pp. 131–137, 1996. View at Publisher · View at Google Scholar · View at Scopus
  36. Y. Shirayama, A. C.-H. Chen, S. Nakagawa, D. S. Russell, and R. S. Duman, “Brain-derived neurotrophic factor produces antidepressant effects in behavioral models of depression,” Journal of Neuroscience, vol. 22, no. 8, pp. 3251–3261, 2002. View at Google Scholar · View at Scopus
  37. T. Saarelainen, P. Hendolin, G. Lucas et al., “Activation of the TrkB neurotrophin receptor is induced by antidepressant drugs and is required for antidepressant-induced behavioral effects,” Journal of Neuroscience, vol. 23, no. 1, pp. 349–357, 2003. View at Google Scholar · View at Scopus
  38. G. M. MacQueen, K. Ramakrishnan, S. D. Croll et al., “Performance of heterozygous brain-derived neurotrophic factor knockout mice on behavioral analogues of anxiety, nociception, and depression,” Behavioral Neuroscience, vol. 115, no. 5, pp. 1145–1153, 2001. View at Publisher · View at Google Scholar · View at Scopus
  39. M. Nibuya, S. Morinobu, and R. S. Duman, “Regulation of BDNF and trkB mRNA in rat brain by chronic electroconvulsive seizure and antidepressant drug treatments,” Journal of Neuroscience, vol. 15, no. 11, pp. 7539–7547, 1995. View at Google Scholar · View at Scopus
  40. E. Koponen, T. Rantamäki, V. Voikar, T. Saarelainen, E. MacDonald, and E. Castrén, “Enhanced BDNF signaling is associated with an antidepressant-like behavioral response and changes in brain monoamines,” Cellular and Molecular Neurobiology, vol. 25, no. 6, pp. 973–980, 2005. View at Publisher · View at Google Scholar · View at Scopus
  41. B. Zörner, D. P. Wolfer, D. Brandis et al., “Forebrain-specific trkB-receptor knockout mice: behaviorally more hyperactive than ‘depressive’,” Biological Psychiatry, vol. 54, no. 10, pp. 972–982, 2003. View at Publisher · View at Google Scholar · View at Scopus
  42. M. Zagrebelsky, A. Holz, G. Dechant, Y.-A. Barde, T. Bonhoeffer, and M. Korte, “The p75 neurotrophin receptor negatively modulates dendrite complexity and spine density in hippocampal neurons,” Journal of Neuroscience, vol. 25, no. 43, pp. 9989–9999, 2005. View at Publisher · View at Google Scholar · View at Scopus
  43. N. H. Woo, H. K. Teng, C.-J. Siao et al., “Activation of p75NTR by proBDNF facilitates hippocampal long-term depression,” Nature Neuroscience, vol. 8, no. 8, pp. 1069–1077, 2005. View at Publisher · View at Google Scholar · View at Scopus
  44. L. Zhou, J. Xiong, Y. Lim et al., “Upregulation of blood proBDNF and its receptors in major depression,” Journal of Affective Disorders, vol. 150, no. 3, pp. 776–784, 2013. View at Publisher · View at Google Scholar
  45. T. Fujii, N. Yamamoto, H. Hori et al., “Support for association between the Ser205Leu polymorphism of p75 NTR and major depressive disorder,” Journal of Human Genetics, vol. 56, no. 11, pp. 806–809, 2011. View at Publisher · View at Google Scholar · View at Scopus
  46. K. Otsuki, S. Uchida, T. Watanuki et al., “Altered expression of neurotrophic factors in patients with major depression,” Journal of Psychiatric Research, vol. 42, no. 14, pp. 1145–1153, 2008. View at Publisher · View at Google Scholar · View at Scopus
  47. Y. Dwivedi, “Evidence demonstrating role of microRNAs in the etiopathology of major depression,” Journal of Chemical Neuroanatomy, vol. 42, no. 2, pp. 142–156, 2011. View at Publisher · View at Google Scholar · View at Scopus
  48. Y. Xu, H. Liu, F. Li et al., “A polymorphism in the microRNA-30e precursor associated with major depressive disorder risk and P300 waveform,” Journal of Affective Disorders, vol. 127, no. 1, pp. 332–336, 2010. View at Publisher · View at Google Scholar · View at Scopus
  49. E. Saus, V. Soria, G. Escaramís et al., “Genetic variants and abnormal processing of pre-miR-182, a circadian clock modulator, in major depression patients with late insomnia,” Human Molecular Genetics, vol. 19, no. 20, Article ID ddq316, pp. 4017–4025, 2010. View at Publisher · View at Google Scholar · View at Scopus
