Table of Contents Author Guidelines Submit a Manuscript
Neural Plasticity
Volume 2018, Article ID 6125901, 15 pages
https://doi.org/10.1155/2018/6125901
Research Article

Motor Improvement of Skilled Forelimb Use Induced by Treatment with Growth Hormone and Rehabilitation Is Dependent on the Onset of the Treatment after Cortical Ablation

1Department of Physiology and Pharmacology, Neuroscience Institute of Castilla y León (INCyL), University of Salamanca, Salamanca, Spain
2Scientific Direction, Medical Centre Foltra, Teo, Spain
3Research and Development, Medical Centre Foltra, Teo, Spain
4Department of Statistics, University of Salamanca, Salamanca, Spain

Correspondence should be addressed to Margarita Heredia; se.lasu@aiderehm and Jesús Devesa; moc.liamg@susej.aseved

Received 24 March 2017; Revised 20 December 2017; Accepted 8 January 2018; Published 20 March 2018

Academic Editor: Stuart C. Mangel

Copyright © 2018 Margarita Heredia et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Scheepens, E. S. Sirimanne, B. H. Breier, R. G. Clark, P. D. Gluckman, and C. E. Williams, “Growth hormone as a neuronal rescue factor during recovery from CNS injury,” Neuroscience, vol. 104, no. 3, pp. 677–687, 2001. View at Publisher · View at Google Scholar · View at Scopus
  2. D. H. Shin, E. Lee, J. W. Kim et al., “Protective effect of growth hormone on neuronal apoptosis after hypoxia-ischemia in the neonatal rat brain,” Neuroscience Letters, vol. 354, no. 1, pp. 64–68, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. N. D. Aberg, K. G. Brywe, and J. Isgaard, “Aspects of growth hormone and insulin-like growth factor-I related to neuroprotection, regeneration, and functional plasticity in the adult brain,” The Scientific World Journal, vol. 6, pp. 53–80, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. J. Isgaard, D. Aberg, and M. Nilsson, “Protective and regenerative effects of the GH/IGF-I axis on the brain,” Minerva Endocrinologica, vol. 32, no. 2, pp. 103–113, 2007. View at Google Scholar
  5. L. J. Christophidis, T. Gorba, M. Gustavsson et al., “Growth hormone receptor immunoreactivity is increased in the subventricular zone of juvenile rat brain after focal ischemia: a potential role for growth hormone in injury-induced neurogenesis,” Growth Hormone & IGF Research, vol. 19, no. 6, pp. 497–506, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. P. Pathipati, A. Surus, C. E. Williams, and A. Scheepens, “Delayed and chronic treatment with growth hormone after endothelin-induced stroke in the adult rat,” Behavioural Brain Research, vol. 204, no. 1, pp. 93–101, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. P. Devesa, P. Reimunde, R. Gallego, J. Devesa, and V. M. Arce, “Growth hormone (GH) treatment may cooperate with locally-produced GH in increasing the proliferative response of hippocampal progenitors to kainate-induced injury,” Brain Injury, vol. 25, no. 5, pp. 503–510, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. R. C. Li, S. Z. Guo, M. Raccurt et al., “Exogenous growth hormone attenuates cognitive deficits induced by intermittent hypoxia in rats,” Neuroscience, vol. 196, pp. 237–250, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. C. Alba-Betancourt, J. L. Luna-Acosta, C. E. Ramírez-Martínez et al., “Neuro-protective effects of growth hormone (GH) after hypoxia-ischemia injury in embryonic chicken cerebellum,” General and Comparative Endocrinology, vol. 183, pp. 17–31, 2013. View at Publisher · View at Google Scholar · View at Scopus
  10. J. Devesa, P. Reimunde, A. Devesa et al., “Recovery from neurological sequelae secondary to oncological brain surgery in an adult growth hormone-deficient patient after growth hormone treatment,” Journal of Rehabilitation Medicine, vol. 41, no. 9, pp. 775–777, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. W. M. High Jr, M. Briones-Galang, J. A. Clark et al., “Effect of growth hormone replacement therapy on cognition after traumatic brain injury,” Journal of Neurotrauma, vol. 27, no. 9, pp. 1565–1575, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. P. Reimunde, A. Quintana, B. Castañón et al., “Effects of growth hormone (GH) replacement and cognitive rehabilitation in patients with cognitive disorders after traumatic brain injury,” Brain Injury, vol. 25, no. 1, pp. 65–73, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. O. K. Moreau, C. Cortet-Rudelli, E. Yollin, E. Merlen, W. Daveluy, and M. Roseaux, “Growth hormone replacement therapy in patients with traumatic brain injury,” Journal of Neurotrauma, vol. 30, no. 11, pp. 998–1006, 2013. View at Publisher · View at Google Scholar · View at Scopus
