Table of Contents Author Guidelines Submit a Manuscript
Nursing Research and Practice
Volume 2014, Article ID 232046, 6 pages
http://dx.doi.org/10.1155/2014/232046
Research Article

Cost-Effectiveness of Improving Health Care to People with HIV in Nicaragua

1USAID Health Care Improvement Project, University Research Co., LLC, Bethesda 20814, USA
2USAID Health Care Improvement Project, University Research Co., Managua, Nicaragua

Received 2 April 2014; Accepted 8 May 2014; Published 25 May 2014

Academic Editor: Linda Moneyham

Copyright © 2014 Edward Broughton et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Comision Nicaraguanse del SIDA, Informe national sobre los progresos realizados en la aplicacion del UNGASS: Nicaragua: Enero 2009-Deciembre 2009, UNGASS, Managua, Nicaragua, 2010.
  2. A. J. Matute, E. Delgado, J. J. Amador, and A. I. M. Hoepelman, “The epidemiology of clinically apparent HIV infection in Nicaragua,” European Journal of Clinical Microbiology and Infectious Diseases, vol. 27, no. 2, pp. 105–108, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. Comision Nicaraguanse del SIDA, Informe national sobre los progresos realizados en la aplicacion del UNGASS: Nicaragua: Enero 2003–Deciembre 2005, UNGASS, Managua, Nicaragua, 2006.
  4. R. Fajardo, Sistematización de impactos y procesos generados en el componente VIH-Sids, Mecanismo Coordinador del País, Managua, Nicaragua, 2009.
  5. The Global Fund to Fight AIDS Tuberculosis and Malaria, Nicaragua Country Statistics, The Global Fund to Fight AIDS Tuberculosis and Malaria, Geneva, Switzerland, 2011.
  6. The Global Fund to Fight AIDS Tuberculosis and Malaria, Informe año 5. Proyecto Fondo Mundial: Nicaragua: compromiso y acción ante el SIDA, Tuberculosis y Malaria, The Global Fund to Fight AIDS Tuberculosis and Malaria, Managua, Nicaragua, 2009.
  7. Ministry of Health (Nicaragua), Surveillance Report for HIV/AIDS, Ministry of Health, Managua, Nicaragua, 2011.
  8. A. S. A. Andrade, H. F. McGruder, A. W. Wu et al., “A programmable prompting device improves adherence to highly active antiretroviral therapy in HIV-infected subjects with memory impairment,” Clinical Infectious Diseases, vol. 41, no. 6, pp. 875–882, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. J. M. Simoni, C. R. Pearson, D. W. Pantalone, G. Marks, and N. Crepaz, “Efficacy of interventions in improving highly active antiretroviral therapy adherence and HIV-1 RNA viral load: a meta-analytic review of randomized controlled trials,” Journal of Acquired Immune Deficiency Syndromes, vol. 43, supplement 1, pp. S23–S35, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Tuldrà, C. R. Fumaz, M. J. Ferrer et al., “Prospective randomized two-arm controlled study to determine the efficacy of a specific intervention to improve long-term adherence to highly active antiretroviral therapy,” Journal of Acquired Immune Deficiency Syndromes, vol. 25, no. 3, pp. 221–228, 2000. View at Google Scholar · View at Scopus
  11. S. L. Sansom, M. N. Anthony, W. H. Garland et al., “The costs of HIV antiretroviral therapy adherence programs and impact on health care utilization,” AIDS Patient Care and STDs, vol. 22, no. 2, pp. 131–138, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. G. S. Zaric, A. M. Bayoumi, M. L. Brandeau, and D. K. Owens, “The cost-effectiveness of counseling strategies to improve adherence to highly active antiretroviral therapy among men who have sex with men,” Medical Decision Making, vol. 28, no. 3, pp. 359–376, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. J. Schneider, S. H. Kaplan, S. Greenfield, W. Li, and I. B. Wilson, “Better physician-patient relationships are associated with higher reported adherence to antiretroviral therapy in patients with HIV infection,” Journal of General Internal