Table of Contents Author Guidelines Submit a Manuscript
Neural Plasticity
Volume 2014 (2014), Article ID 563160, 32 pages
http://dx.doi.org/10.1155/2014/563160
Review Article

Effects of Diet on Brain Plasticity in Animal and Human Studies: Mind the Gap

Institute of Psychiatry, King’s College London, The James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK

Received 14 January 2014; Accepted 17 March 2014; Published 12 May 2014

Academic Editor: Aniko Korosi

Copyright © 2014 Tytus Murphy et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. R. Squire, “Memory and the hippocampus: a synthesis from findings with rats, monkeys, and humans,” Psychological Review, vol. 99, no. 2, pp. 195–231, 1992. View at Google Scholar
  2. L. R. Squire, “The hippocampus and spatial memory,” Trends in Neurosciences, vol. 16, no. 2, pp. 56–57, 1993. View at Google Scholar
  3. N. Burgess, E. A. Maguire, and J. O'Keefe, “The human hippocampus and spatial and episodic memory,” Neuron, vol. 35, no. 4, pp. 625–641, 2002. View at Publisher · View at Google Scholar · View at Scopus
  4. J. D. Sweatt, “Hippocampal function in cognition,” Psychopharmacology, vol. 174, no. 1, pp. 99–110, 2004. View at Google Scholar
  5. N. Suthana, A. Ekstrom, S. Moshirvaziri, B. Knowlton, and S. Bookheimer, “Dissociations within human hippocampal subregions during encoding and retrieval of spatial information,” Hippocampus, vol. 21, no. 7, pp. 694–701, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. H. Jun, S. Mohammed Qasim Hussaini, M. J. Rigby, and M. H. Jang, “Functional role of adult hippocampal neurogenesis as a therapeutic strategy for mental disorders,” Neural Plasticity, vol. 2012, Article ID 854285, 2012. View at Publisher · View at Google Scholar
  7. J. Z. Tsien, M. Li, R. Osan et al., “On initial Brain Activity Mapping of episodic and semantic memory code in the hippocampus,” Neurobiology of Learning and Memory, vol. 105, pp. 200–210, 2013. View at Publisher · View at Google Scholar
  8. S. F. Cooke and T. V. Bliss, “Plasticity in the human central nervous system,” Brain, vol. 129, part 7, pp. 1659–1673, 2006. View at Google Scholar
  9. S. Maren and M. Baudry, “Properties and mechanisms of long-term synaptic plasticity in the mammalian brain: relationships to learning and memory,” Neurobiology of Learning and Memory, vol. 63, no. 1, pp. 1–18, 1995. View at Publisher · View at Google Scholar · View at Scopus
  10. N. N. Urban, D. A. Henze, D. A. Lewis, and G. Barrionuevo, “Properties of LTP induction in the CA3 region of the primate hippocampus,” Learning Memory, vol. 3, no. 2-3, pp. 86–95, 1996. View at Google Scholar · View at Scopus
  11. M. A. Bonaguidi, J. Song, G. L. Ming, and H. Song, “A unifying hypothesis on mammalian neural stem cell properties in the adult hippocampus,” Current Opinion in Neurobiology, vol. 22, no. 5, pp. 754–761, 2012. View at Google Scholar
  12. Y. Mu, S. W. Lee, and F. H. Gage, “Signaling in adult neurogenesis,” Current Opinion in Neurobiology, vol. 20, no. 4, pp. 416–423, 2010. View at Google Scholar
  13. W. Deng, J. B. Aimone, and F. H. Gage, “New neurons and new memories: how does adult hippocampal neurogenesis affect learning and memory?” Nature Reviews Neuroscience, vol. 11, no. 5, pp. 339–350, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. J. S. Snyder, A. Soumier, M. Brewer, J. Pickel, and H. A. Cameron, “Adult hippocampal neurogenesis buffers stress responses and depressive behaviour,” Nature, vol. 476, no. 7361, pp. 458–462, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. A. J. Eisch and D. Petrik, “Depression and hippocampal neurogenesis: a road to remission?” Science, vol. 338, no. 6103, pp. 72–75, 2012. View at Google Scholar
  16. I. Mendez-David, R. Hen, A. M. Gardier, and D. J. David, “Adult hippocampal neurogenesis: an actor in the antidepressant-like action,” Annales Pharmaceutiques Françaises, vol. 71, no. 3, pp. 143–149, 2013. View at Google Scholar
  17. J.-M. Revest, D. Dupret, M. Koehl et al., “Adult hippocampal neurogenesis is involved in anxiety-related behaviors,” Molecular Psychiatry, vol. 14, no. 10, pp. 959–967, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. T. D. Palmer, A. R. Willhoite, and F. H. Gage, “Vascular niche for adult hippocampal neurogenesis,” Journal of Comparative Neurology, vol. 425, no. 4, pp. 479–494, 2000. View at Google Scholar
  19. S. A. Villeda, J. Luo, K. I. Mosher et al., “The ageing systemic milieu negatively regulates neurogenesis and cognitive function,” Nature, vol. 477, no. 7362, pp. 90–94, 2011. View at Google Scholar
  20. M. L. Mustroph, S. Chen, S. C. Desai, E. B. Cay, E. K. DeYoung, and J. S. Rhodes, “Aerobic exercise is the critical variable in an enriched environment that increases hippocampal neurogenesis and water maze learning in male C57BL/6J mice,” Neuroscience, vol. 219, pp. 62–71, 2012. View at Google Scholar
  21. R. G. Bechara and A. M. Kelly, “Exercise improves object recognition memory and induces BDNF expression and cell proliferation in cognitively enriched rats,” Behavioural Brain Research, vol. 245, pp. 96–100, 2013. View at Google Scholar
  22. P. Ambrogini, D. Lattanzi, S. Ciuffoli, M. Betti, M. Fanelli, and R. Cuppini, “Physical exercise and environment exploration affect synaptogenesis in adult-generated neurons in the rat dentate gyrus: possible role of BDNF,” Brain Research, vol. 1534, pp. 1–12, 2013. View at Google Scholar
  23. J. Beauquis, P. Roig, A. F. de Nicola, and F. Saravia, “Short-term environmental enrichment enhances adult neurogenesis, vascular network and dendritic complexity in the hippocampus of type 1 diabetic mice,” PLoS ONE, vol. 5, no. 11, Article ID e13993, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. Y. F. Huang, C. H. Yang, C. C. Huang, and K. S. Hsu, “Vascular endothelial growth factor-dependent spinogenesis underlies antidepressant-like effects of enriched environment,” The Journal of Biological Chemistry, vol. 287, no. 49, pp. 40938–40955, 2012. View at Google Scholar
  25. E. R. Glasper, T. J. Schoenfeld, and E. Gould, “Adult neurogenesis: optimizing hippocampal function to suit the environment,” Behavioural Brain Research, vol. 227, no. 2, pp. 380–383, 2012. View at Google Scholar
  26. G. Kempermann, “New neurons for ‘survival of the fittest’,” Nature Reviews Neuroscience, vol. 13, no. 10, pp. 727–736, 2012. View at Google Scholar
  27. P. J. Lucassen, J. Pruessner, N. Sousa et al., “Neuropathology of stress,” Acta Neuropathologica, vol. 127, no. 1, pp. 109–135, 2014. View at Google Scholar
  28. B. S. McEwen and A. M. Magarinos, “Stress and hippocampal plasticity: implications for the pathophysiology of affective disorders,” Human Psychopharmacology, vol. 16, no. 1, pp. S7–S19, 2001. View at Publisher · View at Google Scholar · View at Scopus
  29. A. S. Whiteman, D. E. Young, X. He et al., “Interaction between serum BDNF and aerobic fitness predicts recognition memory in healthy young adults,” Behavioural Brain Research, vol. 259, pp. 302–312, 2014. View at Google Scholar
  30. K. van der Borght, D. É. Kóbor-Nyakas, K. Klauke et al., “Physical exercise leads to rapid adaptations in hippocampal vasculature: temporal dynamics and relationship to cell proliferation and neurogenesis,” Hippocampus, vol. 19, no. 10, pp. 928–936, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. D. Stangl and S. Thuret, “Impact of diet on adult hippocampal neurogenesis,” Genes & Nutrition, vol. 4, no. 4, pp. 271–282, 2009. View at Google Scholar
  32. M. S. Zainuddin and S. Thuret, “Nutrition, adult hippocampal neurogenesis and mental health,” British Medical Bulletin, vol. 103, no. 1, pp. 89–114, 2012. View at Google Scholar
  33. S. Ribaric, “Diet and aging,” Oxidative Medicine and Cellular Longevity, vol. 2012, Article ID 741468, 20 pages, 2012. View at Publisher · View at Google Scholar
  34. C. M. McCay, M. F. Crowell, and L. A. Maynard, “The effect of retarded growth upon the length of life span and upon the ultimate body size. 1935,” Nutrition, vol. 5, no. 3, pp. 155–172, 1989. View at Google Scholar · View at Scopus
  35. B. Martin, M. P. Mattson, and S. Maudsley, “Caloric restriction and intermittent fasting: two potential diets for successful brain aging,” Ageing Research Reviews, vol. 5, no. 3, pp. 332–353, 2006. View at Google Scholar
  36. R. J. Colman, R. M. Anderson, S. C. Johnson et al., “Caloric restriction delays disease onset and mortality in rhesus monkeys,” Science, vol. 325, no. 5937, pp. 201–204, 2009. View at Google Scholar