  50. Y. J. Li, M. Xu, Z. H. Gao et al., “Alterations of serum levels of BDNF-related miRNAs in patients with depression,” PLoS One, vol. 8, no. 5, Article ID e63648, pp. 332–336, 2013. View at Publisher · View at Google Scholar
  51. K. M. Ryan, S.M. O'Donovan, and D. M. McLoughlin, “Electroconvulsive stimulation alters levels of BDNF-associated microRNAs,” Neurosci Letters, vol. 549, Article ID 549, pp. 125–129, 2013. View at Publisher · View at Google Scholar
  52. A. Ströhle and F. Holsboer, “Stress responsive neurohormones in depression and anxiety,” Pharmacopsychiatry, vol. 36, 3, pp. 207–214, 2003. View at Google Scholar · View at Scopus
  53. S. Watson and P. Mackin, “HPA axis function in mood disorders,” Psychiatry, vol. 5, no. 5, pp. 166–170, 2006. View at Publisher · View at Google Scholar · View at Scopus
  54. L. M. Holsen, K. Lancaster, A. Klibanski et al., “HPA-Axis hormone modulation of stress response circuitry activity in women with remitted major depression,” Neuroscience, vol. 250, pp. 733–742, 2013. View at Publisher · View at Google Scholar
  55. B. L. Harlow, L. A. Wise, M. W. Otto, C. N. Soares, and L. S. Cohen, “Depression and its influence on reproductive endocrine and menstrual cycle markers associated with perimenopause: the harvard study of moods and cycles,” Archives of General Psychiatry, vol. 60, no. 1, pp. 29–36, 2003. View at Google Scholar · View at Scopus
  56. E. A. Young and A. Korszun, “The hypothalamic-pituitary-gonadal axis in mood disorders,” Endocrinology and Metabolism Clinics of North America, vol. 31, no. 1, pp. 63–78, 2002. View at Publisher · View at Google Scholar · View at Scopus
  57. A. J. Rush, D. E. Giles, M. A. Schiesser et al., “The dexamethasone suppression test in patients with mood disorders,” Journal of Clinical Psychiatry, vol. 57, no. 10, pp. 470–484, 1996. View at Google Scholar · View at Scopus
  58. L. Sher, M. A. Oquendo, A. K. Burke, T. B. Cooper, and J. John Mann, “Combined dexamethasone suppression-corticotrophin-releasing hormone stimulation test in medication-free major depression and healthy volunteers,” Journal of Affective Disorders, 2013. View at Publisher · View at Google Scholar
  59. M. Ising, S. Horstmann, S. Kloiber et al., “Combined dexamethasone/corticotropin releasing hormone test predicts treatment response in major depression-a potential biomarker?” Biological Psychiatry, vol. 62, no. 1, pp. 47–54, 2007. View at Publisher · View at Google Scholar · View at Scopus
  60. C. Anacker, A. Cattaneo, K. Musaelyan et al., “Role for the kinase SGK1 in stress, depression, and glucocorticoid effects on hippocampal neurogenesis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 110, pp. 8708–8713, 2013. View at Publisher · View at Google Scholar
  61. E. Kumamaru, T. Numakawa, N. Adachi et al., “Glucocorticoid prevents brain-derived neurotrophic factor-mediated maturation of synaptic function in developing hippocampal neurons through reduction in the activity of mitogen-activated protein kinase,” Molecular Endocrinology, vol. 22, no. 3, pp. 546–558, 2008. View at Publisher · View at Google Scholar · View at Scopus
  62. C. L. Raison, L. Capuron, and A. H. Miller, “Cytokines sing the blues: inflammation and the pathogenesis of depression,” Trends in Immunology, vol. 27, no. 1, pp. 24–31, 2006. View at Publisher · View at Google Scholar · View at Scopus
  63. M. Maes, “Depression is an inflammatory disease, but cell-mediated immune activation is the key component of depression,” Progress in Neuro-Psychopharmacology and Biological Psychiatry, vol. 35, no. 3, pp. 664–675, 2011. View at Publisher · View at Google Scholar · View at Scopus
  64. K. Makhija and S. Karunakaran, “The role of inflammatory cytokines on the aetiopathogenesis of depression,” Australian and New Zealand Journal of Psychiatry, vol. 47, pp. 828–839, 2013. View at Publisher · View at Google Scholar
