Table of Contents Author Guidelines Submit a Manuscript
Neural Plasticity
Volume 2017 (2017), Article ID 4296075, 8 pages
https://doi.org/10.1155/2017/4296075
Review Article

Therapeutic Potentials of Synapses after Traumatic Brain Injury: A Comprehensive Review

1Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, China
2School of Nursing, Medical College of Soochow University, Suzhou 215006, China
3Department of Neurosurgery, Lianyungang Hospital of Traditional Chinese Medicine, Lianyungang 222004, China

Correspondence should be addressed to Gang Chen; moc.361@yregrusoruen_ujn

Received 29 November 2016; Revised 9 February 2017; Accepted 14 March 2017; Published 12 April 2017

Academic Editor: Chih-Lung Lin

Copyright © 2017 Zunjia Wen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. G. Brandel, B. R. Hirshman, B. A. McCutcheon et al., “The association between psychiatric comorbidities and outcomes for inpatients with traumatic brain injury,” Journal of Neurotrauma, vol. 34, no. 5, pp. 1005–1016, 2017. View at Publisher · View at Google Scholar
  2. C. An, X. Jiang, H. Pu, and Y. Gao, “Severity-dependent long-term spatial learning-memory impairment in a mouse model of traumatic brain injury,” Translational Stroke Research, vol. 7, no. 6, pp. 512–520, 2016. View at Publisher · View at Google Scholar · View at Scopus
  3. P. K. Crane, L. E. Gibbons, K. Dams-O'Connor et al., “Association of traumatic brain injury with late-life neurodegenerative conditions and neuropathologic findings,” JAMA Neurology, vol. 73, no. 9, pp. 1062–1069, 2016. View at Publisher · View at Google Scholar
  4. V. Jeanneret and M. Yepes, “The plasminogen activation system promotes dendritic spine recovery and improvement in neurological function after an ischemic stroke,” Translational Stroke Research, 2016. View at Google Scholar
  5. A. Travaglia, R. Bisaz, E. Cruz, and C. M. Alberini, “Developmental changes in plasticity, synaptic, glia and connectivity protein levels in rat dorsal hippocampus,” Neurobiology of Learning and Memory, vol. 135, pp. 125–138, 2016. View at Publisher · View at Google Scholar
  6. K. Park, H. Heo, M. E. Han et al., “Learning-induced synaptic potentiation in implanted neural precursor cell-derived neurons,” Scientific Reports, vol. 5, p. 17796, 2015. View at Publisher · View at Google Scholar · View at Scopus
  7. Q. Hu, A. Manaenko, T. Xu, Z. Guo, J. Tang, and J. H. Zhang, “Hyperbaric oxygen therapy for traumatic brain injury: bench-to-bedside,” Medical Gas Research, vol. 6, no. 2, pp. 102–110, 2016. View at Publisher · View at Google Scholar
  8. S. W. Carlson, H. Yan, M. Ma, Y. Li, J. Henchir, and C. E. Dixon, “Traumatic brain injury impairs soluble N-ethylmaleimide-sensitive factor attachment protein receptor complex formation and alters synaptic vesicle distribution in the hippocampus,” Journal of Neurotrauma, vol. 33, no. 1, pp. 113–121, 2016. View at Publisher · View at Google Scholar · View at Scopus
  9. N. Egawa, J. Lok, K. Washida, and K. Arai, “Mechanisms of axonal damage and repair after central nervous system injury,” Translational Stroke Research, vol. 8, no. 1, pp. 14–21, 2017. View at Publisher · View at Google Scholar · View at Scopus
  10. Y. Shi, R. K. Leak, R. F. Keep, and J. Chen, “Translational stroke research on blood-brain barrier damage: challenges, perspectives, and goals,” Translational Stroke Research, vol. 7, no. 2, pp. 89–92, 2016. View at Publisher · View at Google Scholar · View at Scopus
