Table of Contents Author Guidelines Submit a Manuscript
Neurology Research International
Volume 2012, Article ID 498428, 12 pages
http://dx.doi.org/10.1155/2012/498428
Review Article

Dysregulation of the Autophagy-Endolysosomal System in Amyotrophic Lateral Sclerosis and Related Motor Neuron Diseases

Asako Otomo,1,2 Lei Pan,1,2 and Shinji Hadano1,2,3

1Department of Molecular Life Sciences, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan
2The Institute of Medical Sciences, Tokai University, 143 Shimokasuya, Isehara 259-1193, Japan
3Research Center for Brain and Nervous Diseases, Tokai University Graduate School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan

Received 24 March 2012; Accepted 14 May 2012

Academic Editor: B. R. Ott

Copyright © 2012 Asako Otomo et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. M. Andersen and A. Al-Chalabi, “Clinical genetics of amyotrophic lateral sclerosis: what do we really know?” Nature Reviews Neurology, vol. 7, no. 11, pp. 603–615, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. O. Hardiman, L. H. van den Berg, and M. C. Kiernan, “Clinical diagnosis and management of amyotrophic lateral sclerosis,” Nature Reviews Neurology, vol. 7, no. 11, pp. 639–649, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. P. H. Gordon and V. Meininger, “How can we improve clinical trials in amyotrophic lateral sclerosis?” Nature Reviews Neurology, vol. 7, no. 11, pp. 650–654, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. L. Ferraiuolo, J. Kirby, A. J. Grierson, M. Sendtner, and P. J. Shaw, “Molecular pathways of motor neuron injury in amyotrophic lateral sclerosis,” Nature Reviews Neurology, vol. 7, no. 11, pp. 616–630, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. V. Swarup and J. P. Julien, “ALS pathogenesis: recent insights from genetics and mouse models,” Progress in Neuro-Psychopharmacology and Biological Psychiatry, vol. 35, no. 2, pp. 363–369, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. P. Pasinelli and R. H. Brown, “Molecular biology of amyotrophic lateral sclerosis: insights from genetics,” Nature Reviews Neuroscience, vol. 7, no. 9, pp. 710–723, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. S. C. Barber, R. J. Mead, and P. J. Shaw, “Oxidative stress in ALS: a mechanism of neurodegeneration and a therapeutic target,” Biochimica et Biophysica Acta, vol. 1762, no. 11-12, pp. 1051–1067, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Boillée, C. V Velde, and D. Cleveland, “ALS: a disease of motor neurons and their nonneuronal neighbors,” Neuron, vol. 52, no. 1, pp. 39–59, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Kwak and J. H. Weiss, “Calcium-permeable AMPA channels in neurodegenerative disease and ischemia,” Current Opinion in Neurobiology, vol. 16, no. 3, pp. 281–287, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Nassif, S. Matus, K. Castillo, and C. Hetz, “Amyotrophic lateral sclerosis pathogenesis: a journey through the secretory pathway,” Antioxidants and Redox Signaling, vol. 13, no. 12, pp. 1955–1989, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. A. L. Ström, J. Gal, P. Shi, E. J. Kasarskis, L. J. Hayward, and H. Zhu, “Retrograde axonal transport and motor neuron disease,” Journal of Neurochemistry, vol. 106, no. 2, pp. 495–505, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Polymenidou and D. W. Cleveland, “The seeds of neurodegeneration: prion-like spreading in ALS,” Cell, vol. 147, no. 3, pp. 498–508, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. H. C. Tai and E. M. Schuman, “Ubiquitin, the proteasome and protein degradation in neuronal function and dysfunction,” Nature Reviews Neuroscience, vol. 9, no. 11, pp. 826–838, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. N. Mizushima, “Autophagy: process and function,” Genes and Development, vol. 21, no. 22, pp. 2861–2873, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. J. Huotari and A. Helenius, “Endosome maturation,” The EMBO Journal, vol. 30, no. 17, pp. 3481–3500, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. J. Agola, P. Jim, H. Ward, S. Basuray, and A. Wandinger-Ness, “Rab GTPases as regulators of endocytosis, targets of disease and therapeutic opportunities,” Clinical Genetics. In press.