  14. J. Song, K. Park, H. Lee, and M. Kim, “The effect of recombinant human growth hormone therapy in patients with completed stroke: a pilot trial,” Annals of Rehabilitation Medicine, vol. 36, no. 4, pp. 447–457, 2012. View at Publisher · View at Google Scholar · View at Scopus
  15. J. Devesa, P. Devesa, P. Reimunde, and V. Arce, “Growth hormone and kynesitherapy for brain injury recovery,” in Brain Injury - Pathogenesis, Monitoring, Recovery and Management, A. Agrawal, Ed., pp. 417–454, InTech, Rijeka Croatia, 2012. View at Publisher · View at Google Scholar
  16. J. Devesa, P. Reimunde, P. Devesa, M. Barberá, and V. Arce, “Growth hormone (GH) and brain trauma,” Hormones and Behavior, vol. 63, no. 2, pp. 331–344, 2013. View at Publisher · View at Google Scholar · View at Scopus
  17. J. Devesa, G. Díaz-Getino, P. Rey et al., “Brain recovery after a plane crash: treatment with growth hormone (GH) and neurorehabilitation: a case report,” International Journal of Molecular Sciences, vol. 16, no. 12, pp. 30470–30482, 2015. View at Publisher · View at Google Scholar · View at Scopus
  18. J. Devesa, H. Lema, E. Zas, B. Munín, P. Taboada, and P. Devesa, “Learning and memory recoveries in a young girl treated with growth hormone and neurorehabilitation,” Journal of Clinical Medicine, vol. 5, no. 2, 2016. View at Publisher · View at Google Scholar
  19. M. Heredia, A. Fuente, J. Criado, J. Jayeya, J. Devesa, and A. S. Riolobos, “Early growth hormone (GH) treatment promotes relevant motor functional improvement after severe frontal cortex lesion in adult rats,” Behavioural Brain Research, vol. 247, pp. 48–58, 2013. View at Publisher · View at Google Scholar · View at Scopus
  20. J. Biernaskie, G. Chernenko, and D. Corbett, “Efficacy of rehabilitative experience declines with time after focal ischemic brain injury,” The Journal of Neuroscience, vol. 24, no. 5, pp. 1245–1254, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. T.-S. Yu, G. Zhang, D. J. Liebl, and S. G. Kernie, “Traumatic brain injury-induced hippocampal neurogenesis requires activation of early nestin-expressing progenitors,” The Journal of Neuroscience, vol. 28, no. 48, pp. 12901–12912, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. J. L. Ridet, S. K. Malhotra, A. Privat, and F. H. Gage, “Reactive astrocytes: cellular and molecular cues to biological function,” Trends in Neurosciences, vol. 20, no. 12, pp. 570–577, 1997. View at Publisher · View at Google Scholar · View at Scopus
  23. S. Belachew, R. Chittajallu, A. A. Aguirre et al., “Postnatal NG2 proteoglycan-expressing progenitor cells are intrinsically multipotent and generate functional neurons,” The Journal of Cell Biology, vol. 161, no. 1, pp. 169–186, 2003. View at Publisher · View at Google Scholar · View at Scopus
  24. A. Aguirre and V. Gallo, “Postnatal neurogenesis and gliogenesis in the olfactory bulb from NG2-expressing progenitors of the subventricular zone,” The Journal of Neuroscience, vol. 24, no. 46, pp. 10530–10541, 2004. View at Publisher · View at Google Scholar · View at Scopus
  25. A. Yokoyama, A. Sakamoto, K. Kameda, Y. Imai, and J. Tanaka, “NG2 proteoglycan-expressing microglia as multipotent neural progenitors in normal and pathologic brains,” Glia, vol. 53, no. 7, pp. 754–768, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. M. L. Hendrickson, A. J. Rao, O. N. Demerdash, and R. E. Kalil, “Expression of nestin by neural cells in the adult rat and human brain,” PLoS One, vol. 6, no. 4, article e18535, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. J. J. Ohab and S. T. Carmichael, “Poststroke neurogenesis: emerging principles of migration and localization of immature neurons,” The Neuroscientist, vol. 14, no. 4, pp. 369–380, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. N. Dancause, S. Barbay, S. B. Frost et al., “Extensive cortical rewiring after brain injury,” The Journal of Neuroscience, vol. 25, no. 44, pp. 10167–10179, 2005. View at Publisher · View at Google Scholar · View at Scopus