  11. L. Merlo, F. Cimino, F. F. Angileri et al., “Alteration in synaptic junction proteins following traumatic brain injury,” Journal of Neurotrauma, vol. 31, no. 16, pp. 1375–1385, 2014. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Herculano-Houzel, “The human brain in numbers: a linearly scaled-up primate brain,” Frontiers in Human Neuroscience, vol. 3, p. 31, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. Y. P. Zhang, J. Cai, L. B. Shields, N. Liu, X. M. Xu, and C. B. Shields, “Traumatic brain injury using mouse models,” Translational Stroke Research, vol. 5, no. 4, pp. 454–471, 2014. View at Publisher · View at Google Scholar · View at Scopus
  14. O. C. Logue, N. P. Cramer, X. Xu, D. P. Perl, and Z. Galdzicki, “Alterations of functional properties of hippocampal networks following repetitive closed-head injury,” Experimental Neurology, vol. 277, pp. 227–243, 2016. View at Publisher · View at Google Scholar · View at Scopus
  15. T. Kawamata, Y. Katayama, D. A. Hovda, A. Yoshino, and D. P. Becker, “Administration of excitatory amino acid antagonists via microdialysis attenuates the increase in glucose utilization seen following concussive brain injury,” Journal of Cerebral Blood Flow and Metabolism, vol. 12, no. 1, pp. 12–24, 1992. View at Publisher · View at Google Scholar
  16. D. Z. Liu and F. R. Sharp, “Excitatory and mitogenic signaling in cell death, blood-brain barrier breakdown, and BBB repair after intracerebral hemorrhage,” Translational Stroke Research, vol. 3, no. Supplement 1, pp. 62–69, 2012. View at Publisher · View at Google Scholar · View at Scopus
  17. R. L. Hayes, L. W. Jenkins, and B. G. Lyeth, “Neurotransmitter-mediated mechanisms of traumatic brain injury: acetylcholine and excitatory amino acids,” Journal of Neurotrauma, vol. 9, Supplement 1, pp. S173–S187, 1992. View at Google Scholar
  18. J. Spaethling, L. Le, and D. F. Meaney, “NMDA receptor mediated phosphorylation of GluR1 subunits contributes to the appearance of calcium-permeable AMPA receptors after mechanical stretch injury,” Neurobiology of Disease, vol. 46, no. 3, pp. 646–654, 2012. View at Publisher · View at Google Scholar · View at Scopus
  19. J. M. Spaethling, D. M. Klein, P. Singh, and D. F. Meaney, “Calcium-permeable AMPA receptors appear in cortical neurons after traumatic mechanical injury and contribute to neuronal fate,” Journal of Neurotrauma, vol. 25, no. 10, pp. 1207–1216, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. R. A. Nicoll and R. C. Malenka, “Expression mechanisms underlying NMDA receptor-dependent long-term potentiation,” Annals of the new York Academy of Sciences, vol. 868, no. 1, pp. 515–525, 1999. View at Publisher · View at Google Scholar · View at Scopus
  21. J. F. MacDonald, M. F. Jackson, and M. A. Beazely, “Hippocampal long-term synaptic plasticity and signal amplification of NMDA receptors,” Critical Reviews in Neurobiology, vol. 18, no. 1-2, pp. 71–84, 2006. View at Publisher · View at Google Scholar
  22. A. Contractor and S. F. Heinemann, “Glutamate receptor trafficking in synaptic plasticity,” Science's STKE, vol. 2002, no. 156, article re14, 2002. View at Publisher · View at Google Scholar
  23. J. Jiang, V. Suppiramaniam, and M. W. Wooten, “Posttranslational modifications and receptor-associated proteins in AMPA receptor trafficking and synaptic plasticity,” Neurosignals, vol. 15, no. 5, pp. 266–282, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. M. L. Reger, A. M. Poulos, F. Buen, C. C. Giza, D. A. Hovda, and M. S. Fanselow, “Concussive brain injury enhances fear learning and excitatory processes in the amygdala,” Biological Psychiatry, vol. 71, no. 4, pp. 335–343, 2012. View at Publisher · View at Google Scholar · View at Scopus
