Table of Contents Author Guidelines Submit a Manuscript
Neural Plasticity
Volume 2014 (2014), Article ID 628531, 11 pages
http://dx.doi.org/10.1155/2014/628531
Research Article

Dual Effect of Exogenous Nitric Oxide on Neuronal Excitability in Rat Substantia Gelatinosa Neurons

1Department of Oral Physiology, College of Dentistry, Institute of Wonkwang Biomaterial and Implant, Wonkwang University, 344-2 Shinyong Dong, Iksan 570-749, Republic of Korea
2Oral Biology Research Institute, Chosun University School of Dentistry, Gwangju 501-759, Republic of Korea

Received 19 September 2013; Revised 26 November 2013; Accepted 27 November 2013; Published 8 January 2014

Academic Editor: Dong-ho Youn

Copyright © 2014 A-Reum Park et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. P. Ahern, V. A. Klyachko, and M. B. Jackson, “cGMP and S-nitrosylation: two routes for modulation of neuronal excitability by NO,” Trends in Neurosciences, vol. 25, no. 10, pp. 510–517, 2002. View at Publisher · View at Google Scholar · View at Scopus
  2. V. Calabrese, C. Mancuso, M. Calvani, E. Rizzarelli, D. A. Butterfield, and A. M. Giuffrida Stella, “Nitric oxide in the central nervous system: neuroprotection versus neurotoxicity,” Nature Reviews Neuroscience, vol. 8, no. 10, pp. 766–775, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. Y. Cury, G. Picolo, V. P. Gutierrez, and S. H. Ferreira, “Pain and analgesia: the dual effect of nitric oxide in the nociceptive system,” Nitric Oxide, vol. 25, no. 3, pp. 243–254, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. J. V. Esplugues, “NO as a signalling molecule in the nervous system,” British Journal of Pharmacology, vol. 135, no. 5, pp. 1079–1095, 2002. View at Google Scholar · View at Scopus
  5. N. Olson and A. Van Der Vliet, “Interactions between nitric oxide and hypoxia-inducible factor signaling pathways in inflammatory disease,” Nitric Oxide, vol. 25, no. 2, pp. 125–137, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. J. W. Denninger and M. A. Marletta, “Guanylate cyclase and the NO/cGMP signaling pathway,” Biochimica et Biophysica Acta, vol. 1411, no. 2-3, pp. 334–350, 1999. View at Publisher · View at Google Scholar · View at Scopus
  7. A. Rudkouskaya, V. Sim, A. A. Shah, P. J. Feustel, D. Jourd'heuil, and A. A. Mongin, “Long-lasting inhibition of presynaptic metabolism and neurotransmitter release by protein S-nitrosylation,” Free Radical Biology & Medicine, vol. 49, no. 5, pp. 757–769, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. Y. J. Jin, J. Kim, and J. Y. Kwak, “Activation of the cGMP/protein kinase G pathway by nitric oxide can decrease TRPV1 activity in cultured rat dorsal root ganglion neurons,” The Korean Journal of Physiology & Pharmacology, vol. 16, no. 3, pp. 211–217, 2012. View at Google Scholar
  9. H. K. Kim, S. K. Park, J.-L. Zhou et al., “Reactive oxygen species (ROS) play an important role in a rat model of neuropathic pain,” Pain, vol. 111, no. 1-2, pp. 116–124, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. H. K. Kim, J. H. Kim, X. Gao et al., “Analgesic effect of vitamin E is mediated by reducing central sensitization in neuropathic pain,” Pain, vol. 122, no. 1-2, pp. 53–62, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. Y. Guan, M. Yaster, S. N. Raja, and Y.