  37. L. Fontana, L. Partridge, and V. D. Longo, “Extending healthy life span—from yeast to humans,” Science, vol. 328, no. 5976, pp. 321–326, 2010. View at Google Scholar
  38. M. P. Mattson, “Energy intake and exercise as determinants of brain health and vulnerability to injury and disease,” Cell Metabolism, vol. 16, no. 6, pp. 706–722, 2012. View at Google Scholar
  39. L. M. Redman and E. Ravussin, “Caloric restriction in humans: impact on physiological, psychological, and behavioral outcomes,” Antioxidants & Redox Signaling, vol. 14, no. 2, pp. 275–287, 2011. View at Google Scholar
  40. E. P. Weiss and L. Fontana, “Caloric restriction: powerful protection for the aging heart and vasculature,” American Journal of Physiology Heart and Circulatory Physiology, vol. 301, no. 4, pp. H1205–H1219, 2011. View at Google Scholar
  41. P. K. Shetty, F. Galeffi, and D. A. Turner, “Age-induced alterations in hippocampal function and metabolism,” Aging and Disease, vol. 2, no. 3, pp. 196–218, 2011. View at Google Scholar
  42. S.-K. Park and T. A. Prolla, “Lessons learned from gene expression profile studies of aging and caloric restriction,” Ageing Research Reviews, vol. 4, no. 1, pp. 55–65, 2005. View at Publisher · View at Google Scholar · View at Scopus
  43. A. M. Stranahan and M. P. Mattson, “Bidirectional metabolic regulation of neurocognitive function,” Neurobiology of Learning and Memory, vol. 96, no. 4, pp. 507–516, 2011. View at Google Scholar
  44. M. M. Adams, L. Shi, M. C. Linville et al., “Caloric restriction and age affect synaptic proteins in hippocampal CA3 and spatial learning ability,” Experimental Neurology, vol. 211, no. 1, pp. 141–149, 2008. View at Publisher · View at Google Scholar
  45. S. M. Rothman, K. J. Griffioen, R. Wan, and M. P. Mattson, “Brain-derived neurotrophic factor as a regulator of systemic and brain energy metabolism and cardiovascular health,” Annals of the New York Academy of Sciences, vol. 1264, pp. 49–63, 2012. View at Google Scholar
  46. S. Fusco, C. Ripoli, M. V. Podda et al., “A role for neuronal cAMP responsive-element binding (CREB)-1 in brain responses to calorie restriction,” Proceedings of the National Academy of Sciences of the United States of America, vol. 109, no. 2, pp. 621–626, 2012. View at Google Scholar
  47. A. Kuhla, S. Lange, C. Holzmann et al., “Lifelong caloric restriction increases working memory in mice,” PLoS ONE, vol. 8, no. 7, Article ID e68778, 2013. View at Google Scholar
  48. M. Q. Steinman, K. K. Crean, and B. C. Trainor, “Photoperiod interacts with food restriction in performance in the Barnes maze in female California mice,” European Journal of Neuroscience, vol. 33, no. 2, pp. 361–370, 2011. View at Google Scholar
  49. N. Yilmaz, H. Vural, M. Yilmaz et al., “Calorie restriction modulates hippocampal NMDA receptors in diet-induced obese rats,” Journal of Receptors and Signal Transduction, vol. 31, no. 3, pp. 214–219, 2011. View at Publisher · View at Google Scholar · View at Scopus
  50. M. P. Mattson and R. Wan, “Beneficial effects of intermittent fasting and caloric restriction on the cardiovascular and cerebrovascular systems,” The Journal of Nutritional Biochemistry, vol. 16, no. 3, pp. 129–137, 2005. View at Publisher · View at Google Scholar · View at Scopus
  51. T. Kishi and K. Sunagawa, “Exercise training plus calorie restriction causes synergistic protection against cognitive decline via up-regulation of BDNF in hippocampus of stroke-prone hypertensive rats,” in Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society IEEE Engineering in Medicine and Biology Society Conference, vol. 2012, pp. 6764–6767, 2012.
  52. I. G. Newton, M. E. Forbes, C. Legault, J. E. Johnson, J. K. Brunso-Bechtold, and D. R. Riddle, “Caloric restriction does not reverse aging-related changes in hippocampal BDNF,” Neurobiology of Aging, vol. 26, no. 5, pp. 683–688, 2005. View at Publisher · View at Google Scholar · View at Scopus
  53. A. P. Association, Diagnostic and Statistical Manual of Mental Disorders, American Psychiatric, Arlington, Va, USA, 5th edition, 2013.
  54. A. Mateus-Pinheiro, L. Pinto, J. M. Bessa et al., “Sustained remission from depressive-like behavior depends on hippocampal neurogenesis,” Translational Psychiatry, vol. 3, article e210, 2013. View at Google Scholar
  55. M. R. de Carvalho, G. P. Dias, F. Cosci et al., “Current findings of fMRI in panic disorder: contributions for the fear neurocircuitry and CBT effects,” Expert Review of Neurotherapeutics, vol. 10, no. 2, pp. 291–303, 2010. View at Publisher · View at Google Scholar · View at Scopus
  56. G. P. Dias, M. R. de Carvalho, A. C. D. Silveira et al., “Current methodological designs of fMRI studies of panic disorder: can data be compared?” Psychology and Neuroscience, vol. 4, no. 3, pp. 391–407, 2011. View at Publisher · View at Google Scholar · View at Scopus
  57. G. P. Dias, N. Cavegn, A. Nix et al., “The role of dietary polyphenols on adult hippocampal neurogenesis: molecular mechanisms and behavioural effects on depression and anxiety,” Oxidative Medicine and Cellular Longevity, vol. 2012, Article ID 541971, 18 pages, 2012. View at Publisher · View at Google Scholar
  58. M. C. Riddle, M. C. McKenna, Y. J. Yoon et al., “Caloric restriction enhances fear extinction learning in mice,” Neuropsychopharmacology, vol. 38, no. 6, pp. 930–937, 2013. View at Google Scholar
  59. M. B. Vanelzakker, M. Kathryn Dahlgren, F. Caroline Davis, S. Dubois, and L. M. Shin, “From Pavlov to PTSD: the extinction of conditioned fear in rodents, humans, and anxiety disorders,” Neurobiology of Learning and Memory, 2013. View at Publisher · View at Google Scholar
  60. G. B. Kaplan and K. A. Moore, “The use of cognitive enhancers in animal models of fear extinction,” Pharmacology Biochemistry and Behavior, vol. 99, no. 2, pp. 217–228, 2011. View at Google Scholar
  61. J. W. Jahng, J. G. Kim, H. J. Kim, B.-T. Kim, D.-W. Kang, and J.-H. Lee, “Chronic food restriction in young rats results in depression- and anxiety-like behaviors with decreased expression of serotonin reuptake transporter,” Brain Research, vol. 1150, no. 1, pp. 100–107, 2007. View at Publisher · View at Google Scholar · View at Scopus
  62. M. Lutter, I. Sakata, S. Osborne-Lawrence et al., “The orexigenic hormone ghrelin defends against depressive symptoms of chronic stress,” Nature Neuroscience, vol. 11, no. 7, pp. 752–753, 2008. View at Google Scholar
  63. M. Lutter, V. Krishnan, S. J. Russo, S. Jung, C. A. McClung, and E. J. Nestler, “Orexin signaling mediates the antidepressant-like effect of calorie restriction,” The Journal of Neuroscience, vol. 28, no. 12, pp. 3071–3075, 2008. View at Google Scholar
  64. D. E. Pankevich, S. L. Teegarden, A. D. Hedin, C. L. Jensen, and T. L. Bale, “Caloric restriction experience reprograms stress and orexigenic pathways and promotes binge eating,” Journal of Neuroscience, vol. 30, no. 48, pp. 16399–16407, 2010. View at Publisher · View at Google Scholar · View at Scopus
  65. S. N. Burke and C. A. Barnes, “Neural plasticity in the ageing brain,” Nature Reviews Neuroscience, vol. 7, no. 1, pp. 30–40, 2006. View at Google Scholar
  66. B. Artegiani and F. Calegari, “Age-related cognitive decline: can neural stem cells help us?” Aging, vol. 4, no. 3, pp. 176–186, 2012. View at Google Scholar
  67. A. M. Lynch, D. J. Loane, A. M. Minogue et al., “Eicosapentaenoic acid confers neuroprotection in the amyloid-beta challenged aged hippocampus,” Neurobiology of Aging, vol. 28, no. 6, pp. 845–855, 2007. View at Google Scholar
  68. S. J. Texel and M. P. Mattson, “Impaired adaptive cellular responses to oxidative stress and the pathogenesis of Alzheimer's disease,” Antioxidants & Redox Signaling, vol. 14, no. 8, pp. 1519–1534, 2011. View at Google Scholar
  69. N. Pitsikas and S. Algeri, “Deterioration of spatial and nonspatial reference and working memory in aged rats: protective effect of life-long calorie restriction,” Neurobiology of Aging, vol. 13, no. 3, pp. 369–373, 1992. View at Publisher · View at Google Scholar · View at Scopus
  70. T. Komatsu, T. Chiba, H. Yamaza et al., “Manipulation of caloric content but not diet composition, attenuates the deficit in learning and memory of senescence-accelerated mouse strain P8,” Experimental Gerontology, vol. 43, no. 4, pp. 339–346, 2008. View at Publisher · View at Google Scholar · View at Scopus
  71. L. W. Means, J. L. Higgins, and T. J. Fernandez, “Mid-life onset of dietary restriction extends life and prolongs cognitive functioning,” Physiology & Behavior, vol. 54, no. 3, pp. 503–508, 1993. View at Google Scholar
