Table of Contents Author Guidelines Submit a Manuscript
Neurology Research International
Volume 2012, Article ID 517876, 9 pages
http://dx.doi.org/10.1155/2012/517876
Research Article

DTI and MR Volumetry of Hippocampus-PC/PCC Circuit: In Search of Early Micro- and Macrostructural Signs of Alzheimers's Disease

1Neuroradiology Unit, IRCCS Foundation National Neurological Institute C. Mondino, 27100 Pavia, Italy
2Department of Physics “A. Volta”, University of Pavia, 27100 Pavia, Italy
3Department of Computer Engineering and Systems Science, University of Pavia, 27100 Pavia, Italy
4Neurology Unit, IRCCS Foundation National Neurological Institute C. Mondino, 27100 Pavia, Italy
5Department of Radiology, University of Pavia, 27100 Pavia, Italy

Received 15 March 2011; Accepted 7 April 2011

Academic Editor: Patrice Peran

Copyright © 2012 F. Palesi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. C. Petersen, G. E. Smith, S. C. Waring, R. J. Ivnik, E. G. Tangalos, and E. Kokmen, “Mild cognitive impairment: clinical characterization and outcome,” Archives of Neurology, vol. 56, no. 3, pp. 303–308, 1999. View at Google Scholar · View at Scopus
  2. B. Palumbo, D. Siepi, I. Sabalich, C. Tranfaglia, and L. Parnetti, “Cerebrospinal fluid neuron-specific enolase: a further marker of Alzheimer's disease?” Functional Neurology, vol. 23, no. 2, pp. 93–96, 2008. View at Google Scholar · View at Scopus
  3. A. Caroli and G. B. Frisoni, “The dynamics of Alzheimer's disease biomarkers in the Alzheimer's disease neuroimaging initiative cohort,” Neurobiology of Aging, vol. 31, no. 8, pp. 1263–1274, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. P. Calvini, A. Chincarini, G. Gemme et al., “Automatic analysis of medial temporal lobe atrophy from structural MRIs for the early assessment of Alzheimer disease,” Medical Physics, vol. 36, no. 8, pp. 3737–3747, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. L. K. McEvoy, C. Fennema-Notestine, J. C. Roddey et al., “Alzheimer disease: quantitative structural neuroimaging for detection and prediction of clinical and structural changes in mild cognitive impairment,” Radiology, vol. 251, no. 1, pp. 195–205, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. M. J. Müller, D. Greverus, C. Weibrich et al., “Diagnostic utility of hippocampal size and mean diffusivity in amnestic MCI,” Neurobiology of Aging, vol. 28, no. 3, pp. 398–403, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. K. M. Ray, H. Wang, Y. Chu et al., “Mild cognitive impairment: apparent diffusion coefficient in regional gray matter and white matter structures,” Radiology, vol. 241, no. 1, pp. 197–205, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Fellgiebel, P. R. Dellani, D. Greverus, A. Scheurich, P. Stoeter, and M. J. Müller, “Predicting conversion to dementia in mild cognitive impairment by volumetric and diffusivity measurements of the hippocampus,” Psychiatry Research—Neuroimaging, vol. 146, no. 3, pp. 283–287, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. K. Kantarci, R. C. Petersen, B. F. Boeve et al., “DWI predicts future progression to Alzheimer disease in amnestic mild cognitive impairment,” Neurology, vol. 64, no. 5, pp. 902–904, 2005. View at Google Scholar · View at Scopus
  10. E. Scola, M. Bozzali, F. Agosta et al., “A diffusion tensor MRI study of patients with MCI and AD with a 2-year clinical follow-up,” Journal of Neurology, Neurosurgery and Psychiatry, vol. 81, no. 7, pp. 798–805, 2010. View at Publisher · View at Google Scholar
  11. H. Braak and E. Braak, “Diagnostic criteria for neuropathologic assessment of Alzheimer's disease,” Neurobiology of Aging, vol. 18, no. 4, pp. S85–S88, 1997. View at Publisher · View at Google Scholar · View at Scopus
  12. G. Bartzokis, “Age-related myelin breakdown: a developmental model of cognitive decline and Alzheimer's disease,” Neurobiology of Aging, vol. 25, no. 1, pp. 5–18, 2004. View at Publisher · View at Google Scholar
  13. X. J. Sun, Q. C. Lu, and Y. Cai, “Effect of cholecystokinin on experimental neuronal aging,” World Journal of Gastroenterology, vol. 11, no. 4, pp. 551–556, 2005. View at Google Scholar · View at Scopus
  14. K. Herholz, S. F. Carter, and M. Jones, “Positron emission tomography imaging in dementia,” British Journal of Radiology, vol. 80, no. 2, pp. S160–S167, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. S. Morbelli, A. Piccardo, G. Villavecchia et al., “Mapping brain morphological and functional conversion patterns in amnestic MCI: a voxel-based MRI and FDG-PET study,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 37, no. 1, pp. 36–45, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. N. Villain, M. Fouquet, J. C. Baron et al., “Sequential relationships between grey matter and white matter atrophy and brain metabolic abnormalities in early Alzheimer's disease,” Brain, vol. 133, no. 11, pp. 3301–3314, 2010. View at Publisher · View at Google Scholar