-X. Tao, “Genetic knockout and pharmacologic inhibition of neuronal nitric oxide synthase attenuate nerve injury-induced mechanical hypersensitivity in mice,” Molecular Pain, vol. 3, article no. 29, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Tanabe, Y. Nagatani, K. Saitoh, K. Takasu, and H. Ono, “Pharmacological assessments of nitric oxide synthase isoforms and downstream diversity of NO signaling in the maintenance of thermal and mechanical hypersensitivity after peripheral nerve injury in mice,” Neuropharmacology, vol. 56, no. 3, pp. 702–708, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. Y.-C. Chu, Y. Guan, J. Skinner, S. N. Raja, R. A. Johns, and Y.-X. Tao, “Effect of genetic knockout or pharmacologic inhibition of neuronal nitric oxide synthase on complete Freund's adjuvant-induced persistent pain,” Pain, vol. 119, no. 1–3, pp. 113–123, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. T. J. Coderre and K. Yashpal, “Intracellular messengers contributing to persistent nociception and hyperalgesia induced by L-glutamate and substance P in the rat formalin pain model,” The European Journal of Neuroscience, vol. 6, no. 8, pp. 1328–1334, 1994. View at Publisher · View at Google Scholar · View at Scopus
  15. S. T. Meller, C. P. Cummings, R. J. Traub, and G. F. Gebhart, “The role of nitric oxide in the development and maintenance of the hyperalgesia produced by intraplantar injection of carrageenan in the rat,” Neuroscience, vol. 60, no. 2, pp. 367–374, 1994. View at Publisher · View at Google Scholar · View at Scopus
  16. E. Chung, B. Burke, A. J. Bieber, J. C. Doss, Y. Ohgami, and R. M. Quock, “Dynorphin-mediated antinociceptive effects of l-arginine and SIN-1 (an NO donor) in mice,” Brain Research Bulletin, vol. 70, no. 3, pp. 245–250, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. I. D. G. Duarte, B. B. Lorenzetti, and S. H. Ferreira, “Peripheral analgesia and activation of the nitric oxide-cyclic GMP pathway,” European Journal of Pharmacology, vol. 186, no. 2-3, pp. 289–293, 1990. View at Google Scholar · View at Scopus
  18. T. Kawano, V. Zoga, M. Kimura et al., “Nitric oxide activates ATP-sensitive potassium channels in mammalian sensory neurons: action by direct S-nitrosylation,” Molecular Pain, vol. 5, article no. 12, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. V. M. Bolotina, S. Najibi, J. J. Palacino, P. J. Pagano, and R. A. Cohen, “Nitric oxide directly activates calcium-dependent potassium channels in vascular smooth muscle,” Nature, vol. 368, no. 6474, pp. 850–853, 1994. View at Publisher · View at Google Scholar · View at Scopus
  20. H. Y. Kim, S. J. Kim, J. Kim, S. B. Oh, H. Cho, and S. J. Jung, “Effect of nitric oxide on hyperpolarization-activated current in substantia gelatinosa neurons of rats,” Biochemical and Biophysical Research Communications, vol. 338, no. 3, pp. 1648–1653, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. Y. W. Yoon, B. Sung, and J. M. Chung, “Nitric oxide mediates behavioral signs of neuropathic pain in an experimental rat model,” NeuroReport, vol. 9, no. 3, pp. 367–372, 1998. View at Google Scholar · View at Scopus
  22. H. Y. Kim, J. Wang, Y. Lu, J. M. Chung, and K. Chung, “Superoxide signaling in pain is independent of nitric oxide signaling,” NeuroReport, vol. 20, no. 16, pp. 1424–1428, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. A. Kawabata, S. Manabe, Y. Manabe, and H. Takagi, “Effect of topical administration of L-arginine on formalin-induced nociception in the mouse: a dual role of peripherally formed NO in pain modulation,” British Journal of Pharmacology, vol. 112, no. 2, pp. 547–550, 1994. View at Google Scholar · View at Scopus
