Table of Contents
Organic Chemistry International
Volume 2012 (2012), Article ID 289023, 7 pages
http://dx.doi.org/10.1155/2012/289023
Research Article

Transition Metal Ions as Efficient Catalysts for Facile Ortho-Formylation of Phenols under Vilsmeier–Haack Conditions

1Department of Chemistry, Muffakham Jah College of Engineering and Technology, Mount Pleasant, Banjara Hills, Hyderabad 500034, India
2Department of Chemistry, Osmania University, Hyderabad 500007, India
3National Institute of Pharmaceutical Education and Research (NIPER) Balanagar, Hyderabad 500037, India

Received 31 August 2012; Revised 16 October 2012; Accepted 20 October 2012

Academic Editor: Paul Watts

Copyright © 2012 F. Aneesa et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. P. Young and C. H. Jun, “Transition metal-catalyzed ortho-functionalization in organic synthesis,” Bulletin of the Korean Chemical Society, vol. 26, no. 6, pp. 871–877, 2005. View at Google Scholar · View at Scopus
  2. C.-H. Jun and J. H. Lee, “Application of C-H and C-C bond activation in organic synthesis,” Pure and Applied Chemistry, vol. 76, no. 3, pp. 577–587, 2004. View at Google Scholar · View at Scopus
  3. G. A. Olah, L. Ohannesian, and M. Arvanaghi, “Formylating agents,” Chemical Reviews, vol. 87, no. 4, pp. 671–686, 1987. View at Google Scholar · View at Scopus
  4. G. Solladié, A. Girardin, and G. Lang, “Synthesis of new aromatic retinoid analogues by low-valent titanium induced reductive elimination,” Journal of Organic Chemistry, vol. 54, no. 11, pp. 2620–2628, 1989. View at Google Scholar · View at Scopus
  5. J. F. Larrow, E. N. Jacobsen, Y. Gao, Y. Hong, X. Nie, and C. M. Zepp, “A practical method for the large-scale preparation of [N,N′-Bis(3,5-di-tert-butylsalicylidene)-1,2-cyclohexanediaminato(2-)] manganese(III) chloride, a highly enantioselective epoxidation catalyst,” Journal of Organic Chemistry, vol. 59, no. 7, pp. 1939–1942, 1994. View at Google Scholar · View at Scopus
  6. T. Laird, “Benzoin condensation,” in Comprehensive Organic Chemistry, J. F. Stoddart, Ed., vol. 1, pp. 1105–1160, Perganon Press, Oxford, UK, 1979. View at Google Scholar
  7. C. M. Marson, “Reactions of carbonyl compounds with (monohalo) methyleniminium salts (Vilsmeier reagents),” Tetrahedron, vol. 48, no. 18, pp. 3659–3726, 1992. View at Publisher · View at Google Scholar · View at Scopus
  8. C. Jutz, “Iminium salts in organic chemistry [part I],” in Advances in Organic Chemistry, E. C. Taylor, Ed., vol. 9, p. 225, John Wiley & Sons, New York, NY, USA, 1976. View at Google Scholar
  9. O. Meth-Cohn and B. Tarnowski, “Cyclizations under Vilsmeier Conditions,” Advances in Heterocyclic Chemistry, vol. 31, pp. 207–236, 1982. View at Publisher · View at Google Scholar · View at Scopus
  10. O. Meth-Cohn and D. L. Taylor, “Vilsmeier formylation of para-substituted tert-anilines results in dibenzo[1,5]diazocines or quinazolinium salts: a remarkable example of the ‘t-amino effect’,” Journal of the Chemical Society, Chemical Communications, no. 14, pp. 1463–1464, 1995. View at Publisher · View at Google Scholar · View at Scopus
  11. A. Jackson and O. Meth-Cohn, “A new short and efficient strategy for the synthesis of quinolone antibiotics,” Journal of the Chemical Society, Chemical Communications, no. 13, p. 1319, 1995. View at Google Scholar · View at Scopus
  12. B. Balasundaram, M. Venugopal, and P. T. Perumal, “Synthetic studies on N-acetyl derivatives of amino acids and thiolactone using Vilsmeier-Haack reagent,” Tetrahedron Letters, vol. 34, no. 26, pp. 4249–4252, 1993. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Venugopal and P. T. Perumal, “A new method for the synthesis of chloroindenes by Vilsmeier reagent,” Synthetic Communications, vol. 21, no. 4, pp. 515–519, 1991. View at Google Scholar · View at Scopus
