Table of Contents Author Guidelines Submit a Manuscript
Neurology Research International
Volume 2014, Article ID 176535, 6 pages
http://dx.doi.org/10.1155/2014/176535
Research Article

Thicker Carotid Intima Media Thickness in Children with Monocyte Chemoattractant Protein-1: A-2138T and A-2464G Mutation

1Radiology Department, Medical Faculty, University of Brawijaya, Malang 65145, Indonesia
2Pharmacy Study Program, Medical Faculty, University of Brawijaya, Malang 65145, Indonesia
3Physiology Laboratory, Medical Faculty, University of Brawijaya, Malang 65145, Indonesia

Received 13 January 2014; Revised 12 March 2014; Accepted 4 April 2014; Published 22 April 2014

Academic Editor: Di Lazzaro Vincenzo

Copyright © 2014 Yuyun Yueniwati et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. L. Sacco, S. E. Kasner, J. P. Broderick et al., “An updated definition of stroke for the 21st century: a statement for healthcare professionals from the American Heart Association/American Stroke Association,” Stroke, vol. 44, no. 7, pp. 2064–2089, 2013. View at Google Scholar
  2. Y. Kusuma, N. Venketasubramanian, L. S. Kiemas, and J. Misbach, “Burden of stroke in Indonesia,” International Journal of Stroke, vol. 4, no. 5, pp. 379–380, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. A. S. Go, D. Mozaffarian, V. L. Roger et al., “Heart disease and stroke statistics—2013 update: a report from the American Heart Association,” Circulation, vol. 127, no. 1, pp. e6–e245, 2013. View at Google Scholar
  4. A. Arakelyan, J. Petrkova, Z. Hermanova, A. Boyajyan, J. Lukl, and M. Petrek, “Serum levels of the MCP-1 chemokine in patients with ischemic stroke and myocardial infarction,” Mediators of Inflammation, vol. 2005, no. 3, pp. 175–179, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. G. Tsivgoulis, K. Vemmos, C. Papamichael et al., “Common carotid artery intima-media thickness and the risk of stroke recurrence,” Stroke, vol. 37, no. 7, pp. 1913–1916, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. M. A. Crowther, “Pathogenesis of atherosclerosis,” Hematology American Society of Hematology Education Program, pp. 436–441, 2005. View at Google Scholar · View at Scopus
  7. H. M. Johnson, P. S. Douglas, S. R. Srinivasan et al., “Predictors of carotid intima-media thickness progression in young adults: the Bogalusa heart study,” Stroke, vol. 38, no. 3, pp. 900–905, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. Y. M. Hong, “Atherosclerotic cardiovascular disease beginning in childhood,” Korean Circulation Journal, vol. 40, no. 1, pp. 1–9, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. J. Le, D. Zhang, S. Menees, J. Chen, and G. Raghuveer, “Vascular age is advanced in children with atherosclerosis-promoting risk factors,” Circulation: Cardiovascular Imaging, vol. 3, no. 1, pp. 8–14, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Simon and G. Chironi, “The relationship between carotid intima-media thickness and coronary atherosclerosis revisited,” European Heart Journal, vol. 28, no. 17, pp. 2049–2050, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. S. Barra, G. Gaeta, S. Cuomo et al., “Early increase of carotid intima-media thickness in children with parental history of premature myocardial infarction,” Heart, vol. 95, no. 8, pp. 642–645, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. D. Brenner, J. Labreuche, P.-J. Touboul et al., “Cytokine polymorphisms associated with carotid intima-media thickness in stroke patients,” Stroke, vol. 37, no. 7, pp. 1691–1696, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. Y. Y. Siswinarti, “Peran ultrasonografi untuk deteksi dini atherosklerosis subklinis pada anak dengan orangtua stroke iskemia,” Brawijaya, Malang, Indonesia, 2011.
  14. T. A. Manolio, E. Boerwinkle, C. J. O'Donnell, and A. F. Wilson, “Genetics of ultrasonographic carotid atherosclerosis. Arteriosclerosis,” Thrombosis, and Vascular Biology, vol. 24, no. 9, pp. 1567–1577, 2004. View at Google Scholar
  15. M. Matarin, A. Singleton, J. Hardy, and J. Meschia, “The genetics of ischaemic stroke,” Journal of Internal Medicine, vol. 267, no. 2, pp. 139–155, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. Y. Tabara, K. Kohara, Y. Yamamoto et al., “Polymorphism of the monocyte chemoattractant protein (MCP-1) gene is associated with the plasma level of MCP-1 but not with carotid intima-media thickness,” Hypertension Research, vol. 26, no. 9, pp. 677–683, 2003. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Bucova, J. Lietava, F. Mrazek et al., “The MCP-1 -2518 (A/G) single nucleotide polymorphism is associated with ischemic heart disease and myocardial infarction in men in the Slovak population,” Bratislava Medical Journal, vol. 110, no. 7, pp. 385–389, 2009. View at Google Scholar · View at Scopus