  17. Z. Yue, L. Friedman, M. Komatsu, and K. Tanaka, “The cellular pathways of neuronal autophagy and their implication in neurodegenerative diseases,” Biochimica et Biophysica Acta, vol. 1793, no. 9, pp. 1496–1507, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Yamamoto and A. Simonsen, “The elimination of accumulated and aggregated proteins: a role for aggrephagy in neurodegeneration,” Neurobiology of Disease, vol. 43, no. 1, pp. 17–28, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. C. Bendotti, M. Marino, C. Cheroni et al., “Dysfunction of constitutive and inducible ubiquitin-proteasome system in amyotrophic lateral sclerosis: implication for protein aggregation and immune response,” Progress in Neurobiology, vol. 97, no. 2, pp. 101–126, 2012. View at Publisher · View at Google Scholar · View at Scopus
  20. B. Levine and G. Kroemer, “Autophagy in the pathogenesis of disease,” Cell, vol. 132, no. 1, pp. 27–42, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. A. Longatti and S. A. Tooze, “Vesicular trafficking and autophagosome formation,” Cell Death and Differentiation, vol. 16, no. 7, pp. 956–965, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. N. Mizushima, B. Levine, A. M. Cuervo, and D. J. Klionsky, “Autophagy fights disease through cellular self-digestion,” Nature, vol. 451, no. 7182, pp. 1069–1075, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. N. Mizushima and M. Komatsu, “Autophagy: renovation of cells and tissues,” Cell, vol. 147, no. 4, pp. 728–741, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. C. E. L. Chua, B. Q. Gan, and B. L. Tang, “Involvement of members of the Rab family and related small GTPases in autophagosome formation and maturation,” Cellular and Molecular Life Sciences, vol. 68, no. 20, pp. 3349–3358, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. Y. Nishida, S. Arakawa, K. Fujitani et al., “Discovery of Atg5/Atg7-independent alternative macroautophagy,” Nature, vol. 461, no. 7264, pp. 654–658, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. C. He, M. C. Bassik, V. Moresi et al., “Exercise-induced BCL2-regulated autophagy is required for muscle glucose homeostasis,” Nature, vol. 481, no. 7382, pp. 511–515, 2012. View at Publisher · View at Google Scholar · View at Scopus
  27. M. Komatsu, T. Ueno, S. Waguri, Y. Uchiyama, E. Kominami, and K. Tanaka, “Constitutive autophagy: vital role in clearance of unfavorable proteins in neurons,” Cell Death and Differentiation, vol. 14, no. 5, pp. 887–894, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. B. Boland, A. Kumar, S. Lee et al., “Autophagy induction and autophagosome clearance in neurons: relationship to autophagic pathology in Alzheimer's disease,” Journal of Neuroscience, vol. 28, no. 27, pp. 6926–6937, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. T. Hara, K. Nakamura, M. Matsui et al., “Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice,” Nature, vol. 441, no. 7095, pp. 885–889, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. M. Komatsu, S. Waguri, T. Chiba et al., “Loss of autophagy in the central nervous system causes neurodegeneration in mice,” Nature, vol. 441, no. 7095, pp. 880–884, 2006. View at Publisher · View at Google Scholar · View at Scopus
  31. N. Mizushima, A. Yamamoto, M. Matsui, T. Yoshimori, and Y. Ohsumi, “In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker,” Molecular Biology of the Cell, vol. 15, no. 3, pp. 1101–1111, 2004. View at Publisher · View at Google Scholar · View at Scopus
  32. D. C. Rubinsztein, A. M. Cuervo, B. Ravikumar et al., “In search of an ‘autophagomometer’,” Autophagy, vol. 5, no. 5, pp. 585–589, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. Y. Ichimura, T. Kumanomidou, Y. S. Sou et al., “Structural basis for sorting mechanism of p62 in selective autophagy,” Journal of Biological Chemistry, vol. 283, no. 33, pp. 22847–22857, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. G. Bjørkøy, T. Lamark, S. Pankiv, A. Øvervatn, A. Brech, and T. Johansen, “Chapter 12 monitoring autophagic degradation of p62/SQSTM1,” Methods in Enzymology, vol. 452, pp. 181–197, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. V. Kirkin, D. G. McEwan, I. Novak, and I. Dikic, “A role for ubiquitin in selective autophagy,” Molecular Cell, vol. 34, no. 3, pp. 259–269, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. S. Bowen, D. D. Ateh, K. Deinhardt et al., “The phagocytic capacity of neurones,” European Journal of Neuroscience, vol. 25, no. 10, pp. 2947–2955, 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. H. T. McMahon and E. Boucrot, “Molecular mechanism and physiological functions of clathrin-mediated endocytosis,” Nature Reviews Molecular Cell Biology, vol. 12, no. 8, pp. 517–533, 2011. View at Publisher · View at Google Scholar · View at Scopus
