Table of Contents Author Guidelines Submit a Manuscript
Neural Plasticity
Volume 2014 (2014), Article ID 216731, 11 pages
http://dx.doi.org/10.1155/2014/216731
Review Article

Auditory-Cortex Short-Term Plasticity Induced by Selective Attention

1Brain and Mind Laboratory, Department of Biomedical Engineering and Computational Science, Aalto University School of Science, Espoo, 00076 AALTO, Finland
2Department of Radiology, Harvard Medical School and Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA

Received 25 June 2013; Accepted 15 December 2013; Published 12 January 2014

Academic Editor: Preston E. Garraghty

Copyright © 2014 Iiro P. Jääskeläinen and Jyrki Ahveninen. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. W. James, The Principles of Psychology, Henry Holt, New York, NY, USA, 1890.
  2. J. S. Snyder and M. K. Gregg, “Memory for sound, with an ear toward hearing in complex auditory scenes,” Attention, Perception, & Psychophysics, vol. 73, no. 7, pp. 1993–2007, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. I. P. Jääskeläinen, Introduction to Cognitive Neuroscience, Bookboon, Frederiksberg, Denmark, 2012.
  4. I. P. Jääskeläinen, J. Ahveninen, J. W. Belliveau, T. Raij, and M. Sams, “Short-term plasticity in auditory cognition,” Trends in Neurosciences, vol. 30, no. 12, pp. 653–661, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. I. P. Jääskeläinen, J. Ahveninen, M. L. Andermann, J. W. Belliveau, T. Raij, and M. Sams, “Short-term plasticity as a neural mechanism supporting memory and attentional functions,” Brain Research, vol. 1422, pp. 66–81, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. M. A. Howard III, I. O. Volkov, P. J. Abbas, H. Damasio, M. C. Ollendieck, and M. A. Granner, “A chronic microelectrode investigation of the tonotopic organization of human auditory cortex,” Brain Research, vol. 724, no. 2, pp. 260–264, 1996. View at Publisher · View at Google Scholar · View at Scopus
  7. D. R. M. Langers, W. H. Backes, and P. van Dijk, “Representation of lateralization and tonotopy in primary versus secondary human auditory cortex,” NeuroImage, vol. 34, no. 1, pp. 264–273, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. D. R. Langers and P. van Dijk, “Mapping the tonotopic organization in human auditory cortex with minimally salient acoustic stimulation,” Cerebal Cortex, vol. 22, no. 9, pp. 2024–2038, 2012. View at Publisher · View at Google Scholar
  9. C. M. Wessinger, M. H. Buonocore, C. L. Kussmaul, and G. R. Mangun, “Tonotopy in human auditory cortex examined with functional magnetic resonance imaging,” Human Brain Mapping, vol. 5, no. 1, pp. 18–25, 1997. View at Google Scholar
  10. D. Bilecen, K. Scheffler, N. Schmid, K. Tschopp, and J. Seelig, “Tonotopic organization of the human auditory cortex as detected by BOLD- FMRI,” Hearing Research, vol. 126, no. 1-2, pp. 19–27, 1998. View at Publisher · View at Google Scholar · View at Scopus
  11. C. Pantev, M. Hoke, K. Lehnertz, B. Lutkenhoner, G. Anogianakis, and W. Wittkowski, “Tonotopic organization of the human auditory cortex revealed by transient auditory evoked magnetic fields,” Electroencephalography and Clinical Neurophysiology, vol. 69, no. 2, pp. 160–170, 1988. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Huotilainen, H. Tiitinen, J. Lavikainen et al., “Sustained fields of tones and glides reflect tonotopy of the auditory cortex,” NeuroReport, vol. 6, no. 6, pp. 841–844, 1995. View at Publisher · View at Google Scholar · View at Scopus