  25. G. S. Griesbach, D. A. Hovda, D. L. Tio, and A. N. Taylor, “Heightening of the stress response during the first weeks after a mild traumatic brain injury,” Neuroscience, vol. 178, pp. 147–158, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. R. K. Rowe, B. M. Rumney, H. G. May et al., “Diffuse traumatic brain injury affects chronic corticosterone function in the rat,” Endocrine Connections, vol. 5, no. 4, pp. 152–166, 2016. View at Publisher · View at Google Scholar
  27. J. Suzuki, G. Corfas, and M. C. Liberman, “Round-window delivery of neurotrophin 3 regenerates cochlear synapses after acoustic overexposure,” Scientific Reports, vol. 6, p. 24907, 2016. View at Google Scholar
  28. T. A. Yacoubian and D. C. Lo, “Truncated and full-length TrkB receptors regulate distinct modes of dendritic growth,” Nature Neuroscience, vol. 3, no. 4, pp. 342–349, 2000. View at Publisher · View at Google Scholar · View at Scopus
  29. A. K. McAllister, L. C. Katz, and D. C. Lo, “Opposing roles for endogenous BDNF and NT-3 in regulating cortical dendritic growth,” Neuron, vol. 18, no. 5, pp. 767–778, 1997. View at Publisher · View at Google Scholar · View at Scopus
  30. B. Alsina, T. Vu, and S. Cohen-Cory, “Visualizing synapse formation in arborizing optic axons in vivo: dynamics and modulation by BDNF,” Nature Neuroscience, vol. 4, no. 11, pp. 1093–1101, 2001. View at Publisher · View at Google Scholar · View at Scopus
  31. K. W. Kafitz, C. R. Rose, H. Thoenen, and A. Konnerth, “Neurotrophin-evoked rapid excitation through TrkB receptors,” Nature, vol. 401, no. 6756, pp. 918–921, 1999. View at Publisher · View at Google Scholar · View at Scopus
  32. V. Lessmann, “Neurotrophin-dependent modulation of glutamatergic synaptic transmission in the mammalian CNS,” General Pharmacology, vol. 31, no. 5, pp. 667–674, 1998. View at Google Scholar
  33. L. Kelamangalath and G. M. Smith, “Neurotrophin treatment to promote regeneration after traumatic CNS injury,” Frontiers of Biology (Beijing), vol. 8, no. 5, pp. 486–495, 2013. View at Publisher · View at Google Scholar · View at Scopus
  34. K. A. Han, D. Woo, S. Kim et al., “Neurotrophin-3 regulates synapse development by modulating TrkC-PTPsigma synaptic adhesion and intracellular signaling pathways,” The Journal of Neuroscience, vol. 36, no. 17, pp. 4816–4831, 2016. View at Publisher · View at Google Scholar · View at Scopus
  35. B. A. Stoica and A. I. Faden, “Cell death mechanisms and modulation in traumatic brain injury,” Neurotherapeutics, vol. 7, no. 1, pp. 3–12, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. J. R. Ciallella, M. D. Ikonomovic, W. R. Paljug et al., “Changes in expression of amyloid precursor protein and interleukin-1beta after experimental traumatic brain injury in rats,” Journal of Neurotrauma, vol. 19, no. 12, pp. 1555–1567, 2002. View at Publisher · View at Google Scholar
  37. P. P. Sordillo, L. A. Sordillo, and L. Helson, “Bifunctional role of pro-inflammatory cytokines after traumatic brain injury,” Brain Injury, vol. 30, no. 9, pp. 1043–1053, 2016. View at Publisher · View at Google Scholar · View at Scopus
  38. E. C. Beattie, D. Stellwagen, W. Morishita et al., “Control of synaptic strength by glial TNFalpha,” Science, vol. 295, no. 5563, pp. 2282–2285, 2002. View at Publisher · View at Google Scholar · View at Scopus
  39. J. J. O'Connor, “Targeting tumour necrosis factor-alpha in hypoxia and synaptic signalling,” Irish Journal of Medical Science, vol. 182, no. 2, pp. 157–162, 2013. View at Publisher · View at Google Scholar · View at Scopus
  40. C. N. Winston, A. Noel, A. Neustadtl et al., “Dendritic spine loss and chronic white matter inflammation in a mouse model of highly repetitive head trauma,” The American Journal of Pathology, vol. 186, no. 3, pp. 552–567, 2016. View at Publisher · View at Google Scholar · View at Scopus