  65. S. M. O'Brien, L. V. Scott, and T. G. Dinan, “Cytokines: abnormalities in major depression and implications for pharmacological treatment,” Human Psychopharmacology, vol. 19, no. 6, pp. 397–403, 2004. View at Publisher · View at Google Scholar · View at Scopus
  66. Y. Dowlati, N. Herrmann, W. Swardfager et al., “A meta-analysis of cytokines in major depression,” Biological Psychiatry, vol. 67, no. 5, pp. 446–457, 2010. View at Publisher · View at Google Scholar · View at Scopus
  67. Y. Liu, R. C.-M. Ho, and A. Mak, “Interleukin (IL)-6, tumour necrosis factor alpha (TNF-α) and soluble interleukin-2 receptors (sIL-2R) are elevated in patients with major depressive disorder: a meta-analysis and meta-regression,” Journal of Affective Disorders, vol. 139, no. 3, pp. 230–239, 2012. View at Publisher · View at Google Scholar · View at Scopus
  68. S. J. Sukoff-Rizzo, S. J. Neal, Z. A. Hughes et al., “Evidence for sustained elevation of IL-6 in the CNS as a key contributor of depressive-like phenotypes,” Translional Psychiatry, vol. 2, article e199, 2012. View at Publisher · View at Google Scholar
  69. R. C. Shelton and A. H. Miller, “Eating ourselves to death (and despair): the contribution of adiposity and inflammation to depression,” Progress in Neurobiology, vol. 91, no. 4, pp. 275–299, 2010. View at Publisher · View at Google Scholar · View at Scopus
  70. R. C. Shelton, J. Claiborne, M. Sidoryk-Wegrzynowicz et al., “Altered expression of genes involved in inflammation and apoptosis in frontal cortex in major depression,” Molecular Psychiatry, vol. 16, no. 7, pp. 751–762, 2011. View at Publisher · View at Google Scholar · View at Scopus
  71. S. J. Hopkins and N. J. Rothwell, “Cytokines and the nervous system I: expression and recognition,” Trends in Neurosciences, vol. 18, no. 2, pp. 83–88, 1995. View at Publisher · View at Google Scholar · View at Scopus
  72. B. Leonard, “Stress, depression and the activation of the immune system,” World Journal of Biological Psychiatry, vol. 1, no. 1, pp. 17–25, 2000. View at Publisher · View at Google Scholar · View at Scopus
  73. S. Kern, I. Skoog, A. Börjesson-Hanson et al., “Lower CSF interleukin-6 predicts future depression in a population-based sample of older women followed for 17 years,” Brain, Behavior, and Immunity, vol. 32, pp. 153–158, 2013. View at Publisher · View at Google Scholar
  74. T. G. Dinan and J. F. Cryan, “Melancholic microbes: a link between gut microbiota and depression?” Neurogastroenterology and Motilily, vol. 25, pp. 713–719, 2013. View at Publisher · View at Google Scholar
  75. S. Häfner, J. Baumert, R. T. Emeny et al., “Sleep disturbances and depressed mood: a harmful combination associated with increased leptin levels in women with normal weight,” Biological Psychology, vol. 89, no. 1, pp. 163–169, 2012. View at Publisher · View at Google Scholar · View at Scopus
  76. M. Kluge, P. Schüssler, M. Dresler et al., “Effects of ghrelin on psychopathology, sleep and secretion of cortisol and growth hormone in patients with major depression,” Journal of Psychiatric Research, vol. 45, no. 3, pp. 421–426, 2011. View at Publisher · View at Google Scholar · View at Scopus
  77. C. Becker, B. Zeau, C. Rivat, A. Blugeot, M. Hamon, and J.-J. Benoliel, “Repeated social defeat-induced depression-like behavioral and biological alterations in rats: involvement of cholecystokinin,” Molecular Psychiatry, vol. 13, no. 12, pp. 1079–1092, 2008. View at Publisher · View at Google Scholar · View at Scopus
  78. F. R. Bambico and C. Belzung, “Novel insights into depression and antidepressants: a synergy between synaptogenesis and neurogenesis?” Current Top Behavioral Neurosciences, vol. 15, pp. 243–291, 2013. View at Publisher · View at Google Scholar
  79. G.-L. Ming and H. Song, “Adult neurogenesis in the mammalian central nervous system,” Annual Review of Neuroscience, vol. 28, pp. 223–250, 2005. View at Publisher · View at Google Scholar · View at Scopus