  13. E. Formisano, D.-S. Kim, F. Di Salle, P.-F. van de Moortele, K. Ugurbil, and R. Goebel, “Mirror-symmetric tonotopic maps in human primary auditory cortex,” Neuron, vol. 40, no. 4, pp. 859–869, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. U. Hertz and A. Amedi, “Disentangling unisensory and multisensory components in audiovisual integration using a novel multifrequency fMRI spectral analysis,” NeuroImage, vol. 52, no. 2, pp. 617–632, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. E. Seifritz, F. Di Salle, F. Esposito, M. Herdener, J. G. Neuhoff, and K. Scheffler, “Enhancing BOLD response in the auditory system by neurophysiologically tuned fMRI sequence,” NeuroImage, vol. 29, no. 3, pp. 1013–1022, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. J. Upadhyay, M. Ducros, T. A. Knaus et al., “Function and connectivity in human primary auditory cortex: a combined fMRI and DTI study at 3 Tesla,” Cerebral Cortex, vol. 17, no. 10, pp. 2420–2432, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. D. L. Woods and C. Alain, “Functional imaging of human auditory cortex,” Current Opinion in Otolaryngology & Head and Neck Surgery, vol. 17, no. 5, pp. 407–411, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. C. Humphries, E. Liebenthal, and J. R. Binder, “Tonotopic organization of human auditory cortex,” NeuroImage, vol. 50, no. 3, pp. 1202–1211, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. E. Striem-Amit, U. Hertz, and A. Amedi, “Extensive cochleotopic mapping of human auditory cortical fields obtained with phase-encoding fMRI,” PLoS ONE, vol. 6, no. 3, Article ID e17832, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. S. da Costa, W. van der Zwaag, J. P. Marques, R. S. J. Frackowiak, S. Clarke, and M. Saenz, “Human primary auditory cortex follows the shape of Heschl's Gyrus,” The Journal of Neuroscience, vol. 31, no. 40, pp. 14067–14075, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. T. A. Hackett, T. M. Preuss, and J. H. Kaas, “Architectonic identification of the core region in auditory cortex of macaques, chimpanzees, and humans,” Journal of Comparative Neurology, vol. 441, no. 3, pp. 197–222, 2001. View at Publisher · View at Google Scholar · View at Scopus
  22. J. H. Kaas and T. A. Hackett, “Subdivisions of auditory cortex and processing streams in primates,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 22, pp. 11793–11799, 2000. View at Publisher · View at Google Scholar · View at Scopus
  23. H. Kosaki, T. Hashikawa, J. He, and E. G. Jones, “Tonotopic organization of auditory cortical fields delineated by parvalbumin immunoreactivity in macaque monkeys,” The Journal of Comparative Neurology, vol. 386, no. 2, pp. 304–316, 1997. View at Google Scholar
  24. P. Kuśmierek and J. P. Rauschecker, “Functional specialization of medial auditory belt cortex in the alert rhesus monkey,” Journal of Neurophysiology, vol. 102, no. 3, pp. 1606–1622, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. M. M. Merzenich and J. F. Brugge, “Representation of the cochlear partition on the superior temporal plane of the macaque monkey,” Brain Research, vol. 50, no. 2, pp. 275–296, 1973. View at Publisher · View at Google Scholar · View at Scopus
  26. A. Morel, P. E. Garraghty, and J. H. Kaas, “Tonotopic organization, architectonic fields, and connections of auditory cortex in macaque monkeys,” The Journal of Comparative Neurology, vol. 335, no. 3, pp. 437–459, 1993. View at Publisher · View at Google Scholar · View at Scopus
  27. J. P. Rauschecker, B. Tian, and M. Hauser, “Processing of complex sounds in the macaque nonprimary auditory cortex,” Science, vol. 268, no. 5207, pp. 111–114, 1995. View at Publisher · View at Google Scholar · View at Scopus
  28. J. P. Rauschecker and B. Tian, “Processing of band-passed noise in the lateral auditory belt cortex of the rhesus monkey,” Journal of Neurophysiology, vol. 91, no. 6, pp. 2578–2589, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. K. Brodmann, Vergleichende Lokalisationslehre der Grosshirnrinde in Ihren Prinzipien Dargestellt auf Grund des Zellenbaues, Johann Ambrosius Barth, Lepizig, Germany, 1909.