  14. M. Venugopal, R. Umarani, P. T. Perumal, and S. Rajadurai, “A new method for the preparation of substituted 5,6,7,8-tetrahydro 4H-1-benzopyran and 4H-pyrans by Vilsmeier-Haack reagent,” Tetrahedron Letters, vol. 32, no. 27, pp. 3235–3238, 1991. View at Publisher · View at Google Scholar · View at Scopus
  15. V. J. Majo and P. T. Perumal, “The vilsmeier cyclization of azides. Synthesis of oxazoles and vinyl azides from 2-azidoacetophenones,” Tetrahedron Letters, vol. 38, no. 39, pp. 6889–6892, 1997. View at Publisher · View at Google Scholar · View at Scopus
  16. R. R. Amaresh and P. T. Perumal, “A novel one pot synthesis of 2-dimethylaminoquinoline derivatives from arylazido ketones by cyclization under Vilsmeier condition,” Tetrahedron Letters, vol. 39, no. 22, pp. 3837–3840, 1998. View at Publisher · View at Google Scholar · View at Scopus
  17. V. J. Majo and P. T. Perumal, “Intramolecular cyclization of azides by iminium species. A novel method for the construction of nitrogen heterocycles under vilsmeier conditions,” Journal of Organic Chemistry, vol. 63, no. 21, pp. 7136–7142, 1998. View at Google Scholar · View at Scopus
  18. R. C. Boruah, S. Ahmed, U. Sharma, and J. S. Sandhu, “Synthesis of β-formylsteroidal enamides and their conversion into geminal dichlorides,” Indian Journal of Chemistry B, vol. 38, no. 3, pp. 274–282, 1999. View at Google Scholar · View at Scopus
  19. G. Kalisher, H. Scheyer, Keller et al., “Cyclic aldehydes,” German Patent, 514415. Chem Abstract, vol. 25, pp. 1536, 1931.
  20. S. Morimura, H. Horiuchi, and K. Murayama, “Vilsmeier reaction of phenols I. Synthesis of aryl formates,” Bulletin of Chemical Society of Japan, vol. 50, no. 8, pp. 2189–2190, 1977. View at Google Scholar
  21. K. C. Rajanna, M. Moazzam Ali, S. Sana, Tasneem, and P. K. Saiprakash, “Vilsmeier Haack acetylation in micellar media: an efficient one pot synthesis of 2-chloro-3-acetyl Quinolines,” Journal of Dispersion Science and Technology, vol. 25, no. 1, pp. 17–21, 2004. View at Google Scholar · View at Scopus
  22. M. M. Ali, S. Sana, Tasneem, K. C. Rajanna, and P. K. Saiprakash, “Ultrasonically accelerated vilsmeier haack cyclisation and formylation reactions,” Synthetic Communications, vol. 32, no. 9, pp. 1351–1356, 2002. View at Google Scholar
  23. S. Ramgopal, K. Ramesh, A. Chakradhar, N. M. Reddy, and K. C. Rajanna, “Metal nitrate driven nitro Hunsdiecker reaction with α,β-unsaturated carboxylic acids under solvent-free conditions,” Tetrahedron Letters, vol. 48, no. 23, pp. 4043–4045, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. A. Chakradhar, R. Roopa, K. C. Rajanna, and P. K. Saiprakash, “Vilsmeier-haack bromination of aromatic compounds with KBr and N-bromosuccinimide under solvent-free conditions,” Synthetic Communications, vol. 39, no. 10, pp. 1817–1824, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. G. Venkateshwarlu, A. Premalatha, K. C. Rajanna, and P. K. Saiprakash, “Cadmium chloride as an efficient catalyst for neat synthesis of 5-substituted 1H-tetrazoles,” Synthetic Communications, vol. 39, no. 24, pp. 4479–4485, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. G. Venkateshwarlu, K. C. Rajanna, and P. K. Saiprakash, “Antimony trioxide as an efficient Lewis acid catalyst for the synthesis of 5-substituted 1H-tetrazoles,” Synthetic Communications, vol. 39, no. 3, pp. 426–432, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. Tasneem, M. M. Ali, K. C. Rajanna, and P. K. Saiparakash, “Ammonium nickel sulphate mediated nitration of aromatic compounds with nitric acid,” Synthetic Communications, vol. 31, no. 7, pp. 1123–1127, 2001. View at Publisher · View at Google Scholar · View at Scopus
  28. V. Kotlyar, L. Shahar, and J.-P. Lellouche, “A simple homemade reaction station for use in parallel solution-phase synthesis. Optimization of a regioselective one-step deprotective o-formylation reaction mediated by the Vilsmeier-Haack reagent POCl3·DMF,” Molecular Diversity, vol. 10, no. 2, pp. 255–264, 2006. View at Publisher · View at Google Scholar · View at Scopus