  38. S. Mayor and R. E. Pagano, “Pathways of clathrin-independent endocytosis,” Nature Reviews Molecular Cell Biology, vol. 8, no. 8, pp. 603–612, 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. H. Stenmark, “Rab GTPases as coordinators of vesicle traffic,” Nature Reviews Molecular Cell Biology, vol. 10, no. 8, pp. 513–525, 2009. View at Publisher · View at Google Scholar · View at Scopus
  40. G. Ghislat, C. Aguado, and E. Knecht, “Annexin A5 stimulates autophagy and inhibits endocytosis,” Journal of Cell Science, vol. 125, no. 1, pp. 92–107, 2012. View at Publisher · View at Google Scholar · View at Scopus
  41. C. M. Fader and M. I. Colombo, “Autophagy and multivesicular bodies: two closely related partners,” Cell Death and Differentiation, vol. 16, no. 1, pp. 70–78, 2009. View at Publisher · View at Google Scholar · View at Scopus
  42. A. Simonsen and S. A. Tooze, “Coordination of membrane events during autophagy by multiple class III PI3-kinase complexes,” The Journal of Cell Biology, vol. 186, no. 6, pp. 773–782, 2009. View at Publisher · View at Google Scholar · View at Scopus
  43. M. Razi, E. Y. W. Chan, and S. A. Tooze, “Early endosomes and endosomal coatomer are required for Autophagy,” The Journal of Cell Biology, vol. 185, no. 2, pp. 305–321, 2009. View at Publisher · View at Google Scholar · View at Scopus
  44. T. Noda, N. Fujita, and T. Yoshimori, “The late stages of autophagy: How does the end begin?” Cell Death and Differentiation, vol. 16, no. 7, pp. 984–990, 2009. View at Publisher · View at Google Scholar · View at Scopus
  45. R. Rojas, T. van Vlijmen, G. A. Mardones et al., “Regulation of retromer recruitment to endosomes by sequential action of Rab5 and Rab7,” The Journal of Cell Biology, vol. 183, no. 3, pp. 513–526, 2008. View at Publisher · View at Google Scholar · View at Scopus
  46. D. Poteryaev, S. Datta, K. Ackema, M. Zerial, and A. Spang, “Identification of the switch in early-to-late endosome transition,” Cell, vol. 141, no. 3, pp. 497–508, 2010. View at Publisher · View at Google Scholar · View at Scopus
  47. Y. Egami and N. Araki, “Dynamic changes in the spatiotemporal localization of Rab21 in live RAW264 cells during macropinocytosis,” PLoS ONE, vol. 4, no. 8, Article ID e6689, 2009. View at Publisher · View at Google Scholar · View at Scopus
  48. K. Matsunaga, T. Saitoh, K. Tabata et al., “Two beclin 1-binding proteins, Atg14L and Rubicon, reciprocally regulate autophagy at different stages,” Nature Cell Biology, vol. 11, no. 4, pp. 385–396, 2009. View at Publisher · View at Google Scholar · View at Scopus
  49. M. Filimonenko, S. Stuffers, C. Raiborg et al., “Functional multivesicular bodies are required for autophagic clearance of protein aggregates associated with neurodegenerative disease,” The Journal of Cell Biology, vol. 179, no. 3, pp. 485–500, 2007. View at Publisher · View at Google Scholar · View at Scopus
  50. J. Y. Lee, H. Koga, Y. Kawaguchi et al., “HDAC6 controls autophagosome maturation essential for ubiquitin-selective quality-control autophagy,” The EMBO Journal, vol. 29, no. 5, pp. 969–980, 2010. View at Publisher · View at Google Scholar · View at Scopus
  51. K. Katsumata, J. Nishiyama, T. Inoue, N. Mizushima, J. Takeda, and M. Yuzaki, “Dynein- and activity-dependent retrograde transport of autophagosomes in neuronal axons,” Autophagy, vol. 6, no. 3, pp. 378–385, 2010. View at Publisher · View at Google Scholar · View at Scopus
  52. K. Deinhardt, S. Salinas, C. Verastegui et al., “Rab5 and Rab7 control endocytic sorting along the axonal retrograde transport pathway,” Neuron, vol. 52, no. 2, pp. 293–305, 2006. View at Publisher · View at Google Scholar · View at Scopus
  53. Q. Cai, L. Lu, J. H. Tian, Y. B. Zhu, H. Qiao, and Z. H. Sheng, “Snapin-regulated late endosomal transport is critical for efficient autophagy-lysosomal function in neurons,” Neuron, vol. 68, no. 1, pp. 73–86, 2010. View at Publisher · View at Google Scholar · View at Scopus
  54. S. Maday, K. E. Wallace, and E. L. F. Holzbaur, “Autophagosomes initiate distally and mature during transport toward the cell soma in primary neurons,” The Journal of Cell Biology, vol. 196, no. 4, pp. 407–417, 2012. View at Publisher · View at Google Scholar · View at Scopus
  55. P. Saftig and J. Klumperman, “Lysosome biogenesis and lysosomal membrane proteins: trafficking meets function,” Nature Reviews Molecular Cell Biology, vol. 10, no. 9, pp. 623–635, 2009. View at Publisher · View at Google Scholar · View at Scopus
