Table of Contents Author Guidelines Submit a Manuscript
Neural Plasticity
Volume 2018, Article ID 1458061, 9 pages
https://doi.org/10.1155/2018/1458061
Clinical Study

Modulating Brain Connectivity by Simultaneous Dual-Mode Stimulation over Bilateral Primary Motor Cortices in Subacute Stroke Patients

1Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Republic of Korea
2Department of Health Sciences and Technology, Department of Medical Device Management & Research, SAIHST, Sungkyunkwan University, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Republic of Korea
3Department of Physical and Rehabilitation Medicine, Kyungpook National University Medical Center, 474 Hakjeongdong, Buk-gu, Daegu 41404, Republic of Korea
4School of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
5Department of Rehabilitation Medicine, Pusan National University School of Medicine, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea

Correspondence should be addressed to Yun-Hee Kim; moc.gnusmas@mik.5221nuy

Received 17 August 2017; Revised 21 November 2017; Accepted 17 December 2017; Published 13 February 2018

Academic Editor: Malgorzata Kossut

Copyright © 2018 Jungsoo Lee et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Corti, C. Patten, and W. Triggs, “Repetitive transcranial magnetic stimulation of motor cortex after stroke: a focused review,” American Journal of Physical Medicine & Rehabilitation, vol. 91, no. 3, pp. 254–270, 2012. View at Publisher · View at Google Scholar · View at Scopus
  2. A. Gomez Palacio Schjetnan, J. Faraji, G. A. Metz, M. Tatsuno, and A. Luczak, “Transcranial direct current stimulation in stroke rehabilitation: a review of recent advancements,” Stroke Research and Treatment, vol. 2013, Article ID 170256, 14 pages, 2013. View at Publisher · View at Google Scholar · View at Scopus
  3. W.-Y. Hsu, C.-H. Cheng, K.-K. Liao, I.-H. Lee, and Y.-Y. Lin, “Effects of repetitive transcranial magnetic stimulation on motor functions in patients with stroke: a meta-analysis,” Stroke, vol. 43, no. 7, pp. 1849–1857, 2012. View at Publisher · View at Google Scholar · View at Scopus
  4. N. Murase, J. Duque, R. Mazzocchio, and L. G. Cohen, “Influence of interhemispheric interactions on motor function in chronic stroke,” Annals of Neurology, vol. 55, no. 3, pp. 400–409, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. C. Grefkes, D. A. Nowak, L. E. Wang, M. Dafotakis, S. B. Eickhoff, and G. R. Fink, “Modulating cortical connectivity in stroke patients by rTMS assessed with fMRI and dynamic causal modeling,” NeuroImage, vol. 50, no. 1, pp. 233–242, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. N. S. Ward and L. G. Cohen, “Mechanisms underlying recovery of motor function after stroke,” Archives of Neurology, vol. 61, no. 12, pp. 1844–1848, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. D. A. Nowak, C. Grefkes, M. Ameli, and G. R. Fink, “Interhemispheric competition after stroke: brain stimulation to enhance recovery of function of the affected hand,” Neurorehabilitation and Neural Repair, vol. 23, no. 7, pp. 641–656, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. A. R. Carter, S. V. Astafiev, C. E. Lang et al., “Resting interhemispheric functional magnetic resonance imaging connectivity predicts performance after stroke,” Annals of Neurology, vol. 67, no. 3, pp. 365–375, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. A. K. Rehme and C. Grefkes, “Cerebral network disorders after stroke: evidence from imaging-based connectivity analyses of active and resting brain states in humans,” The Journal of Physiology, vol. 591, no. 1, pp. 17–31, 2013. View at Publisher · View at Google Scholar · View at Scopus
  10. C.-H. Park, W. H. Chang, S. H. Ohn et al., “Longitudinal changes of resting-state functional connectivity during motor recovery after stroke,” Stroke, vol. 42, no. 5, pp. 1357–1362, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. J. S. Siegel, L. E. Ramsey, A. Z. Snyder et al., “Disruptions of network connectivity predict impairment in multiple behavioral domains after stroke,” Proceedings of the National Academy of Sciences of the United States of America, vol. 113, no. 30, pp. E4367–E4376, 2016. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Bestmann, J. Baudewig, H. R. Siebner, J. C. Rothwell, and J. Frahm, “Subthreshold high-frequency TMS of human primary motor cortex modulates interconnected frontal motor areas as detected by interleaved fMRI-TMS,” NeuroImage, vol. 20, no. 3, pp. 1685–1696, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. M. A. Nitsche, D. Liebetanz, F. Tergau, and W. Paulus, “Modulation of cortical excitability by transcranial direct current stimulation,” Der Nervenarzt, vol. 73, no. 4, pp. 332–335, 2002. View at Publisher · View at Google Scholar · View at Scopus