  72. S. Goto, R. Takahashi, Z. Radak, and R. Sharma, “Beneficial biochemical outcomes of late-onset dietary restriction in rodents,” Annals of the New York Academy of Sciences, vol. 1100, pp. 431–441, 2007. View at Google Scholar
  73. M. Kaur, S. Sharma, and G. Kaur, “Age-related impairments in neuronal plasticity markers and astrocytic GFAP and their reversal by late-onset short term dietary restriction,” Biogerontology, vol. 9, no. 6, pp. 441–454, 2008. View at Publisher · View at Google Scholar · View at Scopus
  74. S. Sharma, R. Singh, M. Kaur, and G. Kaur, “Late-onset dietary restriction compensates for age-related increase in oxidative stress and alterations of HSP 70 and synapsin1 protein levels in male Wistar rats,” Biogerontology, vol. 11, no. 2, pp. 197–209, 2010. View at Publisher · View at Google Scholar · View at Scopus
  75. K. Eckles-Smith, D. Clayton, P. Bickford, and M. D. Browning, “Caloric restriction prevents age-related deficits in LTP and in NMDA receptor expression,” Molecular Brain Research, vol. 78, no. 1-2, pp. 154–162, 2000. View at Publisher · View at Google Scholar · View at Scopus
  76. A. Mladenovic Djordjevic, M. Perovic, V. Tesic et al., “Long-term dietary restriction modulates the level of presynaptic proteins in the cortex and hippocampus of the aging rat,” Neurochemistry International, vol. 56, no. 2, pp. 250–255, 2010. View at Publisher · View at Google Scholar · View at Scopus
  77. J. Lee, W. Duan, J. M. Long, D. K. Ingram, and M. P. Mattson, “Dietary restriction increases the number of newly generated neural cells, and BDNF expression, in the dentate gyrus of rats,” Journal of Molecular Neuroscience, vol. 15, no. 2, pp. 99–108, 2000. View at Publisher · View at Google Scholar · View at Scopus
  78. L. Bondolfi, F. Ermini, J. M. Long, D. K. Ingram, and M. Jucker, “Impact of age and caloric restriction on neurogenesis in the dentate gyrus of C57BL/6 mice,” Neurobiology of Aging, vol. 25, no. 3, pp. 333–340, 2004. View at Publisher · View at Google Scholar · View at Scopus
  79. S. Gillette-Guyonnet and B. Vellas, “Caloric restriction and brain function,” Current Opinion in Clinical Nutrition and Metabolic Care, vol. 11, no. 6, pp. 686–692, 2008. View at Publisher · View at Google Scholar · View at Scopus
  80. E. Keen-Rhinehart, K. Ondek, and J. E. Schneider, “Neuroendocrine regulation of appetitive ingestive behavior,” Frontiers in Neuroscience, vol. 7, article 213, 2013. View at Google Scholar
  81. R. J. Rangani, M. A. Upadhya, K. T. Nakhate, D. M. Kokare, and N. K. Subhedar, “Nicotine evoked improvement in learning and memory is mediated through NPY Y1 receptors in rat model of Alzheimer's disease,” Peptides, vol. 33, no. 2, pp. 317–328, 2012. View at Publisher · View at Google Scholar · View at Scopus
  82. O. W. Howell, K. Doyle, J. H. Goodman et al., “Neuropeptide Y stimulates neuronal precursor proliferation in the post-natal and adult dentate gyrus,” Journal of Neurochemistry, vol. 93, no. 3, pp. 560–570, 2005. View at Publisher · View at Google Scholar · View at Scopus
  83. C. Veyrat-Durebex, R. Quirion, G. Ferland, Y. Dumont, and P. Gaudreau, “Aging and long-term caloric restriction regulate neuropeptide Y receptor subtype densities in the rat brain,” Neuropeptides, vol. 47, no. 3, pp. 163–169, 2013. View at Google Scholar
  84. C. K. Martin, L. K. Heilbronn, L. de Jonge et al., “Effect of calorie restriction on resting metabolic rate and spontaneous physical activity,” Obesity, vol. 15, no. 12, pp. 2964–2973, 2007. View at Google Scholar
  85. P. J. Smith, J. A. Blumenthal, M. A. Babyak et al., “Effects of the dietary approaches to stop hypertension diet, exercise, and caloric restriction on neurocognition in overweight adults with high blood pressure,” Hypertension, vol. 55, no. 6, pp. 1331–1338, 2010. View at Publisher · View at Google Scholar · View at Scopus
  86. T. S. Anekonda, “Resveratrol—a boon for treating Alzheimer's disease?” Brain Research Reviews, vol. 52, no. 2, pp. 316–326, 2006. View at Google Scholar
  87. M. W. Voss, K. I. Erickson, R. S. Prakash et al., “Neurobiological markers of exercise-related brain plasticity in older adults,” Brain, Behavior, and Immunity, vol. 28, pp. 90–99, 2013. View at Google Scholar
  88. K. I. Erickson, R. S. Prakash, M. W. Voss et al., “Brain-derived neurotrophic factor is associated with age-related decline in hippocampal volume,” The Journal of Neuroscience, vol. 30, no. 15, pp. 5368–5375, 2010. View at Google Scholar
  89. I. A. Scarisbrick, E. G. Jones, and P. J. Isackson, “Coexpression of mRNAs for NGF, BDNF, and NT-3 in the cardiovascular system of the pre- and postnatal rat,” The Journal of Neuroscience, vol. 13, no. 3, pp. 875–893, 1993. View at Google Scholar
  90. A. Gielen, M. Khademi, S. Muhallab, T. Olsson, and F. Piehl, “Increased brain-derived neurotrophic factor expression in white blood cells of relapsing-remitting multiple sclerosis patients,” Scandinavian Journal of Immunology, vol. 57, no. 5, pp. 493–497, 2003. View at Google Scholar
  91. D. M. Holtzman, J. C. Morris, and A. M. Goate, “Alzheimer's disease: the challenge of the second century,” Science Translational Medicine, vol. 3, no. 77, article 77sr1, 2011. View at Google Scholar
  92. D. Krstic and I. Knuesel, “Deciphering the mechanism underlying late-onset Alzheimer disease,” Nature Reviews Neurology, vol. 9, no. 1, pp. 25–34, 2013. View at Google Scholar
  93. O. Lazarov, M. Lee, D. A. Peterson, and S. S. Sisodia, “Evidence that synaptically released β-amyloid accumulates as extracellular deposits in the hippocampus of transgenic mice,” Journal of Neuroscience, vol. 22, no. 22, pp. 9785–9793, 2002. View at Google Scholar · View at Scopus
  94. H. S. Phillips, J. M. Hains, M. Armanini, G. R. Laramee, S. A. Johnson, and J. W. Winslow, “BDNF mRNA is decreased in the hippocampus of individuals with Alzheimer's disease,” Neuron, vol. 7, no. 5, pp. 695–702, 1991. View at Publisher · View at Google Scholar · View at Scopus
  95. L. Tapia-Arancibia, E. Aliaga, M. Silhol, and S. Arancibia, “New insights into brain BDNF function in normal aging and Alzheimer disease,” Brain Research Reviews, vol. 59, no. 1, pp. 201–220, 2008. View at Publisher · View at Google Scholar · View at Scopus
  96. O. Lazarov, M. P. Mattson, D. A. Peterson, S. W. Pimplikar, and H. van Praag, “When neurogenesis encounters aging and disease,” Trends in Neurosciences, vol. 33, no. 12, pp. 569–579, 2010. View at Google Scholar
  97. S. Gillette-Guyonnet, M. Secher, and B. Vellas, “Nutrition and neurodegeneration: epidemiological evidence and challenges for future research,” British Journal of Clinical Pharmacology, vol. 75, no. 3, pp. 738–755, 2013. View at Google Scholar
  98. G. M. Pasinetti and J. A. Eberstein, “Metabolic syndrome and the role of dietary lifestyles in Alzheimer's disease,” Journal of Neurochemistry, vol. 106, no. 4, pp. 1503–1514, 2008. View at Google Scholar
  99. A. Maruszak, A. Pilarski, T. Murphy, N. Branch, and S. Thuret, “Hippocampal neurogenesis in Alzheimer's disease: is there a role for dietary modulation?” Journal of Alzheimer's Disease, vol. 38, no. 1, pp. 11–38, 2014. View at Google Scholar
  100. P. Wu, Q. Shen, S. Dong, Z. Xu, J. Z. Tsien, and Y. Hu, “Calorie restriction ameliorates neurodegenerative phenotypes in forebrain-specific presenilin-1 and presenilin-2 double knockout mice,” Neurobiology of Aging, vol. 29, no. 10, pp. 1502–1511, 2008. View at Publisher · View at Google Scholar · View at Scopus
  101. J. A. Luchsinger, M. X. Tang, S. Shea, and R. Mayeux, “Caloric intake and the risk of Alzheimer disease,” Archives of Neurology, vol. 59, no. 8, pp. 1258–1263, 2002. View at Google Scholar
  102. D. Gustafson, E. Rothenberg, K. Blennow, B. Steen, and I. Skoog, “An 18-year follow-up of overweight and risk of Alzheimer disease,” Archives of Internal Medicine, vol. 163, no. 13, pp. 1524–1528, 2003. View at Publisher · View at Google Scholar · View at Scopus
  103. Y. E. Geda, M. Ragossnig, L. A. Roberts et al., “Caloric intake, aging, and mild cognitive impairment: a population-based study,” Journal of Alzheimer's disease, vol. 34, no. 2, pp. 501–507, 2013. View at Google Scholar
  104. M. P. Mattson, W. Duan, and Z. Guo, “Meal size and frequency affect neuronal plasticity and vulnerability to disease: cellular and molecular mechanisms,” Journal of Neurochemistry, vol. 84, no. 3, pp. 417–431, 2003. View at Google Scholar