  56. V. I. Korolchuk, S. Saiki, M. Lichtenberg et al., “Lysosomal positioning coordinates cellular nutrient responses,” Nature Cell Biology, vol. 13, no. 4, pp. 453–460, 2011. View at Publisher · View at Google Scholar · View at Scopus
  57. S. Lee, Y. Sato, and R. A. Nixon, “Lysosomal proteolysis inhibition selectively disrupts axonal transport of degradative organelles and causes an Alzheimer's-like axonal dystrophy,” Journal of Neuroscience, vol. 31, no. 21, pp. 7817–7830, 2011. View at Publisher · View at Google Scholar · View at Scopus
  58. Y. Yang, L. Q. Feng, and X. X. Zheng, “Microtubule and kinesin/dynein-dependent, bi-directional transport of autolysosomes in neurites of PC12 cells,” International Journal of Biochemistry and Cell Biology, vol. 43, no. 8, pp. 1147–1156, 2011. View at Publisher · View at Google Scholar · View at Scopus
  59. S. Sasaki, “Autophagy in spinal cord motor neurons in sporadic amyotrophic lateral sclerosis,” Journal of Neuropathology and Experimental Neurology, vol. 70, no. 5, pp. 349–359, 2011. View at Publisher · View at Google Scholar · View at Scopus
  60. D. R. Rosen, T. Siddique, D. Patterson et al., “Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis,” Nature, vol. 362, no. 6415, pp. 59–62, 1993. View at Google Scholar · View at Scopus
  61. C. Y. Chow, J. E. Landers, S. K. Bergren et al., “Deleterious variants of FIG4, a phosphoinositide phosphatase, in patients with ALS,” American Journal of Human Genetics, vol. 84, no. 1, pp. 85–88, 2009. View at Publisher · View at Google Scholar · View at Scopus
  62. J. O. Johnson, J. Mandrioli, M. Benatar et al., “Exome sequencing reveals VCP mutations as a cause of familial ALS,” Neuron, vol. 68, no. 5, pp. 857–864, 2010. View at Publisher · View at Google Scholar · View at Scopus
  63. G. Skibinski, N. J. Parkinson, J. M. Brown et al., “Mutations in the endosomal ESCRTIII-complex subunit CHMP2B in frontotemporal dementia,” Nature Genetics, vol. 37, no. 8, pp. 806–808, 2005. View at Publisher · View at Google Scholar · View at Scopus
  64. F. Fecto, J. Yan, S. P. Vemula et al., “SQSTM1 mutations in familial and sporadic amyotrophic lateral sclerosis,” Archives of Neurology, vol. 68, no. 11, pp. 1440–1446, 2011. View at Publisher · View at Google Scholar · View at Scopus
  65. I. Puls, C. Jonnakuty, B. H. LaMonte et al., “Mutant dynactin in motor neuron disease,” Nature Genetics, vol. 33, no. 4, pp. 455–456, 2003. View at Publisher · View at Google Scholar · View at Scopus
  66. M. Weedon, R. Hastings, R. Caswell et al., “Exome sequencing identifies a DYNC1H1 mutation in a large pedigree with dominant axonal Charcot-Marie-Tooth disease,” American Journal of Human Genetics, vol. 89, no. 2, pp. 308–312, 2011. View at Publisher · View at Google Scholar · View at Scopus
  67. K. Verhoeven, P. De Jonghe, K. Coen et al., “Mutations in the small GTP-ase late endosomal protein RAB7 cause Charcot-Marie-Tooth type 2B neuropathy,” American Journal of Human Genetics, vol. 72, no. 3, pp. 722–727, 2003. View at Publisher · View at Google Scholar · View at Scopus
  68. S. Hadano, C. K. Hand, H. Osuga et al., “A gene encoding a putative GTPase regulator is mutated in familial amyotrophic lateral sclerosis 2,” Nature Genetics, vol. 29, no. 2, pp. 166–173, 2001. View at Google Scholar · View at Scopus
  69. Y. Yang, A. Hentati, H. X. Deng et al., “The gene encoding alsin, a protein with three guanine-nucleotide exchange factor domains, is mutated in a form of recessive amyotrophic lateral sclerosis,” Nature Genetics, vol. 29, no. 2, pp. 160–165, 2001. View at Publisher · View at Google Scholar · View at Scopus
  70. S. Hadano, A. Otomo, R. Kunita et al., “Loss of ALS2/Alsin exacerbates motor dysfunction in a SOD1-expressing mouse ALS model by disturbing endolysosomal trafficking,” PloS ONE, vol. 5, no. 3, Article ID e9805, 2010. View at Google Scholar · View at Scopus
  71. A. Otomo, R. Kunita, K. Suzuki-Utsunomiya, J. E. Ikeda, and S. Hadano, “Defective relocalization of ALS2/alsin missense mutants to Rac1-induced macropinosomes accounts for loss of their cellular function and leads to disturbed amphisome formation,” FEBS Letters, vol. 585, no. 5, pp. 730–736, 2011. View at Publisher · View at Google Scholar · View at Scopus
  72. M. Neumann, D. M. Sampathu, L. K. Kwong et al., “Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis,” Science, vol. 314, no. 5796, pp. 130–133, 2006. View at Publisher · View at Google Scholar · View at Scopus
  73. H. Maruyama, H. Morino, H. Ito et al., “Mutations of optineurin in amyotrophic lateral sclerosis,” Nature, vol. 465, no. 7295, pp. 223–226, 2010. View at Publisher · View at Google Scholar · View at Scopus
