Table of Contents Author Guidelines Submit a Manuscript
Neural Plasticity
Volume 2016 (2016), Article ID 3081939, 9 pages
http://dx.doi.org/10.1155/2016/3081939
Research Article

Transplantation of Neural Stem Cells Cotreated with Thyroid Hormone and GDNF Gene Induces Neuroprotection in Rats of Chronic Experimental Allergic Encephalomyelitis

Department of Anatomy and Neurobiology, Sichuan Medical University, No. 319, Zhongshan Road, Luzhou, Sichuan 646000, China

Received 27 May 2015; Revised 5 August 2015; Accepted 12 August 2015

Academic Editor: Sara Xapelli

Copyright © 2016 Xiaoqing Gao et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. M. Rice, K. Kemp, A. Wilkins, and N. J. Scolding, “Cell therapy for multiple sclerosis: an evolving concept with implications for other neurodegenerative diseases,” The Lancet, vol. 382, no. 9899, pp. 1204–1213, 2013. View at Publisher · View at Google Scholar · View at Scopus
  2. O. Einstein, N. Grigoriadis, R. Mizrachi-Kol et al., “Transplanted neural precursor cells reduce brain inflammation to attenuate chronic experimental autoimmune encephalomyelitis,” Experimental Neurology, vol. 198, no. 2, pp. 275–284, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. R. P. Murphy, K. J. Murphy, and M. Pickering, “The development of myelin repair agents for treatment of multiple sclerosis: progress and challenges,” Bioengineered, vol. 4, no. 3, pp. 140–146, 2013. View at Publisher · View at Google Scholar · View at Scopus
  4. M. E. Cohen, N. Muja, N. Fainstein, J. W. M. Bulte, and T. Ben-Hur, “Conserved fate and function of ferumoxides-labeled neural precursor cells in vitro and in vivo,” Journal of Neuroscience Research, vol. 88, no. 5, pp. 936–944, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. S. Grade, L. Bernardino, and J. O. Malva, “Oligodendrogenesis from neural stem cells: perspectives for remyelinating strategies,” International Journal of Developmental Neuroscience, vol. 31, no. 7, pp. 692–700, 2013. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Fernandez, A. Giuliani, S. Pirondi et al., “Thyroid hormone administration enhances remyelination in chronic demyelinating inflammatory disease,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 46, pp. 16363–16368, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Fernández, M. Paradisi, G. Del Vecchio, L. Giardino, and L. Calzà, “Thyroid hormone induces glial lineage of primary neurospheres derived from non-pathological and pathological rat brain: implications for remyelination-enhancing therapies,” International Journal of Developmental Neuroscience, vol. 27, no. 8, pp. 769–778, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. P. G. Franco, L. Silvestroff, E. F. Soto, and J. M. Pasquini, “Thyroid hormones promote differentiation of oligodendrocyte progenitor cells and improve remyelination after cuprizone-induced demyelination,” Experimental Neurology, vol. 212, no. 2, pp. 458–467, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. J. C. Dugas, A. Ibrahim, and B. A. Barres, “The T3-induced gene KLF9 regulates oligodendrocyte differentiation and myelin regeneration,” Molecular and Cellular Neuroscience, vol. 50, no. 1, pp. 45–57, 2012. View at Publisher · View at Google Scholar · View at Scopus
  10. M. L. Dell'Acqua, L. Lorenzini, G. D'Intino et al., “Functional and molecular evidence of myelin- and neuroprotection by thyroid hormone administration in experimental allergic encephalomyelitis,” Neuropathology and Applied Neurobiology, vol. 38, no. 5, pp. 454–470, 2012. View at Publisher · View at Google Scholar · View at Scopus
  11. L.-F. H. Lin, D. H. Doherty, J. D. Lile, S. Bektesh, and F. Collins, “GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons,” Science, vol. 260, no. 5111, pp. 1130–1132, 1993. View at Publisher · View at Google Scholar · View at Scopus
  12. C. E. Henderson, H. S. Phillips, R. A. Pollock et al., “GDNF: a potent survival factor for motoneurons present in peripheral nerve and muscle,” Science, vol. 266, no. 5187, pp. 1062–1064, 1994. View at Publisher · View at Google Scholar · View at Scopus
  13. K. D. Beck, J. Valverde, T. Alexi et al., “Mesencephalic dopaminergic neurons protected by GDNF from axotomy-induced degeneration in the adult brain,” Nature, vol. 373, no. 6512, pp. 339–341, 1995. View at Publisher · View at Google Scholar · View at Scopus
  14. M. S. Ramer, J. V. Priestley, and S. B. McMahon, “Functional regeneration of sensory axons into the adult spinal cord,” Nature, vol. 403, no. 6767, pp. 312–316, 2000. View at Publisher · View at Google Scholar · View at Scopus
  15. A. Blesch and M. H. Tuszynski, “Cellular GDNF delivery promotes growth of motor and dorsal column sensory axons after partial and complete spinal cord transections and induces remyelinatio,” Journal of Comparative Neurology, vol. 467, no. 3, pp. 403–417, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. B. Chen, X.-Q. Gao, C.-X. Yang et al., “Neuroprotective effect of grafting GDNF gene-modified neural stem cells on cerebral ischemia in rats,” Brain Research, vol. 1284, pp. 1–11, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. J. M. Fletcher, S. J. Lalor, C. M. Sweeney, N. Tubridy, and K. H. G. Mills, “T cells in multiple sclerosis and experimental autoimmune encephalomyelitis,” Clinical and Experimental Immunology, vol. 162, no. 1, pp. 1–11, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. J. Yang, Y. Yan, C.-G. Ma et al., “Accelerated and enhanced effect of CCR5-transduced bone marrow neural stem cells on autoimmune encephalomyelitis,” Acta Neuropathologica, vol. 124, no. 4, pp. 491–503, 2012. View at Publisher · View at Google Scholar · View at Scopus