  105. K. Harrison, 5:2 Your Life - Get Happy, Get Healthy, Get Slim, CreateSpace Independent Publishing Platform, 2013.
  106. A. J. Bruce-Keller, G. Umberger, R. McFall, and M. P. Mattson, “Food restriction reduces brain damage and improves behavioral outcome following excitotoxic and metabolic insults,” Annals of Neurology, vol. 45, no. 1, pp. 8–15, 1999. View at Google Scholar
  107. G. Qiu, E. L. Spangler, R. Wan et al., “Neuroprotection provided by dietary restriction in rats is further enhanced by reducing glucocortocoids,” Neurobiology of Aging, vol. 33, no. 10, pp. 2398–2410, 2012. View at Google Scholar
  108. J. Lee, K. B. Seroogy, and M. P. Mattson, “Dietary restriction enhances neurotrophin expression and neurogenesis in the hippocampus of adult mice,” Journal of Neurochemistry, vol. 80, no. 3, pp. 539–547, 2002. View at Publisher · View at Google Scholar · View at Scopus
  109. Á. Fontán-Lozano, J. L. Sáez-Cassanelli, M. C. Inda et al., “Caloric restriction increases learning consolidation and facilitates synaptic plasticity through mechanisms dependent on NR2B subunits of the NMDA receptor,” Journal of Neuroscience, vol. 27, no. 38, pp. 10185–10195, 2007. View at Publisher · View at Google Scholar · View at Scopus
  110. R. M. Anson, Z. Guo, R. de Cabo et al., “Intermittent fasting dissociates beneficial effects of dietary restriction on glucose metabolism and neuronal resistance to injury from calorie intake,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 10, pp. 6216–6220, 2003. View at Google Scholar
  111. B. Li, J. Zhao, J. Lv et al., “Additive antidepressant-like effects of fasting with imipramine via modulation of 5-HT2 receptors in the mice,” Progress in Neuro-Psychopharmacology & Biological Psychiatry, vol. 48, pp. 199–206, 2014. View at Google Scholar
  112. R. Singh, D. Lakhanpal, S. Kumar et al., “Late-onset intermittent fasting dietary restriction as a potential intervention to retard age-associated brain function impairments in male rats,” Age, vol. 34, no. 4, pp. 917–933, 2012. View at Publisher · View at Google Scholar · View at Scopus
  113. I. M. Mansuy, “Calcineurin in memory and bidirectional plasticity,” Biochemical and Biophysical Research Communications, vol. 311, no. 4, pp. 1195–1208, 2003. View at Google Scholar
  114. T. R. Soderling, “Calcium/calmodulin-dependent protein kinase II: role in learning and memory,” Molecular and Cellular Biochemistry, vol. 127-128, pp. 93–101, 1993. View at Google Scholar · View at Scopus
  115. K. P. Giese, N. B. Fedorov, R. K. Filipkowski, and A. J. Silva, “Autophosphorylation at Thr286 of the α calcium-calmodulin kinase II in LTP and learning,” Science, vol. 279, no. 5352, pp. 870–873, 1998. View at Publisher · View at Google Scholar · View at Scopus
  116. B. P. F. Rutten, N. M. van der Kolk, S. Schafer et al., “Age-related loss of synaptophysin immunoreactive presynaptic boutons within the hippocampus of APP751SL, PS1M146L, and APP751 SL/PS1M146L transgenic mice,” American Journal of Pathology, vol. 167, no. 1, pp. 161–173, 2005. View at Google Scholar · View at Scopus
  117. E. A. Vallejo, “Hunger diet on alternate days in the nutrition of the aged,” La Prensa Médica Argentina, vol. 44, no. 2, pp. 119–120, 1957. View at Google Scholar
  118. A. Stunkard, Nutrition, Aging and Obesity, in Nutrition, Longevity, and Aging, Academic Press, New York, NY, USA, 1976.
  119. L. K. Heilbronn, S. R. Smith, C. K. Martin, S. D. Anton, and E. Ravussin, “Alternate-day fasting in nonobese subjects: effects on body weight, body composition, and energy metabolism,” American Journal of Clinical Nutrition, vol. 81, no. 1, pp. 69–73, 2005. View at Google Scholar · View at Scopus
  120. N. M. Hussin, S. Shahar, N. I. Teng, W. Z. Ngah, and S. K. Das, “Efficacy of fasting and calorie restriction (FCR) on mood and depression among ageing men,” The Journal of Nutrition, Health & Aging, vol. 17, no. 8, pp. 674–680, 2013. View at Google Scholar
  121. N. I. M. F. Teng, S. Shahar, Z. A. Manaf, S. K. Das, C. S. C. Taha, and W. Z. W. Ngah, “Efficacy of fasting calorie restriction on quality of life among aging men,” Physiology and Behavior, vol. 104, no. 5, pp. 1059–1064, 2011. View at Publisher · View at Google Scholar · View at Scopus
  122. V. K. M. Halagappa, Z. Guo, M. Pearson et al., “Intermittent fasting and caloric restriction ameliorate age-related behavioral deficits in the triple-transgenic mouse model of Alzheimer's disease,” Neurobiology of Disease, vol. 26, no. 1, pp. 212–220, 2007. View at Publisher · View at Google Scholar · View at Scopus
  123. I. Driscoll and J. Troncoso, “Asymptomatic Alzheimer's disease: a prodrome or a state of resilience?” Current Alzheimer Research, vol. 8, no. 4, pp. 330–335, 2011. View at Google Scholar
  124. F. Gomez-Pinilla and E. Tyagi, “Diet and cognition: interplay between cell metabolism and neuronal plasticity,” Current Opinion in Clinical Nutrition and Metabolic Care, vol. 16, no. 6, pp. 726–733, 2013. View at Google Scholar
  125. J. P. Spencer, “The impact of fruit flavonoids on memory and cognition,” British Journal of Nutrition, vol. 104, supplement 3, pp. S40–S47, 2010. View at Google Scholar
  126. S. C. Gupta, S. Patchva, W. Koh, and B. B. Aggarwal, “Discovery of curcumin, a component of golden spice, and its miraculous biological activities,” Clinical and Experimental Pharmacology and Physiology, vol. 39, no. 3, pp. 283–299, 2012. View at Google Scholar
  127. F. Gomez-Pinilla and T. T. Nguyen, “Natural mood foods: the actions of polyphenols against psychiatric and cognitive disorders,” Nutritional Neuroscience, vol. 15, no. 3, pp. 127–133, 2012. View at Google Scholar
  128. C. Rendeiro, D. Vauzour, R. J. Kean et al., “Blueberry supplementation induces spatial memory improvements and region-specific regulation of hippocampal BDNF mRNA expression in young rats,” Psychopharmacology, vol. 223, no. 3, pp. 319–330, 2012. View at Publisher · View at Google Scholar · View at Scopus
  129. C. Rendeiro, D. Vauzour, M. Rattray et al., “Dietary levels of pure flavonoids improve spatial memory performance and increase hippocampal brain-derived neurotrophic factor,” PLoS ONE, vol. 8, no. 5, Article ID e63535, 2013. View at Google Scholar
  130. Y. N. Zhao, W. F. Li, F. Li et al., “Resveratrol improves learning and memory in normally aged mice through microRNA-CREB pathway,” Biochemical and Biophysical Research Communications, vol. 435, no. 4, pp. 597–602, 2013. View at Google Scholar
  131. S. Saharan, D. J. Jhaveri, and P. F. Bartlett, “SIRT1 regulates the neurogenic potential of neural precursors in the adult subventricular zone and hippocampus,” Journal of Neuroscience Research, vol. 91, no. 5, pp. 642–659, 2013. View at Google Scholar
  132. N. Harada, J. Zhao, H. Kurihara, N. Nakagata, and K. Okajima, “Resveratrol improves cognitive function in mice by increasing production of insulin-like growth factor-I in the hippocampus,” The Journal of Nutritional Biochemistry, vol. 22, no. 12, pp. 1150–1159, 2011. View at Publisher · View at Google Scholar · View at Scopus
  133. N. Narimatsu, N. Harada, H. Kurihara, N. Nakagata, K. Sobue, and K. Okajima, “Donepezil improves cognitive function in mice by increasing the production of insulin-like growth factor-I in the hippocampus,” Journal of Pharmacology and Experimental Therapeutics, vol. 330, no. 1, pp. 2–12, 2009. View at Publisher · View at Google Scholar · View at Scopus
  134. A. Dal-Pan, F. Pifferi, J. Marchal, J.-L. Picq, and F. Aujard, “Cognitive performances are selectively enhanced during chronic caloric restriction or resveratrol supplementation in a primate,” PLoS ONE, vol. 6, no. 1, Article ID e16581, 2011. View at Publisher · View at Google Scholar · View at Scopus
  135. H. R. Park, K. H. Kong, B. P. Yu, M. P. Mattson, and J. Lee, “Resveratrol inhibits the proliferation of neural progenitor cells and hippocampal neurogenesis,” The Journal of Biological Chemistry, vol. 287, no. 51, pp. 42588–42600, 2012. View at Google Scholar
  136. P. Willner, A. Towell, D. Sampson, S. Sophokleous, and R. Muscat, “Reduction of sucrose preference by chronic unpredictable mild stress, and its restoration by a tricyclic antidepressant,” Psychopharmacology, vol. 93, no. 3, pp. 358–364, 1987. View at Google Scholar · View at Scopus