  30. G. H. Recanzone, D. C. Guard, and M. L. Phan, “Frequency and intensity response properties of single neurons in the auditory cortex of the behaving macaque monkey,” Journal of Neurophysiology, vol. 83, no. 4, pp. 2315–2331, 2000. View at Google Scholar · View at Scopus
  31. G. H. Recanzone, D. C. Guard, M. L. Phan, and T.-I. K. Su, “Correlation between the activity of single auditory cortical neurons and sound-localization behavior in the macaque monkey,” Journal of Neurophysiology, vol. 83, no. 5, pp. 2723–2739, 2000. View at Google Scholar · View at Scopus
  32. D. A. Hall, I. S. Johnsrude, M. P. Haggard, A. R. Palmer, M. A. Akeroyd, and A. Q. Summerfield, “Spectral and temporal processing in human auditory cortex,” Cerebral Cortex, vol. 12, no. 2, pp. 140–149, 2002. View at Publisher · View at Google Scholar · View at Scopus
  33. H. C. Hart, A. R. Palmer, and D. A. Hall, “Amplitude and frequency-modulated stimuli activate common regions of human auditory cortex,” Cerebral Cortex, vol. 13, no. 7, pp. 773–781, 2003. View at Publisher · View at Google Scholar · View at Scopus
  34. Z.-L. Lu, S. J. Williamson, and L. Kaufman, “Behavioral lifetime of human auditory sensory memory predicted by physiological measures,” Science, vol. 258, no. 5088, pp. 1668–1670, 1992. View at Publisher · View at Google Scholar · View at Scopus
  35. Z.-L. Lu, S. J. Williamson, and L. Kaufman, “Human auditory primary and association cortex have differing lifetimes for activation traces,” Brain Research, vol. 572, no. 1-2, pp. 236–241, 1992. View at Publisher · View at Google Scholar · View at Scopus
  36. I. P. Jääskeläinen, J. Ahveninen, G. Bonmassar et al., “Human posterior auditory cortex gates novel sounds to consciousness,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 17, pp. 6809–6814, 2004. View at Publisher · View at Google Scholar
  37. G. Langner, M. Sams, P. Heil, and H. Schulze, “Frequency and periodicity are represented in orthogonal maps in the human auditory cortex: evidence from magnetoencephalography,” The Journal of Comparative Physiology, vol. 181, no. 6, pp. 665–676, 1997. View at Publisher · View at Google Scholar · View at Scopus
  38. D. A. Hall, A. M. Edmondson-Jones, and J. Fridriksson, “Periodicity and frequency coding in human auditory cortex,” European Journal of Neuroscience, vol. 24, no. 12, pp. 3601–3610, 2006. View at Publisher · View at Google Scholar · View at Scopus
  39. J. Ahveninen, I. P. Jääskeläinen, T. Raij et al., “Task-modulated “what” and “where” pathways in human auditory cortex,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 39, pp. 14608–14613, 2006. View at Publisher · View at Google Scholar · View at Scopus
  40. J. D. Warren, B. A. Zielinski, G. G. R. Green, J. P. Rauschecker, and T. D. Griffiths, “Perception of sound-source motion by the human brain,” Neuron, vol. 34, no. 1, pp. 139–148, 2002. View at Publisher · View at Google Scholar · View at Scopus
  41. N. Kopco, S. Huang, J. W. Belliveau et al., “Neuronal representations of distance in human auditory cortex,” Proceedings of the National Academy of Sciences of the United States of America, vol. 109, no. 27, pp. 11019–11024, 2012. View at Publisher · View at Google Scholar
  42. N. H. Salminen, P. J. C. May, P. Alku, and H. Tiitinen, “A population rate code of auditory space in the human cortex,” PLoS ONE, vol. 4, no. 10, Article ID e7600, 2009. View at Publisher · View at Google Scholar · View at Scopus
  43. J. Obleser, H. Boecker, A. Drzezga et al., “Vowel sound extraction in anterior superior temporal cortex,” Human Brain Mapping, vol. 27, no. 7, pp. 562–571, 2006. View at Publisher · View at Google Scholar · View at Scopus