  19. S. Pluchino, L. Zanotti, E. Brambilla et al., “Immune regulatory neural stem/precursor cells protect from central nervous system autoimmunity by restraining dendritic cell function,” PLoS ONE, vol. 4, no. 6, Article ID e5959, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. R. Brambilla, P. D. Morton, J. J. Ashbaugh, S. Karmally, K. L. Lambertsen, and J. R. Bethea, “Astrocytes play a key role in EAE pathophysiology by orchestrating in the CNS the inflammatory response of resident and peripheral immune cells and by suppressing remyelination,” Glia, vol. 62, no. 3, pp. 452–467, 2014. View at Publisher · View at Google Scholar · View at Scopus
  21. S. Pluchino, L. Zanotti, B. Rossi et al., “Neurosphere-derived multipotent precursors promote neuroprotection by an immunomodulatory mechanism,” Nature, vol. 436, no. 7048, pp. 266–271, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Pluchino, A. Quattrini, E. Brambilla et al., “Injection of adult neurospheres induces recovery in a chronic model of multiple sclerosis,” Nature, vol. 422, no. 6933, pp. 688–694, 2003. View at Publisher · View at Google Scholar · View at Scopus
  23. M. Aharonowiz, O. Einstein, N. Fainstein, H. Lassmann, B. Reubinoff, and T. Ben-Hur, “Neuroprotective effect of transplanted human embryonic stem cell-derived neural precursors in an animal model of multiple sclerosis,” PLoS ONE, vol. 3, no. 9, Article ID e3145, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. C. Hackett, J. Knight, and Y. Mao-Draayer, “Transplantation of Fas-deficient or wild-type neural stem/progenitor cells (NPCs) is equally efficient in treating experimental autoimmune encephalomyelitis (EAE),” American Journal of Translational Research, vol. 6, no. 2, pp. 119–128, 2014. View at Google Scholar · View at Scopus
  25. M. V. Sofroniew and H. V. Vinters, “Astrocytes: biology and pathology,” Acta Neuropathologica, vol. 119, no. 1, pp. 7–35, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. R. Brambilla, T. Persaud, X. Hu et al., “Transgenic inhibition of astroglial NF-kappa B improves functional outcome in experimental autoimmune encephalomyelitis by suppressing chronic central nervous system inflammation,” The Journal of Immunology, vol. 182, no. 5, pp. 2628–2640, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. S. M. Moore, A. J. Khalaj, S. Kumar et al., “Multiple functional therapeutic effects of the estrogen receptor β agonist indazole-Cl in a mouse model of multiple sclerosis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 111, no. 50, pp. 18061–18066, 2014. View at Publisher · View at Google Scholar · View at Scopus
  28. L. Mayo, S. A. Trauge, M. Blain et al., “B4GALT6 regulates astrocyte activation during CNS inflammation,” Nature Medicine, vol. 20, no. 10, pp. 1147–1156, 2014. View at Google Scholar
  29. H. Wilms, J. Sievers, U. Rickert, M. Rostami-Yazdi, U. Mrowietz, and R. Lucius, “Dimethylfumarate inhibits microglial and astrocytic inflammation by suppressing the synthesis of nitric oxide, IL-1β, TNF-α and IL-6 in an in-vitro model of brain inflammation,” Journal of Neuroinflammation, vol. 7, article 30, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. L. Izikson, R. S. Klein, I. F. Charo, H. L. Weiner, and A. D. Luster, “Resistance to experimental autoimmune encephalomyelitis in mice lacking the CC chemokine receptor (CCR)2,” The Journal of Experimental Medicine, vol. 192, no. 7, pp. 1075–1080, 2000. View at Publisher · View at Google Scholar · View at Scopus
  31. Y. Zhou, Y. Sonobe, T. Akahori et al., “IL-9 promotes Th17 cell migration into the central nervous system via CC chemokine ligand-20 produced by astrocytes,” Journal of Immunology, vol. 186, no. 7, pp. 4415–4421, 2011. View at Publisher · View at Google Scholar · View at Scopus
  32. C. E. Pedraza, C. Taylor, A. Pereira et al., “Induction of oligodendrocyte differentiation and in vitro myelination by inhibition of rho-associated kinase,” ASN Neuro, vol. 6, no. 4, pp. 1–17, 2014. View at Publisher · View at Google Scholar · View at Scopus
  33. S. Obayashi, H. Tabunoki, S. U. Kim, and J.-I. Satoh, “Gene expression profiling of human neural progenitor cells following the serum-induced astrocyte differentiation,” Cellular and Molecular Neurobiology, vol. 29, no. 3, pp. 423–438, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. Z. Gao, Q. Wen, Y. Xia et al., “Osthole augments therapeutic efficiency of neural stem cells-based therapy in experimental autoimmune encephalomyelitis,” Journal of Pharmacological Sciences, vol. 124, no. 1, pp. 54–65, 2014. View at Publisher · View at Google Scholar · View at Scopus
  35. L. Calza, M. Fernandez, A. Giuliani, L. Aloe, and L. Giardino, “Thyroid hormone activates oligodendrocyte precursors and increases a myelin-forming protein and NGF content in the spinal cord during experimental allergic encephalomyelitis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 5, pp. 3258–3263, 2002. View at Publisher · View at Google Scholar · View at Scopus
  36. F. Girolamo, G. Ferrara, M. Strippoli et al., “Cerebral cortex demyelination and oligodendrocyte precursor response to experimental autoimmune encephalomyelitis,” Neurobiology of Disease, vol. 43, no. 3, pp. 678–689, 2011. View at Publisher · View at Google Scholar · View at Scopus