  29. S. Li, J. J. Overman, D. Katsman et al., “An age-related sprouting transcriptome provides molecular control of axonal sprouting after stroke,” Nature Neuroscience, vol. 13, no. 12, pp. 1496–1504, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. . Gossard, F. Dihl, G. Pelletier, P. M. Dubois, and G. Morel, “In situ hybridization to rat brain and pituitary gland of growth hormone cDNA,” Neuroscience Letters, vol. 79, no. 3, pp. 251–256, 1987. View at Publisher · View at Google Scholar · View at Scopus
  31. A. S. Riolobos, M. Heredia, J. A. de la Fuente et al., “Functional recovery of skilled forelimb use in rats obliged to use the impaired limb after grafting the frontal cortex lesions with homotopic fetal cortex,” Neurobiology of Learning and Memory, vol. 75, no. 3, pp. 274–292, 2001. View at Publisher · View at Google Scholar · View at Scopus
  32. M. Heredia, A. S. Riolobos, A. Fuente, J. M. Criado, and J. Yajeya, “Motor skill recovery through neural transplants in adult rats with frontal cortex damage,” Trauma, vol. 20, pp. 137–143, 2009. View at Google Scholar
  33. M. Heredia, A. Fuente, J. M. Criado, L. Jiménez-Díaz, J. Yajeya, and A. S. Riolobos, “Transplant of encapsulated astrocyte ameliorate lesion-induced motor deficits in adults rats with frontal cortex injury,” Trauma, vol. 22, pp. 281–288, 2011. View at Google Scholar
  34. E. J. Neafsey, E. L. Bold, G. Haas et al., “The organization of the rat motor cortex: a microstimulation mapping study,” Brain Research, vol. 11, no. 1, pp. 77–96, 1986. View at Publisher · View at Google Scholar · View at Scopus
  35. H. W. Horch, A. Krüttgen, S. D. Portbury, and L. C. Katz, “Destabilization of cortical dendrites and spines by BDNF,” Neuron, vol. 23, no. 2, pp. 353–364, 1999. View at Publisher · View at Google Scholar · View at Scopus
  36. J. T. Trachtenberg, B. E. Chen, G. W. Knott et al., “Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex,” Nature, vol. 420, no. 6917, pp. 788–794, 2002. View at Publisher · View at Google Scholar · View at Scopus
  37. A. Holtmaat and K. Svoboda, “Experience-dependent structural synaptic plasticity in the mammalian brain,” Nature Reviews. Neuroscience, vol. 10, no. 9, pp. 647–658, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. G. Yang, F. Pan, and W. B. Gan, “Stably maintained dendritic spines are associated with lifelong memories,” Nature, vol. 462, no. 7275, pp. 920–924, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. T. A. Jones and T. Schallert, “Use-dependent growth of pyramidal neurons after neocortical damage,” The Journal of Neuroscience, vol. 14, no. 4, pp. 2140–2152, 1994. View at Google Scholar
  40. T. A. Jones, J. A. Kleim, and W. T. Greenough, “Synaptogenesis and dendritic growth in the cortex opposite unilateral sensorimotor cortex damage in adult rats: a quantitative electron microscopic examination,” Brain Research, vol. 733, no. 1, pp. 142–148, 1996. View at Publisher · View at Google Scholar
  41. T. A. Jones and T. Schallert, “Overgrowth and pruning of dendrites in adult rats recovering from neocortical damage,” Brain Research, vol. 581, no. 1, pp. 156–160, 1992. View at Publisher · View at Google Scholar · View at Scopus
  42. C. J. Chu and T. A. Jones, “Experience-dependent structural plasticity in cortex heterotopic to focal sensorimotor cortical damage,” Experimental Neurology, vol. 166, no. 2, pp. 403–414, 2000. View at Publisher · View at Google Scholar · View at Scopus
  43. L. Wang, J. M. Conner, A. H. Nagahara, and M. H. Tuszynski, “Rehabilitation drives enhancement of neuronal structure in functionally relevant neuronal subsets,” Proceedings of the National Academy of Sciences of the United States of America, vol. 113, no. 10, pp. 2750–2755, 2016. View at Publisher · View at Google Scholar · View at Scopus