  74. H.-X. Deng, W. Chen, S.-T. Hong et al., “Mutations in UBQLN2 cause dominant X-linked juvenile and adult-onset ALS and ALS/dementia,” Nature, vol. 477, no. 7363, pp. 211–215, 2011. View at Publisher · View at Google Scholar · View at Scopus
  75. F. Fecto and T. Siddique, “UBQLN2/P62 cellular recycling pathways in amyotrophic lateral sclerosis and frontotemporal dementia,” Muscle and Nerve, vol. 45, no. 2, pp. 157–162, 2012. View at Publisher · View at Google Scholar · View at Scopus
  76. T. Ratovitski, L. B. Corson, J. Strain et al., “Variation in the biochemical/biophysical properties of mutant superoxide dismutase 1 enzymes and the rate of disease progression in familial amyotrophic lateral sclerosis kindreds,” Human Molecular Genetics, vol. 8, no. 8, pp. 1451–1460, 1999. View at Publisher · View at Google Scholar · View at Scopus
  77. A. G. Reaume, J. L. Elliott, E. K. Hoffman et al., “Motor neurons in Cu/Zn superoxide dismutase-deficient mice develop normally but exhibit enhanced cell death after axonal injury,” Nature Genetics, vol. 13, no. 1, pp. 43–47, 1996. View at Publisher · View at Google Scholar · View at Scopus
  78. L. I. Bruijn, M. K. Houseweart, S. Kato et al., “Aggregation and motor neuron toxicity of an ALS-linked SOD1 mutant independent from wild-type SOD1,” Science, vol. 281, no. 5384, pp. 1851–1854, 1998. View at Publisher · View at Google Scholar · View at Scopus
  79. T. Kabuta, Y. Suzuki, and K. Wada, “Degradation of amyotrophic lateral sclerosis-linked mutant Cu,Zn-superoxide dismutase proteins by macroautophagy and the proteasome,” Journal of Biological Chemistry, vol. 281, no. 41, pp. 30524–30533, 2006. View at Publisher · View at Google Scholar · View at Scopus
  80. J. Gal, A. L. Ström, R. Kilty, F. Zhang, and H. Zhu, “p62 accumulates and enhances aggregate formation in model systems of familial amyotrophic lateral sclerosis,” Journal of Biological Chemistry, vol. 282, no. 15, pp. 11068–11077, 2007. View at Publisher · View at Google Scholar · View at Scopus
  81. J. Gal, A. L. Ström, D. M. Kwinter et al., “Sequestosome 1/p62 links familial ALS mutant SOD1 to LC3 via an ubiquitin-independent mechanism,” Journal of Neurochemistry, vol. 111, no. 4, pp. 1062–1073, 2009. View at Publisher · View at Google Scholar · View at Scopus
  82. N. Morimoto, M. Nagai, Y. Ohta et al., “Increased autophagy in transgenic mice with a G93A mutant SOD1 gene,” Brain Research, vol. 1167, no. 1, pp. 112–117, 2007. View at Publisher · View at Google Scholar · View at Scopus
  83. A. Li, X. Zhang, and W. Le, “Altered macroautophagy in the spinal cord of SOD1 mutant mice,” Autophagy, vol. 4, no. 3, pp. 290–293, 2008. View at Google Scholar · View at Scopus
  84. F. Tian, N. Morimoto, W. Liu et al., “In vivo optical imaging of motor neuron autophagy in a mouse model of amyotrophic lateral sclerosis,” Autophagy, vol. 7, no. 9, pp. 985–992, 2011. View at Publisher · View at Google Scholar · View at Scopus
  85. M. Gamerdinger, A. M. Kaya, U. Wolfrum, A. M. Clement, and C. Behl, “BAG3 mediates chaperone-based aggresome-targeting and selective autophagy of misfolded proteins,” EMBO Reports, vol. 12, no. 2, pp. 149–156, 2011. View at Publisher · View at Google Scholar · View at Scopus
  86. M. Hafezparast, R. Klocke, C. Ruhrberg et al., “Mutations in dynein link motor neuron degeneration to defects in retrograde transport,” Science, vol. 300, no. 5620, pp. 808–812, 2003. View at Publisher · View at Google Scholar · View at Scopus
  87. H. S. Ilieva, K. Yamanaka, S. Malkmus et al., “Mutant dynein (Loa) triggers proprioceptive axon loss that extends survival only in the SOD1 ALS model with highest motor neuron death,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 34, pp. 12599–12604, 2008. View at Publisher · View at Google Scholar · View at Scopus
  88. F. Zhang, A. L. Ström, K. Fukada, S. Lee, L. J. Hayward, and H. Zhu, “Interaction between familial Amyotrophic Lateral Sclerosis (ALS)-linked SOD1 mutants and the dynein complex,” Journal of Biological Chemistry, vol. 282, no. 22, pp. 16691–16699, 2007. View at Publisher · View at Google Scholar · View at Scopus
  89. C. Y. Chow, Y. Zhang, J. J. Dowling et al., “Mutation of FIG4 causes neurodegeneration in the pale tremor mouse and patients with CMT4J,” Nature, vol. 448, no. 7149, pp. 68–72, 2007. View at Publisher · View at Google Scholar · View at Scopus
  90. C. J. Ferguson, G. M. Lenk, and M. H. Meisler, “Defective autophagy in neurons and astrocytes from mice deficient in PI(3,5)P2,” Human Molecular Genetics, vol. 18, no. 24, pp. 4868–4878, 2009. View at Publisher · View at Google Scholar · View at Scopus