  137. D. Liu, Q. Zhang, J. Gu et al., “Resveratrol prevents impaired cognition induced by chronic unpredictable mild stress in rats,” Progress in Neuro-Psychopharmacology & Biological Psychiatry, vol. 49, pp. 21–29, 2014. View at Google Scholar
  138. Z. Wang, J. Gu, X. Wang et al., “Antidepressant-like activity of resveratrol treatment in the forced swim test and tail suspension test in mice: the HPA axis, BDNF expression and phosphorylation of ERK,” Pharmacology Biochemistry and Behavior, vol. 112, pp. 104–110, 2013. View at Google Scholar
  139. S. Madhyastha, S. S. Sahu, and G. Rao, “Resveratrol for prenatal-stress-induced oxidative damage in growing brain and its consequences on survival of neurons,” The Journal of Basic and Clinical Physiology and Pharmacology, 2013. View at Publisher · View at Google Scholar
  140. S. Madhyastha, S. Sekhar, and G. Rao, “Resveratrol improves postnatal hippocampal neurogenesis and brain derived neurotrophic factor in prenatally stressed rats,” International Journal of Developmental Neuroscience, vol. 31, no. 7, pp. 580–585, 2013. View at Google Scholar
  141. F. Pilar-Cuellar, R. Vidal, A. Diaz et al., “Neural plasticity and proliferation in the generation of antidepressant effects: hippocampal implication,” Neural Plasticity, vol. 2013, Article ID 537265, 21 pages, 2013. View at Publisher · View at Google Scholar
  142. Y. Xu, Z. Wang, W. You et al., “Antidepressant-like effect of trans-resveratrol: involvement of serotonin and noradrenaline system,” European Neuropsychopharmacology, vol. 20, no. 6, pp. 405–413, 2010. View at Google Scholar
  143. Y. Liu, G. Jia, L. Gou et al., “Antidepressant-like effects of tea polyphenols on mouse model of chronic unpredictable mild stress,” Pharmacology Biochemistry and Behavior, vol. 104, pp. 27–32, 2013. View at Google Scholar
  144. Y. Yu, R. Wang, C. Chen et al., “Antidepressant-like effect of trans-resveratrol in chronic stress model: behavioral and neurochemical evidences,” Journal of Psychiatric Research, vol. 47, no. 3, pp. 315–322, 2013. View at Google Scholar
  145. G. Casadesus, B. Shukitt-Hale, H. M. Stellwagen et al., “Modulation of hippocampal plasticity and cognitive behavior by short-term blueberry supplementation in aged rats,” Nutritional Neuroscience, vol. 7, no. 5-6, pp. 309–316, 2004. View at Publisher · View at Google Scholar · View at Scopus
  146. L. Conboy, A. G. Foley, N. M. O'Boyle et al., “Curcumin-induced degradation of PKCδ is associated with enhanced dentate NCAM PSA expression and spatial learning in adult and aged Wistar rats,” Biochemical Pharmacology, vol. 77, no. 7, pp. 1254–1265, 2009. View at Publisher · View at Google Scholar · View at Scopus
  147. S. Dong, Q. Zeng, E. S. Mitchell et al., “Curcumin enhances neurogenesis and cognition in aged rats: implications for transcriptional interactions related to growth and synaptic plasticity,” PLoS ONE, vol. 7, no. 2, Article ID e31211, 2012. View at Google Scholar
  148. T. Kuwabara, J. Hsieh, A. Muotri et al., “Wnt-mediated activation of NeuroD1 and retro-elements during adult neurogenesis,” Nature Neuroscience, vol. 12, no. 9, pp. 1097–1105, 2009. View at Google Scholar
  149. N. Mons, L. Segu, X. Nogues, and M. C. Buhot, “Effects of age and spatial learning on adenylyl cyclase mRNA expression in the mouse hippocampus,” Neurobiology of Aging, vol. 25, no. 8, pp. 1095–1106, 2004. View at Publisher · View at Google Scholar · View at Scopus
  150. K. S. Bhullar and H. P. Rupasinghe, “Polyphenols: multipotent therapeutic agents in neurodegenerative diseases,” Oxidative Medicine and Cellular Longevity, vol. 2013, Article ID 891748, 18 pages, 2013. View at Publisher · View at Google Scholar
  151. T. P. Ng, P. C. Chiam, T. Lee, H. C. Chua, L. Lim, and E. H. Kua, “Curry consumption and cognitive function in the elderly,” American Journal of Epidemiology, vol. 164, no. 9, pp. 898–906, 2006. View at Google Scholar
  152. L. Letenneur, C. Proust-Lima, A. Le Gouge, J. F. Dartigues, and P. Barberger-Gateau, “Flavonoid intake and cognitive decline over a 10-year period,” American Journal of Epidemiology, vol. 165, no. 12, pp. 1364–1371, 2007. View at Publisher · View at Google Scholar · View at Scopus
  153. E. Kesse-Guyot, L. Fezeu, V. A. Andreeva et al., “Total and specific polyphenol intakes in midlife are associated with cognitive function measured 13 years later,” Journal of Nutrition, vol. 142, no. 1, pp. 76–83, 2012. View at Publisher · View at Google Scholar · View at Scopus
  154. S. A. Mandel, Y. Avramovich-Tirosh, L. Reznichenko et al., “Multifunctional activities of green tea catechins in neuroprotection: modulation of cell survival genes, iron-dependent oxidative stress and PKC signaling pathway,” NeuroSignals, vol. 14, no. 1-2, pp. 46–60, 2005. View at Publisher · View at Google Scholar · View at Scopus
  155. D. Y. Choi, Y. J. Lee, J. T. Hong, and H. J. Lee, “Antioxidant properties of natural polyphenols and their therapeutic potentials for Alzheimer's disease,” Brain Research Bulletin, vol. 87, no. 2-3, pp. 144–153, 2012. View at Google Scholar
  156. S. B. Gaudreault, D. Dea, and J. Poirier, “Increased caveolin-1 expression in Alzheimer's disease brain,” Neurobiol Aging, vol. 25, no. 6, pp. 753–759, 2004. View at Google Scholar
  157. S. Moosmang, N. Haider, N. Klugbauer et al., “Role of hippocampal Cav1.2 Ca2+ channels in NMDA receptor-independent synaptic plasticity and spatial memory,” The Journal of Neuroscience, vol. 25, no. 43, pp. 9883–9892, 2005. View at Publisher · View at Google Scholar · View at Scopus
  158. L. M. Veng, M. H. Mesches, and M. D. Browning, “Age-related working memory impairment is correlated with increases in the L-type calcium channel protein α1D (Cav1.3) in area CA1 of the hippocampus and both are ameliorated by chronic nimodipine treatment,” Molecular Brain Research, vol. 110, no. 2, pp. 193–202, 2003. View at Publisher · View at Google Scholar · View at Scopus
  159. J. Wang, M. G. Ferruzzi, L. Ho et al., “Brain-targeted proanthocyanidin metabolites for Alzheimer's disease treatment,” The Journal of Neuroscience, vol. 32, no. 15, pp. 5144–5150, 2012. View at Google Scholar
  160. L. Ho, M. G. Ferruzzi, E. M. Janle et al., “Identification of brain-targeted bioactive dietary quercetin-3-O-glucuronide as a novel intervention for Alzheimer's disease,” The FASEB Journal, vol. 27, no. 2, pp. 769–781, 2013. View at Google Scholar
  161. J. B. Hoppe, K. Coradini, R. L. Frozza et al., “Free and nanoencapsulated curcumin suppress beta-amyloid-induced cognitive impairments in rats: involvement of BDNF and Akt/GSK-3beta signaling pathway,” Neurobiol Learning Memory, vol. 106, pp. 134–144, 2013. View at Google Scholar
  162. S. Kuriyama, A. Hozawa, K. Ohmori et al., “Green tea consumption and cognitive function: a cross-sectional study from the Tsurugaya Project 1,” The American Journal of Clinical Nutrition, vol. 83, no. 2, pp. 355–361, 2006. View at Google Scholar
  163. J. Lindsay, D. Laurin, R. Verreault et al., “Risk factors for Alzheimer's disease: a prospective analysis from the Canadian Study of Health and Aging,” American Journal of Epidemiology, vol. 156, no. 5, pp. 445–453, 2002. View at Google Scholar
  164. J. A. Luchsinger, M. X. Tang, M. Siddiqui, S. Shea, and R. Mayeux, “Alcohol intake and risk of dementia,” Journal of the American Geriatrics Society, vol. 52, no. 4, pp. 540–546, 2004. View at Google Scholar
  165. S. Andrieu, P.-J. Ousset, N. Coley, M. Ouzid, H. Mathiex-Fortunet, and B. Vellas, “GuidAge study: a 5-year double blind, randomised trial of EGb 761 for the prevention of Alzheimer's disease in elderly subjects with memory complaints. I. Rationale, design and baseline data,” Current Alzheimer Research, vol. 5, no. 4, pp. 406–415, 2008. View at Publisher · View at Google Scholar · View at Scopus
  166. B. Vellas, N. Coley, P. J. Ousset et al., “Long-term use of standardised Ginkgo biloba extract for the prevention of Alzheimer's disease (GuidAge): a randomised placebo-controlled trial,” The Lancet Neurology, vol. 11, no. 10, pp. 851–859, 2012. View at Google Scholar