  80. H. Jun, S. M. Q. Hussaini, M. J. Rigby, and M. H. Jang, “Functional role of adult hippocampal neurogenesis as a therapeutic strategy for mental disorders,” Neural Plasticity, vol. 2012, Article ID 854285, 20 pages, 2012. View at Publisher · View at Google Scholar
  81. L. Santarelli, M. Saxe, C. Gross et al., “Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants,” Science, vol. 301, no. 5634, pp. 805–809, 2003. View at Publisher · View at Google Scholar · View at Scopus
  82. C. Anacker, P. A. Zunszain, A. Cattaneo et al., “Antidepressants increase human hippocampal neurogenesis by activating the glucocorticoid receptor,” Molecular Psychiatry, vol. 16, no. 7, pp. 738–750, 2011. View at Publisher · View at Google Scholar · View at Scopus
  83. Z. W. Peng, F. Xue, H. N. Wang et al., “Paroxetine up-regulates neurogenesis in hippocampus-derived neural stem cell from fetal rats,” Molecular and Cellular Biochemistry, vol. 375, pp. 105–113, 2013. View at Publisher · View at Google Scholar
  84. A. Reif, S. Fritzen, M. Finger et al., “Neural stem cell proliferation is decreased in schizophrenia, but not in depression,” Molecular Psychiatry, vol. 11, no. 5, pp. 514–522, 2006. View at Publisher · View at Google Scholar · View at Scopus
  85. M. N. Jayatissa, K. Henningsen, M. J. West, and O. Wiborg, “Decreased cell proliferation in the dentate gyrus does not associate with development of anhedonic-like symptoms in rats,” Brain Research, vol. 1290, pp. 133–141, 2009. View at Publisher · View at Google Scholar · View at Scopus
  86. J. Fuss, N. M. B. Ben Abdallah, F. W. Hensley, K.-J. Weber, R. Hellweg, and P. Gass, “Deletion of running-induced hippocampal neurogenesis by irradiation prevents development of an anxious phenotype in mice,” PLoS One, vol. 5, no. 9, Article ID e12769, 2010. View at Publisher · View at Google Scholar · View at Scopus
  87. C. A. Turner, S. J. Watson, and H. Akil, “The fibroblast growth factor family: neuromodulation of affective behavior,” Neuron, vol. 76, pp. 160–174, 2012. View at Publisher · View at Google Scholar
  88. S. J. Evans, P. V. Choudary, C. R. Neal et al., “Dysregulation of the fibroblast growth factor system in major depression,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 43, pp. 15506–15511, 2004. View at Publisher · View at Google Scholar · View at Scopus
  89. J. Jarosik, B. Legutko, S. Werner, K. Unsicker, and O. V. B. Halbach, “Roles of exogenous and endogenous FGF-2 in animal models of depression,” Restorative Neurology and Neuroscience, vol. 29, no. 3, pp. 153–165, 2011. View at Publisher · View at Google Scholar · View at Scopus
  90. K. Jin, Y. Zhu, Y. Sun, X. O. Mao, and L. Xie, “Greenberg DA. Vascular endothelial growth factor stimulates neurogenesis in vitro and in vivo,” Proceedings of the National Academy of Sciences, vol. 99, pp. 11946–11950, 2002. View at Google Scholar
  91. A. Clark-Raymond and A. Halaris, “VEGF and depression: a comprehensive assessment of clinical data,” Journal of Psychiatric Research, vol. 47, pp. 1080–1087, 2013. View at Google Scholar
  92. R. Donato, G. Sorci, F. Riuzzi et al., “S100B's double life: intracellular regulator and extracellular signal,” Biochimica et Biophysica Acta, vol. 1793, no. 6, pp. 1008–1022, 2009. View at Publisher · View at Google Scholar · View at Scopus
  93. T. Gos, M. L. Schroeter, W. Lessel et al., “S100B-immunopositive astrocytes and oligodendrocytes in the hippocampus are differentially afflicted in unipolar and bipolar depression: a postmortem study,” Journal Psychiatric Research, vol. 47, no. 11, pp. 1694–1699, 2013. View at Publisher · View at Google Scholar
  94. B.S. Jang, H. Kim, S.W. Lim, K.W. Jang, and D.K. Kim, “Serum S100B levels and major depressive disorder: its characteristics and role in antidepressant response,” Psychiatry Investigation, vol. 5, no. 3, pp. 193–198, 2008. View at Google Scholar · View at Scopus