  91. G. D. J. Watts, J. Wymer, M. J. Kovach et al., “Inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia is caused by mutant valosin-containing protein,” Nature Genetics, vol. 36, no. 4, pp. 377–381, 2004. View at Publisher · View at Google Scholar · View at Scopus
  92. K. Yamanaka, Y. Sasagawa, and T. Ogura, “Recent advances in p97/VCP/Cdc48 cellular functions,” Biochimica et Biophysica Acta, vol. 1823, no. 1, pp. 130–137, 2012. View at Publisher · View at Google Scholar · View at Scopus
  93. H. Meyer, M. Bug, and S. Bremer, “Emerging functions of the VCP/p97 AAA-ATPase in the ubiquitin system,” Nature Cell Biology, vol. 14, no. 2, pp. 117–123, 2012. View at Publisher · View at Google Scholar · View at Scopus
  94. D. Ritz, M. Vuk, P. Kirchner et al., “Endolysosomal sorting of ubiquitylated caveolin-1 is regulated by VCP and UBXD1 and impaired by VCP disease mutations,” Nature Cell Biology, vol. 13, no. 9, pp. 1116–1123, 2011. View at Publisher · View at Google Scholar · View at Scopus
  95. J. S. Ju, R. A. Fuentealba, S. E. Miller et al., “Valosin-containing protein (VCP) is required for autophagy and is disrupted in VCP disease,” The Journal of Cell Biology, vol. 187, no. 6, pp. 875–888, 2009. View at Publisher · View at Google Scholar · View at Scopus
  96. T. Arai, M. Hasegawa, H. Akiyama et al., “TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis,” Biochemical and Biophysical Research Communications, vol. 351, no. 3, pp. 602–611, 2006. View at Publisher · View at Google Scholar · View at Scopus
  97. J. Sreedharan, I. P. Blair, V. B. Tripathi et al., “TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis,” Science, vol. 319, no. 5870, pp. 1668–1672, 2008. View at Publisher · View at Google Scholar · View at Scopus
  98. N. Parkinson, P. G. Ince, M. O. Smith et al., “ALS phenotypes with mutations in CHMP2B (charged multivesicular body protein 2B),” Neurology, vol. 67, no. 6, pp. 1074–1077, 2006. View at Publisher · View at Google Scholar · View at Scopus
  99. W. M. Henne, N. J. Buchkovich, and S. D. Emr, “The ESCRT pathway,” Developmental Cell, vol. 21, no. 1, pp. 77–91, 2011. View at Publisher · View at Google Scholar · View at Scopus
  100. J. A. Lee, A. Beigneux, S. T. Ahmad, S. G. Young, and F. B. Gao, “ESCRT-III dysfunction causes autophagosome accumulation and neurodegeneration,” Current Biology, vol. 17, no. 18, pp. 1561–1567, 2007. View at Publisher · View at Google Scholar · View at Scopus
  101. P. Sanchez, G. De Carcer, I. V. Sandoval, J. Moscat, and M. T. Diaz-Meco, “Localization of atypical protein kinase C isoforms into lysosome- targeted endosomes through interaction with p62,” Molecular and Cellular Biology, vol. 18, no. 5, pp. 3069–3080, 1998. View at Google Scholar · View at Scopus
  102. J. Moscat and M. T. Diaz-Meco, “p62 at the crossroads of autophagy, apoptosis, and cancer,” Cell, vol. 137, no. 6, pp. 1001–1004, 2009. View at Publisher · View at Google Scholar · View at Scopus
  103. G. Matsumoto, K. Wada, M. Okuno, M. Kurosawa, and N. Nukina, “Serine 403 phosphorylation of p62/SQSTM1 regulates selective autophagic clearance of ubiquitinated proteins,” Molecular Cell, vol. 44, no. 2, pp. 279–289, 2011. View at Publisher · View at Google Scholar · View at Scopus
  104. M. Komatsu and Y. Ichimura, “Physiological significance of selective degradation of p62 by autophagy,” FEBS Letters, vol. 584, no. 7, pp. 1374–1378, 2010. View at Publisher · View at Google Scholar · View at Scopus
  105. M. Komatsu, H. Kurokawa, S. Waguri et al., “The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1,” Nature Cell Biology, vol. 12, no. 3, pp. 213–223, 2010. View at Publisher · View at Google Scholar · View at Scopus
  106. J. Ramesh Babu, M. Lamar Seibenhener, J. Peng et al., “Genetic inactivation of p62 leads to accumulation of hyperphosphorylated tau and neurodegeneration,” Journal of Neurochemistry, vol. 106, no. 1, pp. 107–120, 2008. View at Publisher · View at Google Scholar · View at Scopus
  107. N. Laurin, J. P. Brown, J. Morissette, and V. Raymond, “Recurrent mutation of the gene encoding sequestosome 1 (SQSTM1/p62) in paget disease of bone,” American Journal of Human Genetics, vol. 70, no. 6, pp. 1582–1588, 2002. View at Publisher · View at Google Scholar · View at Scopus
  108. C. Troakes, S. Maekawa, L. Wijesekera et al., “An MND/ALS phenotype associated with C9orf72 repeat expansion: abundant p62-positive, TDP-43-negative inclusions in cerebral cortex, hippocampus and cerebellum but without associated cognitive decline,” Neuropathology. In press.