  167. A. D. Dangour, E. Allen, M. Richards, P. Whitehouse, and R. Uauy, “Design considerations in long-term intervention studies for the prevention of cognitive decline or dementia,” Nutrition Reviews, vol. 68, supplement 1, pp. S16–S21, 2010. View at Publisher · View at Google Scholar · View at Scopus
  168. T. Cederholm, N. Salem Jr., and J. Palmblad, “omega-3 fatty acids in the prevention of cognitive decline in humans,” Advances in Nutrition, vol. 4, no. 6, pp. 672–676, 2013. View at Google Scholar
  169. M. H. Davidson, “Omega-3 fatty acids: new insights into the pharmacology and biology of docosahexaenoic acid, docosapentaenoic acid, and eicosapentaenoic acid,” Current Opinion in Lipidology, vol. 24, no. 6, pp. 467–474, 2013. View at Google Scholar
  170. B. J. Meyer, N. J. Mann, J. L. Lewis, G. C. Milligan, A. J. Sinclair, and P. R. C. Howe, “Dietary intakes and food sources of omega-6 and omega-3 polyunsaturated fatty acids,” Lipids, vol. 38, no. 4, pp. 391–398, 2003. View at Publisher · View at Google Scholar · View at Scopus
  171. H. M. Su, “Mechanisms of n-3 fatty acid-mediated development and maintenance of learning memory performance,” The Journal of Nutritional Biochemistry, vol. 21, no. 5, pp. 364–373, 2010. View at Google Scholar
  172. T. Farkas, K. Kitajka, E. Fodor et al., “Docosahexaenoic acid-containing phospholipid molecular species in brains of vertebrates,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 12, pp. 6362–6366, 2000. View at Google Scholar
  173. K. Kitajka, L. G. Puskas, A. Zvara et al., “The role of n-3 polyunsaturated fatty acids in brain: modulation of rat brain gene expression by dietary n-3 fatty acids,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 5, pp. 2619–2624, 2002. View at Google Scholar
  174. G. Barcelo-Coblijn, E. Hogyes, K. Kitajka et al., “Modification by docosahexaenoic acid of age-induced alterations in gene expression and molecular composition of rat brain phospholipids,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 20, pp. 11321–11326, 2003. View at Google Scholar
  175. D. Jansen, V. Zerbi, I. A. Arnoldussen et al., “Effects of specific multi-nutrient enriched diets on cerebral metabolism, cognition and neuropathology in abetaPPswe-PS1dE9 mice,” PLoS ONE, vol. 8, no. 9, Article ID e75393, 2013. View at Google Scholar
  176. A. Kawashima, T. Harada, H. Kami, T. Yano, K. Imada, and K. Mizuguchi, “Effects of eicosapentaenoic acid on synaptic plasticity, fatty acid profile and phosphoinositide 3-kinase signaling in rat hippocampus and differentiated PC12 cells,” Journal of Nutritional Biochemistry, vol. 21, no. 4, pp. 268–277, 2010. View at Publisher · View at Google Scholar · View at Scopus
  177. M. D. Niculescu, D. S. Lupu, and C. N. Craciunescu, “Maternal α-linolenic acid availability during gestation and lactation alters the postnatal hippocampal development in the mouse offspring,” International Journal of Developmental Neuroscience, vol. 29, no. 8, pp. 795–802, 2011. View at Publisher · View at Google Scholar · View at Scopus
  178. E. Kawakita, M. Hashimoto, and O. Shido, “Docosahexaenoic acid promotes neurogenesis in vitro and in vivo,” Neuroscience, vol. 139, no. 3, pp. 991–997, 2006. View at Publisher · View at Google Scholar · View at Scopus
  179. V. R. Venna, D. Deplanque, C. Allet, K. Belarbi, M. Hamdane, and R. Bordet, “PUFA induce antidepressant-like effects in parallel to structural and molecular changes in the hippocampus,” Psychoneuroendocrinology, vol. 34, no. 2, pp. 199–211, 2009. View at Publisher · View at Google Scholar · View at Scopus
  180. C. He, X. Qu, L. Cui, J. Wang, and J. X. Kang, “Improved spatial learning performance of fat-1 mice is associated with enhanced neurogenesis and neuritogenesis by docosahexaenoic acid,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 27, pp. 11370–11375, 2009. View at Google Scholar
  181. R. Crupi, M. Cambiaghi, R. Deckelbaum et al., “n3 fatty acids prevent impairment of neurogenesis and synaptic plasticity in B-cell activating factor (BAFF) transgenic mice,” Preventive Medicine, vol. 54, supplement, pp. S103–S108, 2012. View at Publisher · View at Google Scholar · View at Scopus
  182. X. Lei, W. Zhang, T. Liu et al., “Perinatal supplementation with omega-3 polyunsaturated fatty acids improves sevoflurane-induced neurodegeneration and memory impairment in neonatal rats,” PLoS ONE, vol. 8, no. 8, Article ID e70645, 2013. View at Google Scholar
  183. H. Jiang, Z. Wang, Y. Wang et al., “Antidepressant-like effects of curcumin in chronic mild stress of rats: involvement of its anti-inflammatory action,” Progress in Neuro-Psychopharmacology & Biological Psychiatry, vol. 47, pp. 33–39, 2013. View at Google Scholar
  184. H. S. Bhatia, R. Agrawal, S. Sharma, Y.-X. Huo, Z. Ying, and F. Gomez-Pinilla, “Omega-3 fatty acid deficiency during brain maturation reduces neuronal and behavioral plasticity in adulthood,” PLoS ONE, vol. 6, no. 12, Article ID e28451, 2011. View at Publisher · View at Google Scholar · View at Scopus
  185. A. Vines, A. M. Delattre, M. M. S. Lima et al., “The role of 5-HT1A receptors in fish oil-mediated increased BDNF expression in the rat hippocampus and cortex: a possible antidepressant mechanism,” Neuropharmacology, vol. 62, no. 1, pp. 184–191, 2012. View at Publisher · View at Google Scholar · View at Scopus
  186. M. Hennebelle, L. Balasse, A. Latour et al., “Influence of omega-3 fatty acid status on the way rats adapt to chronic restraint stress,” PLoS ONE, vol. 7, no. 7, Article ID e42142, 2012. View at Google Scholar
  187. S. Sharma, Y. Zhuang, and F. Gomez-Pinilla, “High-fat diet transition reduces brain DHA levels associated with altered brain plasticity and behaviour,” Scientific Reports, vol. 2, article 431, 2012. View at Google Scholar
  188. E. Tyagi, R. Agrawal, Y. Zhuang, C. Abad, J. A. Waschek, and F. Gomez-Pinilla, “Vulnerability imposed by diet and brain trauma for anxiety-like phenotype: implications for post-traumatic stress disorders,” PLoS ONE, vol. 8, no. 3, Article ID e57945, 2013. View at Google Scholar
  189. Y. Matsuoka, “Clearance of fear memory from the hippocampus through neurogenesis by omega-3 fatty acids: a novel preventive strategy for posttraumatic stress disorder?” BioPsychoSocial Medicine, vol. 5, article 3, 2011. View at Publisher · View at Google Scholar · View at Scopus
  190. M. E. Sublette, S. P. Ellis, A. L. Geant, and J. J. Mann, “Meta-analysis of the effects of eicosapentaenoic acid (EPA) in clinical trials in depression,” Journal of Clinical Psychiatry, vol. 72, no. 12, pp. 1577–1584, 2011. View at Google Scholar
  191. P. Y. Lin, D. Mischoulon, M. P. Freeman et al., “Are omega-3 fatty acids antidepressants or just mood-improving agents? The effect depends upon diagnosis, supplement preparation, and severity of depression,” Molecular Psychiatry, vol. 17, no. 12, pp. 1161–1163, 2012. View at Google Scholar
  192. J. G. Martins, H. Bentsen, and B. K. Puri, “Eicosapentaenoic acid appears to be the key omega-3 fatty acid component associated with efficacy in major depressive disorder: a critique of Bloch and Hannestad and updated meta-analysis,” Molecular Psychiatry, vol. 17, pp. 1144–1167, 2012. View at Publisher · View at Google Scholar · View at Scopus
  193. A. Tanskanen, J. R. Hibbeln, J. Hintikka et al., “Fish consumption, depression, and suicidality in a general population,” Archives of General Psychiatry, vol. 58, no. 5, pp. 512–513, 2001. View at Google Scholar · View at Scopus
  194. K. M. Silvers and K. M. Scott, “Fish consumption and self-reported physical and mental health status,” Public Health Nutrition, vol. 5, no. 3, pp. 427–431, 2002. View at Google Scholar
  195. J. R. Hibbeln, “Seafood consumption, the DHA content of mothers' milk and prevalence rates of postpartum depression: a cross-national, ecological analysis,” Journal of Affective Disorders, vol. 69, no. 1–3, pp. 15–29, 2002. View at Publisher · View at Google Scholar · View at Scopus
  196. P. B. Adams, S. Lawson, A. Sanigorski, and A. J. Sinclair, “Arachidonic acid to eicosapentaenoic acid ratio in blood correlates positively with clinical symptoms of depression,” Lipids, vol. 31, supplement, pp. S157–S161, 1996. View at Google Scholar · View at Scopus
