Table of Contents
Organic Chemistry International
Volume 2013, Article ID 278143, 10 pages
http://dx.doi.org/10.1155/2013/278143
Review Article

Physicochemical Mechanisms of Synergistic Biological Action of Combinations of Aromatic Heterocyclic Compounds

Department of Physics, Sevastopol National Technical University, Sevastopol 99053, Ukraine

Received 20 December 2012; Accepted 14 January 2013

Academic Editor: Jacek Piosik

Copyright © 2013 Maxim P. Evstigneev. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. Chu and V. T. DeVita, Physicians' Cancer Chemotherapy Drug Manual, Jones and Bartlett, 2003.
  2. I. H. Stockley, Stockley’s Drug Interactions, Pharmaceutical Press, 6th edition, 2002.
  3. R. D. Olson and P. S. Mushlin, “Doxorubicin cardiotoxicity: analysis of prevailing hypotheses,” FASEB Journal, vol. 4, no. 13, pp. 3076–3086, 1990. View at Google Scholar · View at Scopus
  4. D. J. Stewart, D. J. Perrault, J. A. Maroun, and B. M. Lefebvre, “Combined mitoxantrone plus doxorubicin in the treatment of breast cancer,” American Journal of Clinical Oncology, vol. 10, no. 4, pp. 335–340, 1987. View at Google Scholar · View at Scopus
  5. L. H. Baker, J. Frank, G. Fine et al., “Combination chemotherapy using adriamycin, DTIC, cyclophosphamide, and actinomycin D for advanced soft tissue sarcomas: a randomized comparative trial. A phase III, Southwest Oncology Group Study (7613),” Journal of Clinical Oncology, vol. 5, no. 6, pp. 851–861, 1987. View at Google Scholar
  6. M. P. Evstigneev, DNA-Binding Aromatic Drug Molecules: Physico-Chemical Interactions and Their Biological Roles, Lambert Academic Publishing, 2010.
  7. D. B. Davies, D. A. Veselkov, and A. N. Veselkov, “Structure and thermodynamics of the hetero-association of aromatic molecules in aqueous solution determined by NMR spectroscopy,” Molecular Physics, vol. 97, no. 3, pp. 439–451, 1999. View at Google Scholar · View at Scopus
  8. D. B. Davies, D. A. Veselkov, V. V. Kodintsev, M. P. Evstigneev, and A. N. Veselkov, “1H NMR investigation of the hetero-association of aromatic molecules in aqueous solution: factors involved in the stabilization of complexes of daunomycin and acridine drugs,” Molecular Physics, vol. 98, no. 23, pp. 1961–1971, 2000. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Neidle and M. J. Waring, Molecular Aspects of Anti-Cancer Drug Action, Macmillan, 1983.
  10. P. O. P. Ts’o, “Bases, nucleosides, and nucleotides,” in Basic Principles in Nucleic Acid Chemistry, vol. 1, pp. 453–584, Academic Press, San Diego, Calif, USA, 1974. View at Google Scholar
  11. D. Attwood, “The mode of association of amphiphilic drugs in aqueous solution,” Advances in Colloid and Interface Science, vol. 55, pp. 271–303, 1995. View at Google Scholar
  12. S. Schreier, S. V. P. Malheiros, and E. De Paula, “Surface active drugs: self-association and interaction with membranes and surfactants. Physicochemical and biological aspects,” Biochimica et Biophysica Acta, vol. 1508, no. 1-2, pp. 210–234, 2000. View at Publisher · View at Google Scholar · View at Scopus
  13. J. B. Chaires, N. Dattagupta, and D. M. Crothers, “Self-association of daunomycin,” Biochemistry, vol. 21, no. 17, pp. 3927–3932, 1982. View at Google Scholar · View at Scopus
  14. M. E. Nuss, T. L. James, M. A. Apple, and P. A. Kollman, “An NMR study of the interaction of daunomycin with dinucleotides and dinucleoside phosphates,” Biochimica et Biophysica Acta, vol. 609, no. 1, pp. 136–147, 1980. View at Google Scholar · View at Scopus
  15. M. Dalmark and H. H. Storm, “A Fickian diffusion transport process with features of transport catalysis. Doxorubicin transport in human red blood cells,” Journal of General Physiology, vol. 78, no. 4, pp. 349–364, 1981. View at Google Scholar · View at Scopus
  16. C. P. Burns, B. N. Haugstad, and J. A. North, “Membrane transport of mitoxantrone by L1210 leukemia cells,” Biochemical Pharmacology, vol. 36, no. 6, pp. 857–860, 1987. View at Google Scholar · View at Scopus