  109. S. Al-Sarraj, A. King, C. Troakes et al., “P62 positive, TDP-43 negative, neuronal cytoplasmic and intranuclear inclusions in the cerebellum and hippocampus define the pathology of C9orf72-linked FTLD and MND/ALS,” Acta Neuropathologica, vol. 122, no. 6, pp. 691–702, 2011. View at Publisher · View at Google Scholar · View at Scopus
  110. M. Katsuno, H. Adachi, M. Minamiyama et al., “Reversible disruption of dynactin 1-mediated retrograde axonal transport in polyglutamine-induced motor neuron degeneration,” Journal of Neuroscience, vol. 26, no. 47, pp. 12106–12117, 2006. View at Publisher · View at Google Scholar · View at Scopus
  111. B. H. LaMonte, K. E. Wallace, B. A. Holloway et al., “Disruption of dynein/dynactin inhibits axonal transport in motor neurons causing late-onset progressive degeneration,” Neuron, vol. 34, no. 5, pp. 715–727, 2002. View at Publisher · View at Google Scholar · View at Scopus
  112. B. Ravikumar, A. Acevedo-Arozena, S. Imarisio et al., “Dynein mutations impair autophagic clearance of aggregate-prone proteins,” Nature Genetics, vol. 37, no. 7, pp. 771–776, 2005. View at Publisher · View at Google Scholar · View at Scopus
  113. M. R. Spinosa, C. Progida, A. De Luca, A. M. R. Colucci, P. Alifano, and C. Bucci, “Functional characterization of Rab7 mutant proteins associated with Charcot-Marie-Tooth type 2B disease,” Journal of Neuroscience, vol. 28, no. 7, pp. 1640–1648, 2008. View at Publisher · View at Google Scholar · View at Scopus
  114. S. Jäger, C. Bucci, I. Tanida et al., “Role for Rab7 in maturation of late autophagic vacuoles,” Journal of Cell Science, vol. 117, no. 20, pp. 4837–4848, 2004. View at Publisher · View at Google Scholar · View at Scopus
  115. M. Bains, V. Zaegel, J. Mize-Berge, and K. A. Heidenreich, “IGF-I stimulates Rab7-RILP interaction during neuronal autophagy,” Neuroscience Letters, vol. 488, no. 2, pp. 112–117, 2011. View at Publisher · View at Google Scholar · View at Scopus
  116. M. G. Lin and Q. Zhong, “Interaction between small GTPase Rab7 and PI3KC3 links autophagy and endocytosis a new Rab7 effector protein sheds light on membrane trafficking pathways,” Small Gtpases, vol. 2, no. 2, pp. 85–88, 2011. View at Publisher · View at Google Scholar · View at Scopus
  117. S. Basuray, S. Mukherjee, E. Romero, M. C. Wilson, and A. Wandinger-Ness, “Rab7 mutants associated with charcot-Marie-Tooth disease exhibit enhanced NGF-stimulated signaling,” PLoS ONE, vol. 5, no. 12, Article ID e15351, 2010. View at Publisher · View at Google Scholar · View at Scopus
  118. L. Cogli, C. Progida, R. Lecci, R. Bramato, A. Krüttgen, and C. Bucci, “CMT2B-associated Rab7 mutants inhibit neurite outgrowth,” Acta Neuropathologica, vol. 120, no. 4, pp. 491–501, 2010. View at Publisher · View at Google Scholar · View at Scopus
  119. E. Eymard-Pierre, G. Lesca, S. Dollet et al., “Infantile-onset ascending hereditary spastic paralysis is associated with mutations in the alsin gene,” American Journal of Human Genetics, vol. 71, no. 3, pp. 518–527, 2002. View at Publisher · View at Google Scholar · View at Scopus
  120. S. Hadano, R. Kunita, A. Otomo, K. Suzuki-Utsunomiya, and J. E. Ikeda, “Molecular and cellular function of ALS2/alsin: implication of membrane dynamics in neuronal development and degeneration,” Neurochemistry International, vol. 51, no. 2–4, pp. 74–84, 2007. View at Publisher · View at Google Scholar · View at Scopus
  121. A. Otomo, S. Hadano, T. Okada et al., “ALS2, a novel guanine nucleotide exchange factor for the small GTPase Rab5, is implicated in endosomal dynamics,” Human Molecular Genetics, vol. 12, no. 14, pp. 1671–1687, 2003. View at Publisher · View at Google Scholar · View at Scopus
  122. J. D. Topp, N. W. Gray, R. D. Gerard, and B. F. Horazdovsky, “Alsin is a Rab5 and Rac1 guanine nucleotide exchange factor,” Journal of Biological Chemistry, vol. 279, no. 23, pp. 24612–24623, 2004. View at Publisher · View at Google Scholar · View at Scopus
  123. R. Kunita, A. Otomo, H. Mizumura et al., “Homo-oligomerization of ALS2 through its unique carboxyl-terminal regions is essential for the ALS2-associated Rab5 guanine nucleotide exchange activity and its regulatory function on endosome trafficking,” Journal of Biological Chemistry, vol. 279, no. 37, pp. 38626–38635, 2004. View at Publisher · View at Google Scholar · View at Scopus