  197. M. Peet, B. Murphy, J. Shay, and D. Horrobin, “Depletion of omega-3 fatty acid levels in red blood cell membranes of depressive patients,” Biological Psychiatry, vol. 43, no. 5, pp. 315–319, 1998. View at Publisher · View at Google Scholar · View at Scopus
  198. S. Jazayeri, M. Tehrani-Doost, S. A. Keshavarz et al., “Comparison of therapeutic effects of omega-3 fatty acid eicosapentaenoic acid and fluoxetine, separately and in combination, in major depressive disorder,” Australian and New Zealand Journal of Psychiatry, vol. 42, no. 3, pp. 192–198, 2008. View at Publisher · View at Google Scholar · View at Scopus
  199. S. Frangou, M. Lewis, and P. McCrone, “Efficacy of ethyl-eicosapentaenoic acid in bipolar depression: randomised double-blind placebo-controlled study,” British Journal of Psychiatry, vol. 188, pp. 46–50, 2006. View at Publisher · View at Google Scholar · View at Scopus
  200. M. Haberka, K. Mizia-Stec, M. Mizia et al., “Effects of n-3 polyunsaturated fatty acids on depressive symptoms, anxiety and emotional state in patients with acute myocardial infarction,” Pharmacological Reports, vol. 65, no. 1, pp. 59–68, 2013. View at Google Scholar
  201. E. J. Giltay, J. M. Geleijnse, and D. Kromhout, “Effects of n-3 fatty acids on depressive symptoms and dispositional optimism after myocardial infarction,” The American Journal of Clinical Nutrition, vol. 94, no. 6, pp. 1442–1450, 2011. View at Google Scholar
  202. J. K. Kiecolt-Glaser, M. A. Belury, R. Andridge, W. B. Malarkey, and R. Glaser, “Omega-3 supplementation lowers inflammation and anxiety in medical students: a randomized controlled trial,” Brain, Behavior, and Immunity, vol. 25, no. 8, pp. 1725–1734, 2011. View at Publisher · View at Google Scholar · View at Scopus
  203. L. Kelly, B. Grehan, A. D. Chiesa et al., “The polyunsaturated fatty acids, EPA and DPA exert a protective effect in the hippocampus of the aged rat,” Neurobiology of Aging, vol. 32, no. 12, pp. 2318.e1–2318.e15, 2011. View at Publisher · View at Google Scholar · View at Scopus
  204. V. F. Labrousse, A. Nadjar, C. Joffre et al., “Short-term long chain omega3 diet protects from neuroinflammatory processes and memory impairment in aged mice,” PLoS ONE, vol. 7, no. 5, Article ID e36861, 2012. View at Google Scholar
  205. G. Hussain, F. Schmitt, J. P. Loeffler, and J. L. de Aguilar, “Fatting the brain: a brief of recent research,” Frontiers in Cellular Neuroscience, vol. 7, article 144, 2013. View at Google Scholar
  206. E. Sydenham, A. D. Dangour, and W. S. Lim, “Omega 3 fatty acid for the prevention of cognitive decline and dementia,” The Cochrane Database of Systematic Reviews, vol. 6, Article ID CD005379, 2012. View at Google Scholar · View at Scopus
  207. D. W. Luchtman and C. Song, “Cognitive enhancement by omega-3 fatty acids from child-hood to old age: findings from animal and clinical studies,” Neuropharmacology, vol. 64, pp. 550–565, 2013. View at Google Scholar
  208. B. M. van Gelder, M. Tijhuis, S. Kalmijn, and D. Kromhout, “Fish consumption, n-3 fatty acids, and subsequent 5-y cognitive decline in elderly men: the Zutphen Elderly Study,” American Journal of Clinical Nutrition, vol. 85, no. 4, pp. 1142–1147, 2007. View at Google Scholar · View at Scopus
  209. A. Nilsson, K. Radeborg, I. Salo, and I. Bjorck, “Effects of supplementation with n-3 polyunsaturated fatty acids on cognitive performance and cardiometabolic risk markers in healthy 51 to 72 years old subjects: a randomized controlled cross-over study,” Nutrition Journal, vol. 11, article 99, 2012. View at Google Scholar
  210. O. E. Titova, P. Sjogren, S. J. Brooks et al., “Dietary intake of eicosapentaenoic and docosahexaenoic acids is linked to gray matter volume and cognitive function in elderly,” Age, vol. 35, no. 4, pp. 1495–1505, 2013. View at Google Scholar
  211. O. van de Rest, A. Spiro III, E. Krall-Kaye, J. M. Geleijnse, L. C. P. G. M. de Groot, and K. L. Tucker, “Intakes of (n3) fatty acids and fatty fish are not associated with cognitive performance and 6-year cognitive change in men participating in the Veterans Affairs Normative Aging Study,” Journal of Nutrition, vol. 139, no. 12, pp. 2329–2336, 2009. View at Publisher · View at Google Scholar · View at Scopus
  212. M. M. Adams, H. S. Donohue, M. C. Linville, E. A. Iversen, I. G. Newton, and J. K. Brunso-Bechtold, “Age-related synapse loss in hippocampal CA3 is not reversed by caloric restriction,” Neuroscience, vol. 171, no. 2, pp. 373–382, 2010. View at Publisher · View at Google Scholar · View at Scopus
  213. D. Jansen, V. Zerbi, C. I. Janssen et al., “Impact of a multi-nutrient diet on cognition, brain metabolism, hemodynamics, and plasticity in apoE4 carrier and apoE knockout mice,” Brain Structure & Function. In press.
  214. Z. Amtul, M. Uhrig, R. F. Rozmahel, and K. Beyreuther, “Structural insight into the differential effects of omega-3 and omega-6 fatty acids on the production of Aβ peptides and amyloid plaques,” Journal of Biological Chemistry, vol. 286, no. 8, pp. 6100–6107, 2011. View at Publisher · View at Google Scholar · View at Scopus
  215. C. C. Liu, T. Kanekiyo, H. Xu, and G. Bu, “Apolipoprotein E and Alzheimer disease: risk, mechanisms and therapy,” Nature Reviews Neurology, vol. 9, no. 2, pp. 106–118, 2013. View at Google Scholar
  216. J. Davignon, “Apolipoprotein E and atherosclerosis: beyond lipid effect,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 25, no. 2, pp. 267–269, 2005. View at Google Scholar
  217. R. W. Mahley, “Apolipoprotein E: cholesterol transport protein with expanding role in cell biology,” Science, vol. 240, no. 4852, pp. 622–630, 1988. View at Google Scholar · View at Scopus
  218. F. W. Pfrieger, “Cholesterol homeostasis and function in neurons of the central nervous system,” Cellular and Molecular Life Sciences, vol. 60, no. 6, pp. 1158–1171, 2003. View at Google Scholar
  219. Z. Kariv-Inbal, S. Yacobson, R. Berkecz et al., “The isoform-specific pathological effects of ApoE4 in vivo are prevented by a fish oil (DHA) diet and are modified by cholesterol,” Journal of Alzheimer's Disease, vol. 28, no. 3, pp. 667–683, 2012. View at Publisher · View at Google Scholar · View at Scopus
  220. C. A. F. von Arnim, U. Gola, and H. K. Biesalski, “More than the sum of its parts? Nutrition in Alzheimer's disease,” Nutrition, vol. 26, no. 7-8, pp. 694–700, 2010. View at Publisher · View at Google Scholar · View at Scopus
  221. P. J. Seignourel, M. E. Kunik, L. Snow, N. Wilson, and M. Stanley, “Anxiety in dementia: a critical review,” Clinical Psychology Review, vol. 28, no. 7, pp. 1071–1082, 2008. View at Google Scholar
  222. D. Arsenault, C. Julien, C. Tremblay, and F. Calon, “DHA improves cognition and prevents dysfunction of entorhinal cortex neurons in 3xTg-AD mice,” PLoS ONE, vol. 6, no. 2, Article ID e17397, 2011. View at Publisher · View at Google Scholar · View at Scopus
  223. E. Bonnet, K. Touyarot, S. Alfos, V. Pallet, P. Higueret, and D. N. Abrous, “Retinoic acid restores adult hippocampal neurogenesis and reverses spatial memory deficit in vitamin A deprived rats,” PLoS ONE, vol. 3, no. 10, Article ID e3487, 2008. View at Publisher · View at Google Scholar · View at Scopus
  224. M. Fotuhi, P. Mohassel, and K. Yaffe, “Fish consumption, long-chain omega-3 fatty acids and risk of cognitive decline or Alzheimer disease: a complex association,” Nature Clinical Practice Neurology, vol. 5, no. 3, pp. 140–152, 2009. View at Publisher · View at Google Scholar · View at Scopus
  225. M. C. Morris, D. A. Evans, J. L. Bienias et al., “Consumption of fish and n-3 fatty acids and risk of incident Alzheimer disease,” Archives of Neurology, vol. 60, no. 7, pp. 940–946, 2003. View at Google Scholar
  226. M. A. Phillips, C. E. Childs, P. C. Calder, and P. J. Rogers, “Lower omega-3 fatty acid intake and status are associated with poorer cognitive function in older age: a comparison of individuals with and without cognitive impairment and Alzheimer's disease,” Nutritional Neuroscience. In press.