  14. F. Hummel, P. Celnik, P. Giraux et al., “Effects of non-invasive cortical stimulation on skilled motor function in chronic stroke,” Brain, vol. 128, no. 3, pp. 490–499, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. C. M. Stinear, M. A. Petoe, and W. D. Byblow, “Primary motor cortex excitability during recovery after stroke: implications for neuromodulation,” Brain Stimulation, vol. 8, no. 6, pp. 1183–1190, 2015. View at Publisher · View at Google Scholar · View at Scopus
  16. F. Hummel and L. G. Cohen, “Improvement of motor function with noninvasive cortical stimulation in a patient with chronic stroke,” Neurorehabilitation and Neural Repair, vol. 19, no. 1, pp. 14–19, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Zimerman, K. F. Heise, J. Hoppe, L. G. Cohen, C. Gerloff, and F. C. Hummel, “Modulation of training by single-session transcranial direct current stimulation to the intact motor cortex enhances motor skill acquisition of the paretic hand,” Stroke, vol. 43, no. 8, pp. 2185–2191, 2012. View at Publisher · View at Google Scholar · View at Scopus
  18. Y.-H. Kim, S. H. You, M.-H. Ko et al., “Repetitive transcranial magnetic stimulation–induced corticomotor excitability and associated motor skill acquisition in chronic stroke,” Stroke, vol. 37, no. 6, pp. 1471–1476, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. N. Takeuchi, T. Tada, M. Toshima, T. Chuma, Y. Matsuo, and K. Ikoma, “Inhibition of the unaffected motor cortex by 1 Hz repetitive transcranical magnetic stimulation enhances motor performance and training effect of the paretic hand in patients with chronic stroke,” Journal of Rehabilitation Medicine, vol. 40, no. 4, pp. 298–303, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. R. Lindenberg, V. Renga, L. L. Zhu, D. Nair, and G. Schlaug, “Bihemispheric brain stimulation facilitates motor recovery in chronic stroke patients,” Neurology, vol. 75, no. 24, pp. 2176–2184, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. S. Lefebvre, P. Laloux, A. Peeters, P. Desfontaines, J. Jamart, and Y. Vandermeeren, “Dual-tDCS enhances online motor skill learning and long-term retention in chronic stroke patients,” Frontiers in Human Neuroscience, vol. 6, no. 343, 2013. View at Publisher · View at Google Scholar
  22. S. Y. Lee, H.-J. Cheon, K. J. Yoon, W. H. Chang, and Y.-H. Kim, “Effects of dual transcranial direct current stimulation for aphasia in chronic stroke patients,” Annals of Rehabilitation Medicine, vol. 37, no. 5, pp. 603–610, 2013. View at Publisher · View at Google Scholar · View at Scopus
  23. N. Takeuchi, T. Tada, M. Toshima, Y. Matsuo, and K. Ikoma, “Repetitive transcranial magnetic stimulation over bilateral hemispheres enhances motor function and training effect of paretic hand in patients after stroke,” Journal of Rehabilitation Medicine, vol. 41, no. 13, pp. 1049–1054, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. E. Park, Y.-H. Kim, W. H. Chang, T. G. Kwon, and Y.-I. Shin, “Effects of dual-mode non-invasive brain stimulation on motor function,” Neuroscience Letters, vol. 567, pp. 24–29, 2014. View at Publisher · View at Google Scholar · View at Scopus
  25. E. Park, M. S. Kim, W. H. Chang et al., “Effects of bilateral repetitive transcranial magnetic stimulation on post-stroke dysphagia,” Brain Stimulation, vol. 10, no. 1, pp. 75–82, 2017. View at Publisher · View at Google Scholar · View at Scopus
  26. J. Y. Cho, A. Lee, M. S. Kim et al., “Dual-mode noninvasive brain stimulation over the bilateral primary motor cortices in stroke patients,” Restorative Neurology and Neuroscience, vol. 35, no. 1, pp. 105–114, 2017. View at Publisher · View at Google Scholar · View at Scopus
  27. S.-L. Liew, E. Santarnecchi, E. R. Buch, and L. G. Cohen, “Non-invasive brain stimulation in neurorehabilitation: local and distant effects for motor recovery,” Frontiers in Human Neuroscience, vol. 8, 2014. View at Publisher · View at Google Scholar · View at Scopus