  44. B. Tian, D. Reser, A. Durham, A. Kustov, and J. P. Rauschecker, “Functional specialization in rhesus monkey auditory cortex,” Science, vol. 292, no. 5515, pp. 290–293, 2001. View at Publisher · View at Google Scholar · View at Scopus
  45. S. G. Lomber and S. Malhotra, “Double dissociation of ‘what’ and ‘where’ processing in auditory cortex,” Nature Neuroscience, vol. 11, no. 5, pp. 609–616, 2008. View at Publisher · View at Google Scholar · View at Scopus
  46. J. P. Rauschecker, “An expanded role for the dorsal auditory pathway in sensorimotor control and integration,” Hearing Research, vol. 271, no. 1-2, pp. 16–25, 2011. View at Publisher · View at Google Scholar · View at Scopus
  47. J. P. Rauschecker, “Processing of complex sounds in the auditory cortex of cat, monkey, and man,” Acta Oto-Laryngologica, vol. 117, no. 532, pp. 34–38, 1997. View at Publisher · View at Google Scholar · View at Scopus
  48. L. de Santis, S. Clarke, and M. M. Murray, “Automatic and intrinsic auditory “what” and “where” processing in humans revealed by electrical neuroimaging,” Cerebral Cortex, vol. 17, no. 1, pp. 9–17, 2006. View at Publisher · View at Google Scholar · View at Scopus
  49. J. Ahveninen, I. P. Jääskeläinen, T. Raij et al., “Task-modulated “what” and “where” pathways in human auditory cortex,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 39, pp. 14608–14613, 2006. View at Publisher · View at Google Scholar · View at Scopus
  50. M. Adriani, P. Maeder, R. Meuli et al., “Sound recognition and localization in man: specialized cortical networks and effects of acute circumscribed lesions,” Experimental Brain Research, vol. 153, no. 4, pp. 591–604, 2003. View at Publisher · View at Google Scholar · View at Scopus
  51. S. Clarke, A. Bellmann Thiran, P. Maeder et al., “What and where in human audition: selective deficits following focal hemispheric lesions,” Experimental Brain Research, vol. 147, no. 1, pp. 8–15, 2002. View at Publisher · View at Google Scholar · View at Scopus
  52. J. Ahveninen, S. Huang, A. Nummenmaa et al., “Evidence for distinct human auditory cortex regions for sound location versus identity processing,” Nature Communications, vol. 4, article 2585, 2013. View at Publisher · View at Google Scholar
  53. C. Alain, S. R. Arnott, S. Hevenor, S. Graham, and C. L. Grady, “‘What’ and “where” in the human auditory system,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 21, pp. 12301–12306, 2001. View at Publisher · View at Google Scholar · View at Scopus
  54. G. Hickok and D. Poeppel, “The cortical organization of speech processing,” Nature Reviews Neuroscience, vol. 8, no. 5, pp. 393–402, 2007. View at Publisher · View at Google Scholar · View at Scopus
  55. J. P. Rauschecker and S. K. Scott, “Maps and streams in the auditory cortex: nonhuman primates illuminate human speech processing,” Nature Neuroscience, vol. 12, no. 6, pp. 718–724, 2009. View at Publisher · View at Google Scholar · View at Scopus
  56. C. F. Altmann, M. Henning, M. K. Döring, and J. Kaiser, “Effects of feature-selective attention on auditory pattern and location processing,” NeuroImage, vol. 41, no. 1, pp. 69–79, 2008. View at Publisher · View at Google Scholar · View at Scopus
  57. C. I. Petkov, X. Kang, K. Alho, O. Bertrand, E. W. Yund, and D. L. Woods, “Attentional modulation of human auditory cortex,” Nature Neuroscience, vol. 7, no. 6, pp. 658–663, 2004. View at Publisher · View at Google Scholar · View at Scopus