Medicine, vol. 19, no. 11, pp. 1096–1103, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. V. Vella, T. Govender, S. S. Dlamini et al., “Cost-effectiveness of staff and workload profiles in retaining patients on antiretroviral therapy in KwaZulu-Natal, South Africa,” AIDS Care—Psychological and Socio-Medical Aspects of AIDS/HIV, vol. 23, no. 9, pp. 1146–1153, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. J. Gerlach, M. Sequeira, V. Alvarado et al., “Cost analysis of centralized viral load testing for antiretroviral therapy monitoring in Nicaragua, a low-HIV prevalence, low-resource setting,” Journal of the International AIDS Society, vol. 13, no. 1, article 43, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. Centers for Disease Control and Prevention, “Extension of public comment period for revision of HIV infection classification system and expansion of AIDS surveillance case definition,” Morbidity and Mortality Weekly Report, vol. 40, no. 51-52, p. 891, 1992. View at Google Scholar
  17. Oanda, “Currency converter: historical exchange,” 2011.
  18. P. Severe, P. Leger, M. Charles et al., “Antiretroviral therapy in a thousand patients with AIDS in Haiti,” The New England Journal of Medicine, vol. 353, no. 22, pp. 2325–2334, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. S. Deuffic-Burban, E. Losina, B. Wang et al., “Estimates of opportunistic infection incidence or death within specific CD4 strata in HIV-infected patients in Abidjan, Côte d'Ivoire: impact of alternative methods of CD4 count modelling,” European Journal of Epidemiology, vol. 22, no. 10, pp. 737–744, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. C. B. Holmes, R. Wood, M. Badri et al., “CD4 decline and incidence of opportunistic infections in Cape Town, South Africa: implications for prophylaxis and treatment,” Journal of Acquired Immune Deficiency Syndromes, vol. 42, no. 4, pp. 464–469, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. J. Arevalo, C. Grande, and I. Solano Leiva, “Evolución inmunovirológica de adultos infectados por VIH en tratamiento antirretroviral. Experiencia en la unidad médica Atlacatl del ISSS,” Revista Archivos del Colegio Médico, vol. 1, no. 1, pp. 11–14, 2008. View at Google Scholar
  22. J. G. Kahn, E. Marseille, D. Moore et al., “CD4 cell count and viral load monitoring in patients undergoing antiretroviral therapy in Uganda: cost effectiveness study,” The British Medical Journal, vol. 343, Article ID d6884, 2011. View at Google Scholar · View at Scopus
  23. J. B. Nachega, M. J. Mugavero, M. Zeier, M. Vitória, and J. E. Gallant, “Treatment simplification in HIV-infected adults as a strategy to prevent toxicity, improve adherence, quality of life and decrease healthcare costs,” Patient Preference and Adherence, vol. 5, pp. 357–367, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. S. P. Koenig, H. Bang, P. Severe et al., “Cost-effectiveness of early versus standard antiretroviral therapy in HIV-infected adults in Haiti,” PLoS Medicine, vol. 8, no. 9, Article ID e1001095, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. World Health Organization, Increasing Access to Health Workers in Remote and Rural Areas Through Improved Retention: Policy Recommendations, World Health Organization, Geneva, Switzerland, 2010.
  26. J. M. Bos and M. J. Postma, “The economics of HIV vaccines: projecting the impact of HIV vaccination of infants in Sub-Saharan Africa,” PharmacoEconomics, vol. 19, no. 9, pp. 937–946, 2001. View at Google Scholar · View at Scopus
  27. E. Marseille, J. G. Kahn, C. Pitter et al., “The cost effectiveness of home-based provision of antiretroviral therapy in rural Uganda,” Applied Health Economics and Health Policy, vol. 7, no. 4, pp. 229–243, 2009. View at Publisher · View at Google Scholar · View at Scopus