  28. S. Lefebvre, L. Dricot, P. Laloux et al., “Increased functional connectivity one week after motor learning and tDCS in stroke patients,” Neuroscience, vol. 340, pp. 424–435, 2017. View at Publisher · View at Google Scholar · View at Scopus
  29. J. L. Chen and G. Schlaug, “Increased resting state connectivity between ipsilesional motor cortex and contralesional premotor cortex after transcranial direct current stimulation with physical therapy,” Scientific Reports, vol. 6, article 23271, 2016. View at Publisher · View at Google Scholar · View at Scopus
  30. A. R. Fugl-Meyer, L. Jääskö, I. Leyman, S. Olsson, and S. Steglind, “The post-stroke hemiplegic patient. 1. a method for evaluation of physical performance,” Scandinavian Journal of Rehabilitation Medicine, vol. 7, no. 1, pp. 13–31, 1975. View at Google Scholar
  31. B. Cheeran, P. Talelli, F. Mori et al., “A common polymorphism in the brain-derived neurotrophic factor gene (BDNF) modulates human cortical plasticity and the response to rTMS,” The Journal of Physiology, vol. 586, no. 23, pp. 5717–5725, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. W. H. Chang, Y. H. Kim, O. Y. Bang, S. T. Kim, Y. H. Park, and P. K. Lee, “Long-term effects of rTMS on motor recovery in patients after subacute stroke,” Journal of Rehabilitation Medicine, vol. 42, no. 8, pp. 758–764, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. M. A. Nitsche and W. Paulus, “Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans,” Neurology, vol. 57, no. 10, pp. 1899–1901, 2001. View at Publisher · View at Google Scholar
  34. M. A. Nitsche, A. Roth, M. F. Kuo et al., “Timing-dependent modulation of associative plasticity by general network excitability in the human motor cortex,” The Journal of Neuroscience, vol. 27, no. 14, pp. 3807–3812, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. A. K. Rehme, S. B. Eickhoff, C. Rottschy, G. R. Fink, and C. Grefkes, “Activation likelihood estimation meta-analysis of motor-related neural activity after stroke,” NeuroImage, vol. 59, no. 3, pp. 2771–2782, 2012. View at Publisher · View at Google Scholar · View at Scopus
  36. E. Bullmore and O. Sporns, “Complex brain networks: graph theoretical analysis of structural and functional systems,” Nature Reviews Neuroscience, vol. 10, no. 3, pp. 186–198, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. S. Achard and E. Bullmore, “Efficiency and cost of economical brain functional networks,” PLoS Computational Biology, vol. 3, no. 2, article e17, 2007. View at Publisher · View at Google Scholar · View at Scopus
  38. V. Latora and M. Marchiori, “Efficient behavior of small-world networks,” Physical Review Letters, vol. 87, no. 19, article 198701, 2001. View at Publisher · View at Google Scholar
  39. O. Sporns and J. D. Zwi, “The small world of the cerebral cortex,” Neuroinformatics, vol. 2, no. 2, pp. 145–162, 2004. View at Publisher · View at Google Scholar · View at Scopus
  40. D. J. Watts and S. H. Strogatz, “Collective dynamics of ‘small-world’ networks,” Nature, vol. 393, no. 6684, pp. 440–442, 1998. View at Publisher · View at Google Scholar · View at Scopus
  41. T. Kunze, A. Hunold, J. Haueisen, V. Jirsa, and A. Spiegler, “Transcranial direct current stimulation changes resting state functional connectivity: a large-scale brain network modeling study,” Neuroimage, vol. 140, pp. 174–187, 2016. View at Publisher · View at Google Scholar · View at Scopus
  42. M. D. Fox, M. A. Halko, M. C. Eldaief, and A. Pascual-Leone, “Measuring and manipulating brain connectivity with resting state functional connectivity magnetic resonance imaging (fcMRI) and transcranial magnetic stimulation (TMS),” NeuroImage, vol. 62, no. 4, pp. 2232–2243, 2012. View at Publisher · View at Google Scholar · View at Scopus
  43. L. Wang, C. Yu, H. Chen et al., “Dynamic functional reorganization of the motor execution network after stroke,” Brain, vol. 133, no. 4, pp. 1224–1238, 2010. View at Publisher · View at Google Scholar · View at Scopus
  44. J. Lee, E. Park, A. Lee, W. H. Chang, D. S. Kim, and Y. H. Kim, “Recovery-related indicators of motor network plasticity according to impairment severity after stroke,” European Journal of Neurology, vol. 24, no. 10, pp. 1290–1299, 2017. View at Publisher · View at Google Scholar