  41. A. Chodobski, B. J. Zink, and J. Szmydynger-Chodobska, “Blood-brain barrier pathophysiology in traumatic brain injury,” Translational Stroke Research, vol. 2, no. 4, pp. 492–516, 2011. View at Publisher · View at Google Scholar · View at Scopus
  42. A. Miyamoto, H. Wake, A. W. Ishikawa et al., “Microglia contact induces synapse formation in developing somatosensory cortex,” Nature Communications, vol. 7, p. 12540, 2016. View at Publisher · View at Google Scholar · View at Scopus
  43. H. Lui, J. Zhang, S. R. Makinson et al., “Progranulin deficiency promotes circuit-specific synaptic pruning by microglia via complement activation,” Cell, vol. 165, no. 4, pp. 921–935, 2016. View at Publisher · View at Google Scholar · View at Scopus
  44. S. Hong, V. F. Beja-Glasser, B. M. Nfonoyim et al., “Complement and microglia mediate early synapse loss in Alzheimer mouse models,” Science, vol. 352, no. 6286, pp. 712–716, 2016. View at Publisher · View at Google Scholar · View at Scopus
  45. E. Reisler and E. H. Egelman, “Actin structure and function: what we still do not understand,” The Journal of Biological Chemistry, vol. 282, no. 50, pp. 36133–36137, 2007. View at Publisher · View at Google Scholar · View at Scopus
  46. M. A. Rould, Q. Wan, P. B. Joel, S. Lowey, and K. M. Trybus, “Crystal structures of expressed non-polymerizable monomeric actin in the ADP and ATP states,” The Journal of Biological Chemistry, vol. 281, no. 42, pp. 31909–31919, 2006. View at Publisher · View at Google Scholar · View at Scopus
  47. J. von der Ecken, M. Muller, W. Lehman, D. J. Manstein, P. A. Penczek, and S. Raunser, “Structure of the F-actin-tropomyosin complex,” Nature, vol. 519, no. 7541, pp. 114–117, 2015. View at Publisher · View at Google Scholar · View at Scopus
  48. J. Bar, O. Kobler, B. van Bommel, and M. Mikhaylova, “Periodic F-actin structures shape the neck of dendritic spines,” Scientific Reports, vol. 6, p. 37136, 2016. View at Google Scholar
  49. I. Fernandez, D. Arac, J. Ubach et al., “Three-dimensional structure of the synaptotagmin 1 C2B-domain: synaptotagmin 1 as a phospholipid binding machine,” Neuron, vol. 32, no. 6, pp. 1057–1069, 2001. View at Publisher · View at Google Scholar · View at Scopus
  50. R. Fernandez-Chacon, O. H. Shin, A. Konigstorfer et al., “Structure/function analysis of Ca2+ binding to the C2A domain of synaptotagmin 1,” The Journal of Neuroscience, vol. 22, no. 19, pp. 8438–8446, 2002. View at Google Scholar
  51. M. C. Liu, V. Akle, W. Zheng et al., “Comparing calpain- and caspase-3-mediated degradation patterns in traumatic brain injury by differential proteome analysis,” The Biochemical Journal, vol. 394, no. Part 3, pp. 715–725, 2006. View at Publisher · View at Google Scholar · View at Scopus
  52. C. C. Giza, M. L. Prins, D. A. Hovda, H. R. Herschman, and J. D. Feldman, “Genes preferentially induced by depolarization after concussive brain injury: effects of age and injury severity,” Journal of Neurotrauma, vol. 19, no. 4, pp. 387–402, 2002. View at Publisher · View at Google Scholar
  53. S. Hilfiker, F. Benfenati, F. Doussau et al., “Structural domains involved in the regulation of transmitter release by synapsins,” The Journal of Neuroscience, vol. 25, no. 10, pp. 2658–2669, 2005. View at Publisher · View at Google Scholar · View at Scopus
  54. M. A. Ansari, K. N. Roberts, and S. W. Scheff, “A time course of contusion-induced oxidative stress and synaptic proteins in cortex in a rat model of TBI,” Journal of Neurotrauma, vol. 25, no. 5, pp. 513–526, 2008. View at Publisher · View at Google Scholar · View at Scopus