  227. C. C. Chiu, K. P. Su, T. C. Cheng et al., “The effects of omega-3 fatty acids monotherapy in Alzheimer's disease and mild cognitive impairment: a preliminary randomized double-blind placebo-controlled study,” Progress in Neuro-Psychopharmacology & Biological Psychiatry, vol. 32, no. 6, pp. 1538–1544, 2008. View at Google Scholar
  228. A. D. Dangour, V. A. Andreeva, E. Sydenham, and R. Uauy, “Omega 3 fatty acids and cognitive health in older people,” British Journal of Nutrition, vol. 107, supplement 2, pp. S152–S158, 2012. View at Google Scholar
  229. R. A. Sperling, J. Karlawish, and K. A. Johnson, “Preclinical Alzheimer disease-the challenges ahead,” Nature Reviews Neurology, vol. 9, no. 1, pp. 54–58, 2013. View at Google Scholar
  230. P. Scheltens, P. J. G. H. Kamphuis, F. R. J. Verhey et al., “Efficacy of a medical food in mild Alzheimer's disease: a randomized, controlled trial,” Alzheimer's and Dementia, vol. 6, no. 1, pp. 1.e1–10.e1, 2010. View at Publisher · View at Google Scholar · View at Scopus
  231. P. Scheltens, J. W. Twisk, R. Blesa et al., “Efficacy of Souvenaid in mild Alzheimer's disease: results from a randomized, controlled trial,” Journal of Alzheimer's Disease, vol. 31, no. 1, pp. 225–236, 2012. View at Google Scholar · View at Scopus
  232. F. Gomez-Pinilla, “Brain foods: the effects of nutrients on brain function,” Nature Reviews Neuroscience, vol. 9, no. 7, pp. 568–578, 2008. View at Google Scholar
  233. F. Gomez-Pinilla, “The combined effects of exercise and foods in preventing neurological and cognitive disorders,” Preventive Medicine, vol. 52, supplement 1, pp. S75–S80, 2011. View at Google Scholar
  234. A. V. Witte, M. Fobker, R. Gellner, S. Knecht, and A. Floel, “Caloric restriction improves memory in elderly humans,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 4, pp. 1255–1260, 2009. View at Google Scholar
  235. M. W. Voss, C. Vivar, A. F. Kramer, and H. van Praag, “Bridging animal and human models of exercise-induced brain plasticity,” Trends in Cognitive Sciences, vol. 17, no. 10, pp. 525–544, 2013. View at Google Scholar
  236. G. Chytrova, Z. Ying, and F. Gomez-Pinilla, “Exercise contributes to the effects of DHA dietary supplementation by acting on membrane-related synaptic systems,” Brain Research, vol. 1341, pp. 32–40, 2010. View at Publisher · View at Google Scholar · View at Scopus
  237. A. Wu, Z. Ying, and F. Gomez-Pinilla, “Docosahexaenoic acid dietary supplementation enhances the effects of exercise on synaptic plasticity and cognition,” Neuroscience, vol. 155, no. 3, pp. 751–759, 2008. View at Google Scholar
  238. A. Wu, Z. Ying, and F. Gomez-Pinilla, “Exercise facilitates the action of dietary DHA on functional recovery after brain trauma,” Neuroscience, vol. 248, pp. 655–663, 2013. View at Google Scholar
  239. H. van Praag, M. J. Lucero, G. W. Yeo et al., “Plant-derived flavanol (-)epicatechin enhances angiogenesis and retention of spatial memory in mice,” Journal of Neuroscience, vol. 27, no. 22, pp. 5869–5878, 2007. View at Publisher · View at Google Scholar · View at Scopus
  240. R. Molteni, A. Wu, S. Vaynman, Z. Ying, R. J. Barnard, and F. Gómez-Pinilla, “Exercise reverses the harmful effects of consumption of a high-fat diet on synaptic and behavioral plasticity associated to the action of brain-derived neurotrophic factor,” Neuroscience, vol. 123, no. 2, pp. 429–440, 2004. View at Publisher · View at Google Scholar · View at Scopus
  241. J. F. Trepanowski, R. E. Canale, K. E. Marshall, M. M. Kabir, and R. J. Bloomer, “Impact of caloric and dietary restriction regimens on markers of health and longevity in humans and animals: a summary of available findings,” Nutrition Journal, vol. 10, no. 1, article 107, 2011. View at Publisher · View at Google Scholar · View at Scopus
  242. A. Y. Seo, T. Hofer, B. Sung, S. Judge, H. Y. Chung, and C. Leeuwenburgh, “Hepatic oxidative stress during aging: effects of 8% long-term calorie restriction and lifelong exercise,” Antioxidants and Redox Signaling, vol. 8, no. 3-4, pp. 529–538, 2006. View at Publisher · View at Google Scholar · View at Scopus
  243. K. C. Deruisseau, A. N. Kavazis, S. Judge et al., “Moderate caloric restriction increases diaphragmatic antioxidant enzyme mRNA, but not when combined with lifelong exercise,” Antioxidants and Redox Signaling, vol. 8, no. 3-4, pp. 539–547, 2006. View at Publisher · View at Google Scholar · View at Scopus
  244. J. O. Holloszy, “Mortality rate and longevity of food-restricted exercising male rats: a reevaluation,” Journal of Applied Physiology, vol. 82, no. 2, pp. 399–403, 1997. View at Google Scholar · View at Scopus
  245. R. Agrawal and F. Gomez-Pinilla, “Metabolic syndrome' in the brain: deficiency in omega-3 fatty acid exacerbates dysfunctions in insulin receptor signalling and cognition,” The Journal of Physiology, vol. 590, part 10, pp. 2485–2499, 2012. View at Google Scholar
  246. N. F. Ho, J. M. Hooker, A. Sahay, D. J. Holt, and J. L. Roffman, “In vivo imaging of adult human hippocampal neurogenesis: progress, pitfalls and promise,” Molecular Psychiatry, vol. 18, no. 4, pp. 404–416, 2013. View at Google Scholar
  247. Y. Nagahama, H. Nabatame, T. Okina et al., “Cerebral correlates of the progression rate of the cognitive decline in probable Alzheimer's disease,” European Neurology, vol. 50, no. 1, pp. 1–9, 2003. View at Publisher · View at Google Scholar · View at Scopus
  248. A. Ruitenberg, T. Den Heijer, S. L. M. Bakker et al., “Cerebral hypoperfusion and clinical onset of dementia: the Rotterdam Study,” Annals of Neurology, vol. 57, no. 6, pp. 789–794, 2005. View at Publisher · View at Google Scholar · View at Scopus
  249. S. T. Francis, K. Head, P. G. Morris, and I. A. Macdonald, “The effect of flavanol-rich cocoa on the fMRI response to a cognitive task in healthy young people,” Journal of Cardiovascular Pharmacology, vol. 47, supplement 2, pp. S215–S220, 2006. View at Publisher · View at Google Scholar · View at Scopus
  250. N. D. Fisher, F. A. Sorond, and N. K. Hollenberg, “Cocoa flavanols and brain perfusion,” Journal of Cardiovascular Pharmacology, vol. 47, supplement 2, pp. S210–S214, 2006. View at Google Scholar
  251. K. L. Spalding, O. Bergmann, K. Alkass et al., “Dynamics of hippocampal neurogenesis in adult humans,” Cell, vol. 153, no. 6, pp. 1219–1227, 2013. View at Google Scholar
  252. S. W. Lee, G. D. Clemenson, and F. H. Gage, “New neurons in an aged brain,” Behavioural Brain Research, vol. 227, no. 2, pp. 497–507, 2012. View at Google Scholar
  253. M. J. Dauncey, “Genomic and epigenomic insights into nutrition and brain disorders,” Nutrients, vol. 5, no. 3, pp. 887–914, 2013. View at Google Scholar
  254. D. Milenkovic, C. Deval, E. Gouranton et al., “Modulation of miRNA expression by dietary polyphenols in apoE deficient mice: a new mechanism of the action of polyphenols,” PLoS ONE, vol. 7, no. 1, Article ID e29837, 2012. View at Publisher · View at Google Scholar · View at Scopus
  255. N. Sinn, C. Milte, and P. R. Howe, “Oiling the brain: a review of randomized controlled trials of omega-3 fatty acids in psychopathology across the lifespan,” Nutrients, vol. 2, no. 2, pp. 128–170, 2010. View at Google Scholar
  256. K. A. Wollen, “Alzheimer's disease: the pros and cons of pharmaceutical, nutritional, botanical, and stimulatory therapies, with a discussion of treatment strategies from the perspective of patients and practitioners,” Alternative Medicine Review, vol. 15, no. 3, pp. 223–244, 2010. View at Google Scholar · View at Scopus
  257. S. Yanai, Y. Okaichi, and H. Okaichi, “Long-term dietary restriction causes negative effects on cognitive functions in rats,” Neurobiology of Aging, vol. 25, no. 3, pp. 325–332, 2004. View at Publisher · View at Google Scholar · View at Scopus
  258. A. Aggarwal, P. Monsivais, A. J. Cook, and A. Drewnowski, “Does diet cost mediate the relation between socioeconomic position and diet quality?” European Journal of Clinical Nutrition, vol. 65, no. 9, pp. 1059–1066, 2011. View at Google Scholar
  259. G. Turrell, J. W. Lynch, G. A. Kaplan et al., “Socioeconomic position across the lifecourse and cognitive function in late middle age,” The Journals of Gerontology B: Psychological Sciences and Social Sciences, vol. 57, no. 1, pp. S43–S51, 2002. View at Google Scholar
  260. A. S. Karlamangla, D. Miller-Martinez, C. S. Aneshensel, T. E. Seeman, R. G. Wight, and J. Chodosh, “Trajectories of cognitive function in late life in the United States: demographic and socioeconomic predictors,” American Journal of Epidemiology, vol. 170, no. 3, pp. 331–342, 2009. View at Google Scholar
  261. D. A. Hackman, M. J. Farah, and M. J. Meaney, “Socioeconomic status and the brain: mechanistic insights from human and animal research,” Nature Reviews Neuroscience, vol. 11, no. 9, pp. 651–659, 2010. View at Google Scholar
  262. M. D. Parrott, B. Shatenstein, G. Ferland et al., “Relationship between diet quality and cognition depends on socioeconomic position in healthy older adults,” Journal of Nutrition, vol. 143, no. 11, pp. 1767–1773, 2013. View at Google Scholar
  263. J. Steffener and Y. Stern, “Exploring the neural basis of cognitive reserve in aging,” Biochimica et Biophysica Acta, vol. 1822, no. 3, pp. 467–473, 2012. View at Google Scholar