  124. R. Kunita, A. Otomo, H. Mizumura, K. Suzuki-Utsunomiya, S. Hadano, and J. E. Ikeda, “The Rab5 activator ALS2/alsin acts as a novel Rac1 effector through Rac1-activated endocytosis,” Journal of Biological Chemistry, vol. 282, no. 22, pp. 16599–16611, 2007. View at Publisher · View at Google Scholar · View at Scopus
  125. A. Otomo, R. Kunita, K. Suzuki-Utsunomiya et al., “ALS2/alsin deficiency in neurons leads to mild defects in macropinocytosis and axonal growth,” Biochemical and Biophysical Research Communications, vol. 370, no. 1, pp. 87–92, 2008. View at Publisher · View at Google Scholar · View at Scopus
  126. A. Jacquier, E. Buhler, M. K. E. Schäfer et al., “Alsin/Rac1 signaling controls survival and growth of spinal motoneurons,” Annals of Neurology, vol. 60, no. 1, pp. 105–117, 2006. View at Publisher · View at Google Scholar · View at Scopus
  127. H. Cai, X. Lin, C. Xie et al., “Loss of ALS2 function is insufficient to trigger motor neuron degeneration in knock-out mice but predisposes neurons to oxidative stress,” Journal of Neuroscience, vol. 25, no. 33, pp. 7567–7574, 2005. View at Publisher · View at Google Scholar · View at Scopus
  128. R. C. Taylor, G. Acquaah-Mensah, M. Singhal, D. Malhotra, and S. Biswal, “Network inference algorithms elucidate Nrf2 regulation of mouse lung oxidative stress,” PLoS Computational Biology, vol. 4, no. 8, Article ID e1000166, 2008. View at Publisher · View at Google Scholar · View at Scopus
  129. Q. Li, N. Y. Spencer, N. J. Pantazis, and J. F. Engelhardt, “Alsin and SOD1 (G93A) proteins regulate endosomal reactive oxygen species production by glial cells and proinflammatory pathways responsible for neurotoxicity,” Journal of Biological Chemistry, vol. 286, no. 46, pp. 40151–40162, 2011. View at Publisher · View at Google Scholar · View at Scopus
  130. B. J. Carter, P. Anklesaria, S. Choi, and J. F. Engelhardt, “Redox modifier genes and pathways in amyotrophic lateral sclerosis,” Antioxidants and Redox Signaling, vol. 11, no. 7, pp. 1569–1586, 2009. View at Publisher · View at Google Scholar · View at Scopus
  131. S. Hadano, S. C. Benn, S. Kakuta et al., “Mice deficient in the Rab5 guanine nucleotide exchange factor ALS2/alsin exhibit age-dependent neurological deficits and altered endosome trafficking,” Human Molecular Genetics, vol. 15, no. 2, pp. 233–250, 2006. View at Publisher · View at Google Scholar · View at Scopus
  132. R. J. Youle and D. P. Narendra, “Mechanisms of mitophagy,” Nature Reviews Molecular Cell Biology, vol. 12, no. 1, pp. 9–14, 2011. View at Publisher · View at Google Scholar · View at Scopus
  133. B. Ravikumar, S. Imarisio, S. Sarkar, C. J. O'Kane, and D. C. Rubinsztein, “Rab5 modulates aggregation and toxicity of mutant huntingtin through macroautophagy in cell and fly models of Huntington disease,” Journal of Cell Science, vol. 121, no. 10, pp. 1649–1660, 2008. View at Publisher · View at Google Scholar · View at Scopus
  134. S. Sarkar, G. Krishna, S. Imarisio, S. Saiki, C. J. O'Kane, and D. C. Rubinsztein, “A rational mechanism for combination treatment of Huntington's disease using lithium and rapamycin,” Human Molecular Genetics, vol. 17, no. 2, pp. 170–178, 2008. View at Publisher · View at Google Scholar · View at Scopus
  135. A. Fleming, T. Noda, T. Yoshimori, and D. C. Rubinsztein, “Chemical modulators of autophagy as biological probes and potential therapeutics,” Nature Chemical Biology, vol. 7, no. 1, pp. 9–17, 2011. View at Publisher · View at Google Scholar · View at Scopus
  136. F. Fornai, P. Longone, L. Cafaro et al., “Lithium delays progression of amyotrophic lateral sclerosis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 6, pp. 2052–2057, 2008. View at Publisher · View at Google Scholar · View at Scopus
  137. X. Zhang, L. Li, S. Chen et al., “Rapamycin treatment augments motor neuron degeneration in SOD1G93A mouse model of amyotrophic lateral sclerosis,” Autophagy, vol. 7, no. 4, pp. 412–425, 2011. View at Publisher · View at Google Scholar · View at Scopus