  17. M. D. Greicius, G. Srivastava, A. L. Reiss, and V. Menon, “Default-mode network activity distinguishes Alzheimer's disease from healthy aging: evidence from functional MRI,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 13, pp. 4637–4642, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. C. Sorg, V. Riedl, R. Perneczky, A. Kurz, and A. M. Wohlschläger, “Impact of Alzheimer's disease on the functional connectivity of spontaneous brain activity,” Current Alzheimer Research, vol. 6, no. 6, pp. 541–553, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Hamilton, “Development of a rating scale for primary depressive illness,” The British Journal of Social and Clinical Psychology, vol. 6, no. 4, pp. 278–296, 1967. View at Google Scholar · View at Scopus
  20. V. C. Hachinski, L. D. Iliff, and E. Zilhka, “Cerebral blood flow in dementia,” Archives of Neurology, vol. 32, no. 9, pp. 632–637, 1975. View at Google Scholar · View at Scopus
  21. H. Spinnler and G. Tognoni, “Taratura e standardizzazione italiana di test neuropsicologici,” Italian Journal of Neurological Sciences, supplement 8, pp. 1–120, 1987. View at Google Scholar
  22. M. F. Folstein, S. E. Folstein, and P. R. McHugh, ““Mini mental state”. A practical method for grading the cognitive state of patients for the clinician,” Journal of Psychiatric Research, vol. 12, no. 3, pp. 189–198, 1975. View at Publisher · View at Google Scholar · View at Scopus
  23. G. McKhann, D. Drachman, and M. Folstein, “Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA work group under the auspices of department of health and human services task force on alzheimer's disease,” Neurology, vol. 34, no. 7, pp. 939–944, 1984. View at Google Scholar · View at Scopus
  24. J. G. Sled, A. P. Zijdenbos, and A. C. Evans, “A nonparametric method for automatic correction of intensity nonuniformity in mri data,” IEEE Transactions on Medical Imaging, vol. 17, no. 1, pp. 87–97, 1998. View at Google Scholar · View at Scopus
  25. W. Zheng, M. W. L. Chee, and V. Zagorodnov, “Improvement of brain segmentation accuracy by optimizing non-uniformity correction using N3,” NeuroImage, vol. 48, no. 1, pp. 73–83, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. S. M. Smith, M. Jenkinson, M. W. Woolrich et al., “Advances in functional and structural MR image analysis and implementation as FSL,” NeuroImage, vol. 23, supplement 1, pp. S208–S219, 2004. View at Publisher · View at Google Scholar · View at Scopus
  27. S. M. Smith, “Fast robust automated brain extraction,” Human Brain Mapping, vol. 17, no. 3, pp. 143–155, 2002. View at Publisher · View at Google Scholar · View at Scopus
  28. Y. Zhang, M. Brady, and S. Smith, “Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm,” IEEE Transactions on Medical Imaging, vol. 20, no. 1, pp. 45–57, 2001. View at Publisher · View at Google Scholar · View at Scopus
  29. B. Patenaude, S. M. Smith, D. N. Kennedy, and M. Jenkinson, “A Bayesian model of shape and appearance for subcortical brain segmentation,” NeuroImage. In press. View at Publisher · View at Google Scholar
  30. T. E. J. Behrens, H. J. Berg, S. Jbabdi, M. F. S. Rushworth, and M. W. Woolrich, “Probabilistic diffusion tractography with multiple fibre orientations: what can we gain?” NeuroImage, vol. 34, no. 1, pp. 144–155, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. T. E. J. Behrens, M. W. Woolrich, M. Jenkinson et al., “Characterization and propagation of uncertainty in diffusion-weighted MR imaging,” Magnetic Resonance in Medicine, vol. 50, no. 5, pp. 1077–1088, 2003. View at Publisher · View at Google Scholar · View at Scopus
  32. O. Ciccarelli, A. T. Toosy, G. J. M. Parker et al., “Diffusion tractography based group mapping of major white-matter pathways in the human brain,” NeuroImage, vol. 19, no. 4, pp. 1545–1555, 2003. View at Publisher · View at Google Scholar · View at Scopus
  33. M. Jenkinson and S. Smith, “A global optimisation method for robust affine registration of brain images,” Medical Image Analysis, vol. 5, no. 2, pp. 143–156, 2001. View at Publisher · View at Google Scholar · View at Scopus
  34. I. L. H. Choo, D. Y. Lee, J. S. Oh et al., “Posterior cingulate cortex atrophy and regional cingulum disruption in mild cognitive impairment and Alzheimer's disease,” Neurobiology of Aging, vol. 31, no. 5, pp. 772–779, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. K. Kiuchi, M. Morikawa, T. Taoka et al., “Abnormalities of the uncinate fasciculus and posterior cingulate fasciculus in mild cognitive impairment and early Alzheimer's disease: a diffusion tensor tractography study,” Brain Research, vol. 1287, pp. 184–191, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. F. Agosta, M. Pievani, S. Sala et al., “White matter damage in Alzheimer disease and its relationship to gray matter atrophy,” Radiology, vol. 258, no. 3, pp. 853–863, 2011. View at Publisher · View at Google Scholar