  58. D. L. Woods, G. C. Stecker, T. Rinne et al., “Functional maps of human auditory cortex: effects of acoustic features and attention,” PLoS ONE, vol. 4, no. 4, Article ID e5183, 2009. View at Publisher · View at Google Scholar · View at Scopus
  59. S. Da Costa, W. van der Zwaag, L. M. Miller et al., “Tuning in to sound: frequency-selective attentional filter in human primary auditory cortex,” The Journal of Neuroscience, vol. 33, no. 5, pp. 1858–1863, 2013. View at Publisher · View at Google Scholar
  60. L. Jäncke, S. Mirzazade, and N. Joni Shah, “Attention modulates activity in the primary and the secondary auditory cortex: a functional magnetic resonance imaging study in human subjects,” Neuroscience Letters, vol. 266, no. 2, pp. 125–128, 1999. View at Publisher · View at Google Scholar · View at Scopus
  61. A. Bidet-Caulet, C. Fischer, J. Besle, P.-E. Aguera, M.-H. Giard, and O. Bertrand, “Effects of selective attention on the electrophysiological representation of concurrent sounds in the human auditory cortex,” The Journal of Neuroscience, vol. 27, no. 35, pp. 9252–9261, 2007. View at Publisher · View at Google Scholar · View at Scopus
  62. M. Hämäläinen, R. Hari, R. J. Ilmoniemi et al., “Magnetoencephalography—theory, instrumentation, and applications to noninvasive studies of the working human brain,” Reviews of Modern Physics, vol. 65, no. 2, pp. 413–497, 1993. View at Publisher · View at Google Scholar
  63. A. Hillebrand and G. R. Barnes, “A quantitative assessment of the sensitivity of whole-head MEG to activity in the adult human cortex,” NeuroImage, vol. 16, no. 3, part A, pp. 638–650, 2002. View at Publisher · View at Google Scholar · View at Scopus
  64. A. K. Liu, A. M. Dale, and J. W. Belliveau, “Monte Carlo simulation studies of EEG and MEG localization accuracy,” Human Brain Mapping, vol. 16, no. 1, pp. 47–62, 2002. View at Publisher · View at Google Scholar · View at Scopus
  65. M. G. Woldorff and S. A. Hillyard, “Modulation of early auditory processing during selective listening to rapidly presented tones,” Electroencephalography and Clinical Neurophysiology, vol. 79, no. 3, pp. 170–191, 1991. View at Publisher · View at Google Scholar · View at Scopus
  66. M. G. Woldorff, C. C. Gallen, S. A. Hampson et al., “Modulation of early sensory processing in human auditory cortex during auditory selective attention,” Proceedings of the National Academy of Sciences of the United States of America, vol. 90, no. 18, pp. 8722–8726, 1993. View at Google Scholar · View at Scopus
  67. V. Poghosyan and A. A. Ioannides, “Attention modulates earliest responses in the primary auditory and visual cortices,” Neuron, vol. 58, no. 5, pp. 802–813, 2008. View at Publisher · View at Google Scholar · View at Scopus
  68. Y. Zhang and N. Suga, “Corticofugal amplification of subcortical responses to single tone stimuli in the mustached bat,” Journal of Neurophysiology, vol. 78, no. 6, pp. 3489–3492, 1997. View at Google Scholar · View at Scopus
  69. N. Suga, E. Gao, Y. Zhang, X. Ma, and J. F. Olsen, “The corticofugal system for hearing: recent progress,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 22, pp. 11807–11814, 2000. View at Publisher · View at Google Scholar · View at Scopus
  70. J. A. Winer, “Decoding the auditory corticofugal systems,” Hearing Research, vol. 212, no. 1-2, pp. 1–8, 2006. View at Publisher · View at Google Scholar · View at Scopus
  71. T. W. Picton and S. A. Hillyard, “Human auditory evoked potentials. II. Effects of attention,” Electroencephalography and Clinical Neurophysiology, vol. 36, no. 2, pp. 191–199, 1974. View at Publisher · View at Google Scholar · View at Scopus