  55. S. N. Thompson, T. R. Gibson, B. M. Thompson, Y. Deng, and E. D. Hall, “Relationship of calpain-mediated proteolysis to the expression of axonal and synaptic plasticity markers following traumatic brain injury in mice,” Experimental Neurology, vol. 201, no. 1, pp. 253–265, 2006. View at Publisher · View at Google Scholar · View at Scopus
  56. J. Y. Ding, C. W. Kreipke, P. Schafer, S. Schafer, S. L. Speirs, and J. A. Rafols, “Synapse loss regulated by matrix metalloproteinases in traumatic brain injury is associated with hypoxia inducible factor-1alpha expression,” Brain Research, vol. 1268, pp. 125–134, 2009. View at Publisher · View at Google Scholar · View at Scopus
  57. R. M. Perera, R. Zoncu, L. Lucast, P. De Camilli, and D. Toomre, “Two synaptojanin 1 isoforms are recruited to clathrin-coated pits at different stages,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 51, pp. 19332–19337, 2006. View at Google Scholar
  58. A. Przekwas, M. R. Somayaji, and R. K. Gupta, “Synaptic mechanisms of blast-induced brain injury,” Frontiers in Neurology, vol. 7, p. 2, 2016. View at Publisher · View at Google Scholar · View at Scopus
  59. S. Dostes, S. Dubreucq, E. Ladeveze et al., “Running per se stimulates the dendritic arbor of newborn dentate granule cells in mouse hippocampus in a duration-dependent manner,” Hippocampus, vol. 26, no. 3, pp. 282–288, 2016. View at Publisher · View at Google Scholar · View at Scopus
  60. F. Gomez-Pinilla, S. Vaynman, and Z. Ying, “Brain-derived neurotrophic factor functions as a metabotrophin to mediate the effects of exercise on cognition,” The European Journal of Neuroscience, vol. 28, no. 11, pp. 2278–2287, 2008. View at Publisher · View at Google Scholar · View at Scopus
  61. J. M. Hall and L. M. Savage, “Exercise leads to the re-emergence of the cholinergic/nestin neuronal phenotype within the medial septum/diagonal band and subsequent rescue of both hippocampal ACh efflux and spatial behavior,” Experimental Neurology, vol. 278, pp. 62–75, 2016. View at Publisher · View at Google Scholar · View at Scopus
  62. G. Manko, A. Ziolkowski, A. Mirski, and M. Kłosiński, “The effectiveness of selected tai chi exercises in a program of strategic rehabilitation aimed at improving the self-care skills of patients aroused from prolonged coma after severe TBI,” Medical Science Monitor, vol. 19, pp. 767–772, 2013. View at Publisher · View at Google Scholar · View at Scopus
  63. A. A. Schmid, K. K. Miller, M. Van Puymbroeck, and N. Schalk, “Feasibility and results of a case study of yoga to improve physical functioning in people with chronic traumatic brain injury,” Disability and Rehabilitation, vol. 38, no. 9, pp. 914–920, 2016. View at Publisher · View at Google Scholar · View at Scopus
  64. C. Silverthorne, S. B. Khalsa, R. Gueth, N. DeAvilla, and J. Pansini, “Respiratory, physical, and psychological benefits of breath-focused yoga for adults with severe traumatic brain injury (TBI): a brief pilot study report,” International Association of Yoga Therapists, vol. 22, no. 1, pp. 47–51, 2012. View at Google Scholar
  65. F. da Silva Fiorin, A. P. de Oliveira Ferreira, L. R. Ribeiro et al., “The impact of previous physical training on redox signaling after traumatic brain injury in rats: a behavioral and neurochemical approach,” Journal of Neurotrauma, vol. 33, no. 14, pp. 1317–1330, 2016. View at Publisher · View at Google Scholar · View at Scopus
  66. Q. Hu, A. Manaenko, Z. Guo, L. Huang, J. Tang, and J. H. Zhang, “Hyperbaric oxygen therapy for post concussion symptoms: issues may affect the results,” Medical Gas Research, vol. 5, no. 1, p. 10, 2015. View at Publisher · View at Google Scholar
  67. P. G. Harch, “Hyperbaric oxygen in chronic traumatic brain injury: oxygen, pressure, and gene therapy,” Medical Gas Research, vol. 5, no. 1, p. 9, 2015. View at Publisher · View at Google Scholar