  44. B. Hattiangady, M. S. Rao, G. A. Shetty, and A. K. Shetty, “Brain-derived neurotrophic factor, phosphorylated cyclic AMP response element binding protein and neuropeptide Y decline as early as middle age in the dentate gyrus and CA1 and CA3 subfields of the hippocampus,” Experimental Neurology, vol. 195, no. 2, pp. 353–371, 2005. View at Publisher · View at Google Scholar · View at Scopus
  45. S. T. Carmichael, I. Archibeque, L. Luke, T. Nolan, J. Momiy, and S. Li, “Growth-associated gene expression after stroke: evidence for a growth-promoting region in peri-infarct cortex,” Experimental Neurology, vol. 193, no. 2, pp. 291–311, 2005. View at Publisher · View at Google Scholar · View at Scopus
  46. S. T. Carmichael, “Cellular and molecular mechanisms of neural repair after stroke: making waves,” Annals of Neurology, vol. 59, no. 5, pp. 735–742, 2006. View at Publisher · View at Google Scholar · View at Scopus
  47. S. C. Cramer and M. Chopp, “Recovery recapitulates ontogeny,” Trends in Neurosciences, vol. 23, no. 6, pp. 265–271, 2000. View at Publisher · View at Google Scholar · View at Scopus
  48. T. H. Murphy and D. Corbett, “Plasticity during stroke recovery: from synapse to behaviour,” Nature Reviews Neuroscience, vol. 10, no. 12, pp. 861–872, 2009. View at Publisher · View at Google Scholar · View at Scopus
  49. J. Biernaskie, A. Szymanska, V. Windle, and D. Corbett, “Bi-hemispheric contribution to functional motor recovery of the affected forelimb following focal ischemic brain injury in rats,” The European Journal of Neuroscience, vol. 21, no. 4, pp. 989–999, 2005. View at Publisher · View at Google Scholar · View at Scopus
  50. Y. Takatsuru, D. Fukumoto, M. Yoshitomo, T. Nemoto, H. Tsukada, and J. Nabekura, “Neuronal circuit remodeling in the contralateral cortical hemisphere during functional recovery from cerebral infarction,” The Journal of Neuroscience, vol. 29, no. 32, pp. 10081–10086, 2009. View at Publisher · View at Google Scholar · View at Scopus
  51. U. Lendahl, L. B. Zimmerman, and R. D. G. McKay, “CNS stem cells express a new class of intermediate filament protein,” Cell, vol. 60, no. 4, pp. 585–595, 1990. View at Publisher · View at Google Scholar · View at Scopus
  52. J. Dahlstrand, M. Lardelli, and U. Lendahl, “Nestin mRNA expression correlates with the central nervous system progenitor cell state in many, but not all, regions of developing central nervous system,” Developmental Brain Research, vol. 84, no. 1, pp. 109–129, 1995. View at Publisher · View at Google Scholar · View at Scopus
  53. R. McKay, “Stem cells in the central nervous system,” Science, vol. 276, no. 5309, pp. 66–71, 1997. View at Publisher · View at Google Scholar · View at Scopus
  54. M. S. Rao, “Multipotent and restricted precursors in the central nervous system,” The Anatomical Record, vol. 257, no. 4, pp. 137–148, 1999. View at Publisher · View at Google Scholar
  55. A. G. Douen, L. Dong, S. Vanance et al., “Regulation of nestin expression after cortical ablation in adult rat brain,” Brain Research, vol. 1008, no. 2, pp. 139–146, 2004. View at Publisher · View at Google Scholar · View at Scopus
  56. I. Lavrnja, V. Ajdzanovic, S. Trifunovic et al., “Cortical ablation induces time-dependent changes in rat pituitary somatotrophs and upregulates growth hormone receptor expression in the injured cortex,” Journal of Neuroscience Research, vol. 92, no. 10, pp. 1338–1349, 2014. View at Publisher · View at Google Scholar · View at Scopus
  57. H. Nakatomi, T. Kuriu, S. Okabe et al., “Regeneration of hippocampal pyramidal neurons after ischemic brain injury by recruitment of endogenous neural progenitors,” Cell, vol. 110, no. 4, pp. 429–441, 2002. View at Publisher · View at Google Scholar · View at Scopus
  58. E. Gould and P. Tanapat, “Lesion-induced proliferation of neuronal progenitors in the dentate gyrus of the adult rat,” Neuroscience, vol. 80, no. 2, pp. 427–436, 1997. View at Publisher · View at Google Scholar · View at Scopus