  24. K. Li and W.-X. Qi, “Effects of multiple intrathecal administration of L-arginine with different doses on formalin-induced nociceptive behavioral responses in rats,” Neuroscience Bulletin, vol. 26, no. 3, pp. 211–218, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. A. M. Sousa and W. A. Prado, “The dual effect of a nitric oxide donor in nociception,” Brain Research, vol. 897, no. 1-2, pp. 9–19, 2001. View at Publisher · View at Google Scholar · View at Scopus
  26. U. Pehl and H. A. Schmid, “Electrophysiological responses of neurons in the rat spinal cord to nitric oxide,” Neuroscience, vol. 77, no. 2, pp. 563–573, 1997. View at Google Scholar · View at Scopus
  27. Z. Lacza, E. M. Horváth, E. Pankotai et al., “The novel red-fluorescent probe DAR-4M measures reactive nitrogen species rather than NO,” Journal of Pharmacological and Toxicological Methods, vol. 52, no. 3, pp. 335–340, 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. H. Kojima, N. Nakatsubo, K. Kikuchi et al., “Detection and imaging of nitric oxide with novel fluorescent indicators: diaminofluoresceins,” Analytical Chemistry, vol. 70, no. 13, pp. 2446–2453, 1998. View at Google Scholar · View at Scopus
  29. A. Balcerczyk, M. Soszynski, and G. Bartosz, “On the specificity of 4-amino-5-methylamino-2,7-difluorofluorescein as a probe for nitric oxide,” Free Radical Biology & Medicine, vol. 39, no. 3, pp. 327–335, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. L. Yu, P. E. Gengaro, M. Niederberger, T. J. Burke, and R. W. Schrier, “Nitric oxide: a mediator in rat tubular hypoxia/reoxygenation injury,” Proceedings of the National Academy of Sciences of the United States of America, vol. 91, no. 5, pp. 1691–1695, 1994. View at Google Scholar · View at Scopus
  31. L. R. Silveira, L. Pereira-Da-Silva, C. Juel, and Y. Hellsten, “Formation of hydrogen peroxide and nitric oxide in rat skeletal muscle cells during contractions,” Free Radical Biology & Medicine, vol. 35, no. 5, pp. 455–464, 2003. View at Publisher · View at Google Scholar · View at Scopus
  32. C. G. Nichols, “KATP channels as molecular sensors of cellular metabolism,” Nature, vol. 440, no. 7083, pp. 470–476, 2006. View at Publisher · View at Google Scholar · View at Scopus
  33. O. Behrend, C. Schwark, T. Kunihiro, and M. Strupp, “Cyclic GMP inhibits and shifts the activation curve of the delayed rectifier (IK1) of type I mammalian vestibular hair cells,” NeuroReport, vol. 8, no. 12, pp. 2687–2690, 1997. View at Google Scholar · View at Scopus
  34. J. Han, N. Kim, E. Kim, W.-K. Ho, and Y. E. Earm, “Modulation of ATP-sensitive potassium channels by cGMP-dependent protein kinase in rabbit ventricular myocytes,” Journal of Biological Chemistry, vol. 276, no. 25, pp. 22140–22147, 2001. View at Publisher · View at Google Scholar · View at Scopus
  35. Q. Sun, G.-G. Xing, H.-Y. Tu, J.-S. Han, and Y. Wan, “Inhibition of hyperpolarization-activated current by ZD7288 suppresses ectopic discharges of injured dorsal root ganglion neurons in a rat model of neuropathic pain,” Brain Research, vol. 1032, no. 1-2, pp. 63–69, 2005. View at Publisher · View at Google Scholar · View at Scopus
  36. T. Miyamoto, A. E. Dublin, M. J. Petrus, and A. Patapoutian, “TRPV1 and TRPA1 mediate peripheral nitric oxide-induced nociception in mice,” PLoS ONE, vol. 4, no. 10, Article ID e7596, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. T. Yoshida, R. Inoue, T. Morii et al., “Nitric oxide activates TRP channels by cysteine S-nitrosylation,” Nature Chemical Biology, vol. 2, no. 11, pp. 596–607, 2006. View at Publisher · View at Google Scholar · View at Scopus