  68. A. Kandola, J. Hendrikse, P. J. Lucassen, and M. Yücel, “Aerobic exercise as a tool to improve hippocampal plasticity and function in humans: practical implications for mental health treatment,” Frontiers in Human Neuroscience, vol. 10, p. 373, 2016. View at Publisher · View at Google Scholar
  69. J. Mayeux, P. Katz, S. Edwards, J. W. Middleton, and P. E. Molina, “Inhibition of endocannabinoid degradation improves outcomes from mild traumatic brain injury: a mechanistic role for synaptic hyperexcitability,” Journal of Neurotrauma, vol. 34, no. 2, pp. 436–443, 2017. View at Publisher · View at Google Scholar
  70. C. M. Norris, P. Sompol, K. N. Roberts, M. Ansari, and S. W. Scheff, “Pycnogenol protects CA3-CA1 synaptic function in a rat model of traumatic brain injury,” Experimental Neurology, vol. 276, pp. 5–12, 2016. View at Publisher · View at Google Scholar · View at Scopus
  71. E. J. Perez, M. L. Cepero, S. U. Perez, J. T. Coyle, T. J. Sick, and D. J. Liebl, “EphB3 signaling propagates synaptic dysfunction in the traumatic injured brain,” Neurobiology of Disease, vol. 94, pp. 73–84, 2016. View at Publisher · View at Google Scholar · View at Scopus
  72. Y. Feng, Y. Cui, J. L. Gao et al., “Neuroprotective effects of resveratrol against traumatic brain injury in rats: involvement of synaptic proteins and neuronal autophagy,” Molecular Medicine Reports, vol. 13, no. 6, pp. 5248–5254, 2016. View at Publisher · View at Google Scholar · View at Scopus
  73. C. R. Butler, J. A. Boychuk, and B. N. Smith, “Effects of rapamycin treatment on neurogenesis and synaptic reorganization in the dentate gyrus after controlled cortical impact injury in mice,” Frontiers in Systems Neuroscience, vol. 9, p. 163, 2015. View at Publisher · View at Google Scholar · View at Scopus
  74. A. Wu, Z. Ying, and F. Gomez-Pinilla, “Dietary omega-3 fatty acids normalize BDNF levels, reduce oxidative damage, and counteract learning disability after traumatic brain injury in rats,” Journal of Neurotrauma, vol. 21, no. 10, pp. 1457–1467, 2004. View at Publisher · View at Google Scholar · View at Scopus
  75. W. Xuan, T. Agrawal, L. Huang, G. K. Gupta, and M. R. Hamblin, “Low-level laser therapy for traumatic brain injury in mice increases brain derived neurotrophic factor (BDNF) and synaptogenesis,” Journal of Biophotonics, vol. 8, no. 6, pp. 502–511, 2015. View at Publisher · View at Google Scholar · View at Scopus
  76. C. L. Liu, K. Zhang, and G. Chen, “Hydrogen therapy: from mechanism to cerebral diseases,” Medical Gas Research, vol. 6, no. 1, pp. 48–54, 2016. View at Publisher · View at Google Scholar
  77. Q. Hu, A. Manaenko, N. Matei et al., “Hyperbaric oxygen preconditioning: a reliable option for neuroprotection,” Medical Gas Research, vol. 6, no. 1, pp. 20–32, 2016. View at Publisher · View at Google Scholar
  78. M. C. Laplaca and G. R. Prado, “Neural mechanobiology and neuronal vulnerability to traumatic loading,” Journal of Biomechanics, vol. 43, no. 1, pp. 71–78, 2010. View at Publisher · View at Google Scholar · View at Scopus
  79. A. E. Kline, J. B. Leary, H. L. Radabaugh, J. P. Cheng, and C. O. Bondi, “Combination therapies for neurobehavioral and cognitive recovery after experimental traumatic brain injury: is more better?” Progress in Neurobiology, vol. 142, pp. 45–67, 2016. View at Publisher · View at Google Scholar · View at Scopus
  80. S. Margulies, G. Anderson, F. Atif et al., “Combination therapies for traumatic brain injury: retrospective considerations,” Journal of Neurotrauma, vol. 33, no. 1, pp. 101–112, 2016. View at Publisher · View at Google Scholar · View at Scopus