  59. K. Michalczyk and M. Ziman, “Nestin structure and predicted function in cellular cytoskeletal organisation,” Histology and Histopathology, vol. 20, no. 2, pp. 665–671, 2005. View at Publisher · View at Google Scholar
  60. P. M. Steinert, Y.-H. Chou, V. Prahlad et al., “A high molecular weight intermediate filament-associated protein in BHK-21 cells is nestin, a type VI intermediate filament protein,” The Journal of Biological Chemistry, vol. 274, no. 14, pp. 9881–9890, 1999. View at Publisher · View at Google Scholar · View at Scopus
  61. Y. Chou, S. Khuon, H. Herrmann, and R. D. Goldman, “Nestin promotes the phosphorylation-dependent disassembly of vimentin intermediate filaments during mitosis,” Molecular Biology of the Cell, vol. 14, no. 4, pp. 1468–1478, 2002. View at Publisher · View at Google Scholar · View at Scopus
  62. C. M. Sahlgren, A. Mikhailov, J. Hellman et al., “Mitotic reorganization of the intermediate filament protein nestin involves phosphorylation by cdc2 kinase,” The Journal of Biological Chemistry, vol. 276, no. 19, pp. 16456–16463, 2001. View at Publisher · View at Google Scholar · View at Scopus
  63. A. Bellot, B. Guivernau, M. Tajes, M. Bosch-Morató, V. Valls-Comamaia, and F. J. Muñoz, “The structure and function of actin cytoskeleton in mature glutamatergic dendritic spines,” Brain Research, vol. 1573, pp. 1–16, 2014. View at Publisher · View at Google Scholar · View at Scopus
  64. R. P. Stroemer, T. A. Kent, and C. E. Hulsebosch, “Neocortical neural sprouting, synaptogenesis, and behavioural recovery after neocortical infarction in rats,” Stroke, vol. 26, no. 11, pp. 2135–2144, 1995. View at Publisher · View at Google Scholar · View at Scopus
  65. M. C. Comelli, D. Guidoli, M. S. Seren et al., “Time course, localization and pharmacological modulation of immediate early inducible genes, brain-derived neurotrophic factor and trkB messenger RNAs in the rat brain following photochemical stroke,” Neuroscience, vol. 55, no. 2, pp. 473–490, 1993. View at Publisher · View at Google Scholar · View at Scopus
  66. C. E. Brown, K. Aminoltejari, H. Erb, I. R. Winship, and T. H. Murphy, “In vivo voltage-sensitive dye imaging in adult mice reveals that somatosensory maps lost to stroke are replaced over weeks by new structural and functional circuits with prolonged modes of activation within both the peri-infarct zone and distant sites,” The Journal of Neuroscience, vol. 29, no. 6, pp. 1719–1734, 2009. View at Publisher · View at Google Scholar · View at Scopus
  67. S. T. Carmichael and M. F. Chesselet, “Synchropous neuronal activity is a signal for axonal sprouting after cortical lesions in the adult,” The Journal of Neuroscience, vol. 22, no. 14, pp. 6062–6070, 2002. View at Google Scholar
  68. C. E. Brown, P. Li, J. D. Boyd, K. R. Delaney, and T. H. Murphy, “Extensive turnover of dendritic spines and vascular remodeling in cortical tissues recovering from stroke,” The Journal of Neuroscience, vol. 27, no. 15, pp. 4101–4109, 2007. View at Publisher · View at Google Scholar · View at Scopus
  69. J. L. Cheatwood, A. J. Emerick, M. E. Schwab, and G. L. Kartje, “Nogo-A expression after focal ischemic stroke in the adult rat,” Stroke, vol. 39, no. 7, pp. 2091–2098, 2008. View at Publisher · View at Google Scholar · View at Scopus
  70. J. K. Lee, J. E. Kim, M. Sivula, and S. M. Strittmatte, “Nogo receptor antagonism promotes stroke recovery by enhancing axonal plasticity,” The Journal of Neuroscience, vol. 24, no. 27, pp. 6209–6217, 2004. View at Publisher · View at Google Scholar · View at Scopus
  71. C. M. Papadopoulos, S. Y. Tsai, J. L. Cheatwood et al., “Dendritic plasticity in the adult rat following middle cerebral artery occlusion and Nogo-A neutralization,” Cerebral Cortex, vol. 16, no. 4, pp. 529–536, 2006. View at Publisher · View at Google Scholar · View at Scopus
  72. C. Hobohm, A. Günther, J. Grosche, S. Rossner, D. Schneider, and G. Brückner, “Decomposition and long-lasting downregulation of extracellular matrix in perineuronal nets induced by focal cerebral ischemia in rats,” Journal of Neuroscience Research, vol. 80, no. 4, pp. 539–548, 2005. View at Publisher · View at Google Scholar · View at Scopus