  72. A. E. Davis and H. A. Beagley, “Acoustic brainstem responses for clinical use: the effect of attention,” Clinical Otolaryngology & Allied Sciences, vol. 10, no. 6, pp. 311–314, 1985. View at Publisher · View at Google Scholar · View at Scopus
  73. J. F. Connolly, K. Aubry, N. McGillivary, and D. W. Scott, “Human brainstem auditory evoked potentials fail to provide evidence of efferent modulation of auditory input during attentional tasks,” Psychophysiology, vol. 26, no. 3, pp. 292–303, 1989. View at Publisher · View at Google Scholar · View at Scopus
  74. G. C. Galbraith and C. Arroyo, “Selective attention and brainstem frequency-following responses,” Biological Psychology, vol. 37, no. 1, pp. 3–22, 1993. View at Publisher · View at Google Scholar · View at Scopus
  75. G. C. Galbraith, D. M. Olfman, and T. M. Huffman, “Selective attention affects human brain stem frequency-following response,” NeuroReport, vol. 14, no. 5, pp. 735–738, 2003. View at Publisher · View at Google Scholar · View at Scopus
  76. W. D. Hairston, T. R. Letowski, and K. McDowell, “Task-related suppression of the brainstem frequency following response,” PLoS ONE, vol. 8, no. 2, Article ID e55215, 2013. View at Publisher · View at Google Scholar
  77. M. H. Giard, A. Fort, Y. Mouchetant-Rostaing, and J. Pernier, “Neurophysiological mechanisms of auditory selective attention in humans,” Frontiers in Bioscience, vol. 5, pp. D84–D94, 2000. View at Google Scholar · View at Scopus
  78. P. T. Michie, E. L. LePage, N. Solowij, M. Haller, and L. Terry, “Evoked otoacoustic emissions and auditory selective attention,” Hearing Research, vol. 98, no. 1-2, pp. 54–67, 1996. View at Publisher · View at Google Scholar · View at Scopus
  79. T. Rinne, J. Pekkola, A. Degerman et al., “Modulation of auditory cortex activation by sound presentation rate and attention,” Human Brain Mapping, vol. 26, no. 2, pp. 94–99, 2005. View at Publisher · View at Google Scholar · View at Scopus
  80. M. L. Andermann, J. Kauramäki, T. Palomäki et al., “Brain state-triggered stimulus delivery: an efficient tool for probing ongoing brain activity,” Open Journal of Neuroscience, vol. 2, p. 5, 2012. View at Google Scholar
  81. D. H. O'Connor, M. M. Fukui, M. A. Pinsk, and S. Kastner, “Attention modulates responses in the human lateral geniculate nucleus,” Nature Neuroscience, vol. 5, no. 11, pp. 1203–1209, 2002. View at Publisher · View at Google Scholar · View at Scopus
  82. K. McAlonan, J. Cavanaugh, and R. H. Wurtz, “Guarding the gateway to cortex with attention in visual thalamus,” Nature, vol. 456, no. 7220, pp. 391–394, 2008. View at Publisher · View at Google Scholar · View at Scopus
  83. D. L. Woods, T. J. Herron, A. D. Cateand et al., “Functional properties of human auditory cortical fields,” Frontiers in Systems Neuroscience, vol. 4, article 155, 2010. View at Publisher · View at Google Scholar
  84. D. L. Woods, G. C. Stecker, T. Rinne et al., “Functional maps of human auditory cortex: effects of acoustic features and attention,” PLoS ONE, vol. 4, no. 4, Article ID e5183, 2009. View at Publisher · View at Google Scholar · View at Scopus
  85. S. A. Hillyard, R. F. Hink, V. L. Schwent, and T. W. Picton, “Electrical signs of selective attention in the human brain,” Science, vol. 182, no. 4108, pp. 177–180, 1973. View at Publisher · View at Google Scholar · View at Scopus
  86. H. Okamoto, H. Stracke, P. Bermudez, and C. Pantev, “Sound processing hierarchy within human auditory cortex,” Journal of Cognitive Neuroscience, vol. 23, no. 8, pp. 1855–1863, 2011. View at Publisher · View at Google Scholar · View at Scopus