  18. P. Penz, M. Bucova, J. Lietava et al., “MCP-1 -2518 A/G gene polymorphism is associated with blood pressure in ischemic heart disease asymptomatic subjects,” Bratislava Medical Journal, vol. 111, no. 8, pp. 420–425, 2010. View at Google Scholar · View at Scopus
  19. C. Zhong, Z. Luzhan, M. Genshan, W. Jiahong, Z. Xiaoli, and Q. Qi, “Monocyte chemoattractant protein-1-2518 G/A polymorphism, plasma levels, and premature stable coronary artery disease,” Molecular Biology Reports, vol. 37, no. 1, pp. 7–12, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. K. Isoda, K. Nishikawa, Y. Kamezawa et al., “Osteopontin plays an important role in the development of medial thickening and neointimal formation,” Circulation Research, vol. 91, no. 1, pp. 77–82, 2002. View at Publisher · View at Google Scholar · View at Scopus
  21. L. de Fuentes, C. C. Gu, S. J. Mathews et al., “Osteopontin promoter polymorphism is associated with increased carotid Intima-media thickness,” Journal of the American Society of Echocardiography, vol. 21, no. 8, pp. 954–960, 2008. View at Google Scholar
  22. E. de Groot, G. K. Hovingh, A. Wiegman et al., “Measurement of arterial wall thickness as a surrogate marker for atherosclerosis,” Circulation, vol. 109, no. 23, pp. III33–III38, 2004. View at Google Scholar · View at Scopus
  23. E. de Groot, S. I. van Leuven, R. Duivenvoorden et al., “Measurement of carotid intima-media thickness to assess progression and regression of atherosclerosis,” Nature Clinical Practice Cardiovascular Medicine, vol. 5, no. 5, pp. 280–288, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. P.-J. Touboul, M. G. Hennerici, S. Meairs et al., “Mannheim carotid intima-media thickness consensus (2004–2006): an update on behalf of the advisory board of the 3rd and 4th Watching the Risk Symposium 13th and 15th European Stroke Conferences, Mannheim, Germany, 2004, and Brussels, Belgium, 2006,” Cerebrovascular Diseases, vol. 23, no. 1, pp. 75–80, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. F. Giacopelli, R. Marciano, A. Pistorio et al., “Polymorphisms in the osteopontin promoter affect its transcriptional activity,” Physiological Genomics, vol. 20, no. 1, pp. 87–96, 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. S. Cuomo, “Increased carotid intima-media thickness in children-adolescents, and young adults with a parental history of premature myocardial infarction,” European Heart Journal, vol. 23, no. 17, pp. 1345–1350, 2002. View at Google Scholar
  27. B. Kutlu, M. I. Darville, A. K. Cardozo, and D. L. Eizirik, “Molecular regulation of monocyte chemoattractant protein-1 expression in pancreatic β-cells,” Diabetes, vol. 52, no. 2, pp. 348–355, 2003. View at Publisher · View at Google Scholar · View at Scopus
  28. N. Iwai, K. Kajimoto, Y. Kokubo et al., “Assessment of genetic effects of polymorphisms in the MCP-1 gene on serum MCP-1 levels and myocardial infarction in Japanese,” Circulation Journal, vol. 70, no. 7, pp. 805–809, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. P. A. Nyquist, C. A. Winkler, L. M. McKenzie, L. R. Yanek, L. C. Becker, and D. M. Becker, “Single nucleotide polymorphisms in monocyte chemoattractant protein-1 and its receptor act synergistically to increase the risk of carotid atherosclerosis,” Cerebrovascular Diseases, vol. 28, no. 2, pp. 124–130, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. P. Nyquist, J. Zhang, and T. J. de Graba, “The -928 G/C and -362 G/C single-nucleotide polymorphisms in the promoter of mcp-1: increased transcriptional activity and novel binding sites,” Cerebrovascular Diseases, vol. 29, no. 3, pp. 242–247, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. Z. Cermakova, J. Petrkova, A. Arakelyan et al., “The MCP-1 -2518 (A to G) single nucleotide polymorphism is not associated with myocardial infarction in the Czech population,” International Journal of Immunogenetics, vol. 32, no. 5, pp. 315–318, 2005. View at Publisher · View at Google Scholar · View at Scopus
  32. P. M. Hughes, P. R. Allegrini, M. Rudin, V. H. Perry, A. K. Mir, and C. Wiessner, “Monocyte chemoattractant protein-1 deficiency is protective in a murine stroke model,” Journal of Cerebral Blood Flow and Metabolism, vol. 22, no. 3, pp. 308–317, 2002. View at Google Scholar · View at Scopus
  33. W. Lalouschek, G. Endler, M. Schillinger et al., “Candidate genetic risk factors of stroke: results of a multilocus genotyping assay,” Clinical Chemistry, vol. 53, no. 4, pp. 600–605, 2007. View at Publisher · View at Google Scholar · View at Scopus