  87. J. Rif, R. Hari, M. S. Hamalainen, and M. Sams, “Auditory attention affects two different areas in the human supratemporal cortex,” Electroencephalography and Clinical Neurophysiology, vol. 79, no. 6, pp. 464–472, 1991. View at Publisher · View at Google Scholar · View at Scopus
  88. J. Ahveninen, M. Hämäläinen, I. P. Jääskeläinen et al., “Attention-driven auditory cortex short-term plasticity helps segregate relevant sounds from noise,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 10, pp. 4182–4187, 2011. View at Publisher · View at Google Scholar · View at Scopus
  89. C. J. McAdams and J. H. R. Maunsell, “Effects of attention on orientation-tuning functions of single neurons in macaque cortical area V4,” The Journal of Neuroscience, vol. 19, no. 1, pp. 431–441, 1999. View at Google Scholar · View at Scopus
  90. M. Sams and R. Salmelin, “Evidence of sharp frequency tuning in the human auditory cortex,” Hearing Research, vol. 75, no. 1-2, pp. 67–74, 1994. View at Publisher · View at Google Scholar · View at Scopus
  91. J. Kauramäki, I. P. Jääskeläinen, and M. Sams, “Selective attention increases both gain and feature selectivity of the human auditory cortex,” PLoS ONE, vol. 2, no. 9, Article ID e909, 2007. View at Publisher · View at Google Scholar · View at Scopus
  92. M. H. Giard, F. Perrin, J. F. Echallier, M. Thevenet, J. C. Froment, and J. Pernier, “Dissociation of temporal and frontal components in the human auditory N1 wave: a scalp current density and dipole model analysis,” Electroencephalography and Clinical Neurophysiology, vol. 92, no. 3, pp. 238–252, 1994. View at Publisher · View at Google Scholar · View at Scopus
  93. J. Kauramäki, I. P. Jääskeläinen, J. L. Hänninen et al., “Two-stage processing of sounds explains behavioral performance variations due to changes in stimulus contrast and selective attention: an MEG study,” PLoS ONE, vol. 7, no. 10, Article ID e46872, 2012. View at Google Scholar
  94. H. Okamoto, H. Stracke, C. H. Wolters, F. Schmael, and C. Pantev, “Attention improves population-level frequency tuning in human auditory cortex,” The Journal of Neuroscience, vol. 27, no. 39, pp. 10383–10390, 2007. View at Publisher · View at Google Scholar · View at Scopus
  95. H. Okamoto, H. Stracke, P. Zwitserlood, L. E. Roberts, and C. Pantev, “Frequency-specific modulation of population-level frequency tuning in human auditory cortex,” BMC Neuroscience, vol. 10, article 1, pp. 1–14, 2009. View at Publisher · View at Google Scholar · View at Scopus
  96. J. Fritz, S. Shamma, M. Elhilali, and D. Klein, “Rapid task-related plasticity of spectrotemporal receptive fields in primary auditory cortex,” Nature Neuroscience, vol. 6, no. 11, pp. 1216–1223, 2003. View at Publisher · View at Google Scholar · View at Scopus
  97. J. B. Fritz, M. Elhilali, and S. A. Shamma, “Differential dynamic plasticity of A1 receptive fields during multiple spectral tasks,” The Journal of Neuroscience, vol. 25, no. 33, pp. 7623–7635, 2005. View at Publisher · View at Google Scholar · View at Scopus
  98. J. Fritz, M. Elhilali, and S. Shamma, “Active listening: task-dependent plasticity of spectrotemporal receptive fields in primary auditory cortex,” Hearing Research, vol. 206, no. 1-2, pp. 159–176, 2005. View at Publisher · View at Google Scholar · View at Scopus
  99. J. B. Fritz, M. Elhilali, S. V. David, and S. A. Shamma, “Does attention play a role in dynamic receptive field adaptation to changing acoustic salience in A1?” Hearing Research, vol. 229, no. 1-2, pp. 186–203, 2007. View at Publisher · View at Google Scholar · View at Scopus
  100. J. B. Fritz, S. V. David, S. Radtke-Schuller, P. Yin, and S. A. Shamma, “Adaptive, behaviorally gated, persistent encoding of task-relevant auditory information in ferret frontal cortex,” Nature Neuroscience, vol. 13, no. 8, pp. 1011–1019, 2010. View at Publisher · View at Google Scholar · View at Scopus
  101. J. Lee and J. H. R. Maunsell, “A normalization model of attentional modulation of single unit responses,” PLoS ONE, vol. 4, no. 2, Article ID e4651, 2009. View at Publisher · View at Google Scholar · View at Scopus
  102. T. Womelsdorf, K. Anton-Erxleben, F. Pieper, and S. Treue, “Dynamic shifts of visual receptive fields in cortical area MT by spatial attention,” Nature Neuroscience, vol. 9, no. 9, pp. 1156–1160, 2006. View at Publisher · View at Google Scholar · View at Scopus
  103. N. Mesgarani and E. F. Chang, “Selective cortical representation of the attended speaker in multi-talker speech perception,” Nature, vol. 485, pp. 233–237, 2012. View at Publisher · View at Google Scholar
  104. B. G. Shinn-Cunningham, “Learning reverberation: considerations for spatial auditory displays,” in Proceedings of the International Conference on Auditory Display (ICAD '00), Georgia Institute of Technology, Atlanta, Ga, USA, 2000.
  105. D. H. Mershon, W. L. Ballenger, A. D. Little, P. L. McMurtry, and J. L. Buchanan, “Effects of room reflectance and background noise on perceived auditory distance,” Perception, vol. 18, no. 3, pp. 403–416, 1989. View at Publisher · View at Google Scholar · View at Scopus
  106. R. K. Clifton, R. L. Freyman, R. Y. Litovsky, and D. McCall, “Listeners' expectations about echoes can raise or lower echo threshold,” The Journal of the Acoustical Society of America, vol. 95, no. 3, pp. 1525–1533, 1994. View at Publisher · View at Google Scholar · View at Scopus
  107. R. L. Freyman, R. K. Clifton, and R. Y. Litovsky, “Dynamic processes in the precedence effect,” The Journal of the Acoustical Society of America, vol. 90, no. 2, part 1, pp. 874–884, 1991. View at Google Scholar · View at Scopus
  108. G. H. Recanzone, “Rapidly induced auditory plasticity: the ventriloquism aftereffect,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 3, pp. 869–875, 1998. View at Publisher · View at Google Scholar · View at Scopus
  109. J. Lewald, “Rapid adaptation to auditory-visual spatial disparity,” Learning & Memory, vol. 9, no. 5, pp. 268–278, 2002. View at Publisher · View at Google Scholar · View at Scopus
  110. N. Kopčo, I.-F. Lin, B. G. Shinn-Cunningham, and J. M. Groh, “Reference frame of the ventriloquism aftereffect,” The Journal of Neuroscience, vol. 29, no. 44, pp. 13809–13814, 2009. View at Publisher · View at Google Scholar · View at Scopus
  111. P. Bruns, C. Spence, and B. Röder, “Tactile recalibration of auditory spatial representations,” Experimental Brain Research, vol. 209, no. 3, pp. 333–344, 2011. View at Publisher · View at Google Scholar · View at Scopus
  112. P. Bertelson, J. Vroomen, B. de Gelder, and J. Driver, “The ventriloquist effect does not depend on the direction of deliberate visual attention,” Perception & Psychophysics, vol. 62, no. 2, pp. 321–332, 2000. View at Publisher · View at Google Scholar · View at Scopus
  113. N. M. Weinberger, “Auditory associative memory and representational plasticity in the primary auditory cortex,” Hearing Research, vol. 229, no. 1-2, pp. 54–68, 2007. View at Publisher · View at Google Scholar · View at Scopus