  17. B. Sundman-Engberg, U. Tidefelt, A. Gruber, and C. Paul, “Intracellular concentrations of mitoxantrone in leukemic cells in vitro vs in vivo,” Leukemia Research, vol. 17, no. 4, pp. 347–352, 1993. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Feofanov, S. Sharonov, F. Fleury, I. Kudelina, and I. Nabiev, “Quantitative confocal spectral imaging analysis of mitoxantrone within living K562 cells: intracellular accumulation and distribution of monomers, aggregates, naphtoquinoxaline metabolite, and drug-target complexes,” Biophysical Journal, vol. 73, no. 6, pp. 3328–3336, 1997. View at Google Scholar · View at Scopus
  19. L. L. Shen, J. Baranowski, and A. G. Pernet, “Mechanism of inhibition of DNA gyrase by quinolone antibacterials: specificity and cooperativity of drug binding to DNA,” Biochemistry, vol. 28, no. 9, pp. 3879–3885, 1989. View at Google Scholar · View at Scopus
  20. L. L. Shen, L. A. Mitscher, P. N. Sharma et al., “Mechanism of inhibition of DNA gyrase by quinolone antibacterials: a cooperative drug-DNA binding model,” Biochemistry, vol. 28, no. 9, pp. 3886–3894, 1989. View at Google Scholar · View at Scopus
  21. L. L. Shen, W. E. Kohlbrenner, D. Weigl, and J. Baranowski, “Mechanism of quinolone inhibition of DNA gyrase. Appearance of unique norfloxacin binding sites in enzyme-DNA complexes,” Journal of Biological Chemistry, vol. 264, no. 5, pp. 2973–2978, 1989. View at Google Scholar · View at Scopus
  22. T. Goto and T. Kondo, “Structure and molecular stacking of anthocyanins-flower color variation,” Angewandte Chemie International Edition, vol. 30, pp. 17–33, 1991. View at Google Scholar
  23. T. Hoshino, “An approximate estimate of self-association constants and the self-stacking conformation of Malvin quinonoidal bases studied by 1H NMR,” Phytochemistry, vol. 30, no. 6, pp. 2049–2055, 1991. View at Google Scholar · View at Scopus
  24. T. Escribano-Bailón, O. Dangles, and R. Brouillard, “Coupling reactions between flavylium ions and catechin,” Phytochemistry, vol. 41, no. 6, pp. 1583–1592, 1996. View at Google Scholar · View at Scopus
  25. D. Balasubramanian, V. Srinivas, V. G. Gaikar, and M. M. Sharma, “Aggregation behavior of hydrotropic compounds in aqueous solution,” Journal of Physical Chemistry, vol. 93, no. 9, pp. 3865–3870, 1989. View at Google Scholar · View at Scopus
  26. R. C. Da Silva, M. Spitzer, L. H. M. Da Silva, and W. Loh, “Investigations on the mechanism of aqueous solubility increase caused by some hydrotropes,” Thermochimica Acta, vol. 328, no. 1-2, pp. 161–167, 1999. View at Google Scholar · View at Scopus
  27. D. Horter and J. B. Dressman, “Influence of physicochemical properties on dissolution of drugs in the gastrointestinal tract,” Advanced Drug Delivery Reviews, vol. 46, pp. 75–87, 2001. View at Google Scholar
  28. Y. V. Frenkel, A. D. Clark, K. Das et al., “Concentration and pH dependent aggregation of hydrophobic drug molecules and relevance to oral bioavailability,” Journal of Medicinal Chemistry, vol. 48, no. 6, pp. 1974–1983, 2005. View at Publisher · View at Google Scholar · View at Scopus
  29. M. R. DeFelippis, R. E. Chance, and B. H. Frank, “Insulin self-association and the relationship to pharmacokinetics and pharmacodynamics,” Critical Reviews in Therapeutic Drug Carrier Systems, vol. 18, no. 2, pp. 201–264, 2001. View at Google Scholar · View at Scopus
  30. R. Ganapathi, D. Grabowski, H. Schmidt, A. Yen, and G. Iliakis, “Modulation of adriamycin and N-trifluoroacetyladriamycin-14-valerate induced effects on cell cycle traverse and cytotoxicity in P388 mouse leukemia cells by caffeine and the calmodulin inhibitor trifluoperazine,” Cancer Research, vol. 46, pp. 5553–5557, 1986. View at Google Scholar
  31. G. Iliakis, M. Nusse, R. Ganapathi, J. Egner, and A. Yen, “Differential reduction by caffeine of adriamycin induced cell killing and cell cycle delays in Chinese hamster V79 cells,” International Journal of Radiation Oncology. Biology. Physics, vol. 12, pp. 1987–1995, 1986. View at Google Scholar
  32. F. Traganos, B. Kaminska-Eddy, and Z. Darzynkiewicz, “Caffeine reverses the cytotoxic and cell kinetic effects of Novantrone (mitoxantrone),” Cell Proliferation, vol. 24, no. 3, pp. 305–319, 1991. View at Google Scholar · View at Scopus
  33. F. Traganos, J. Kapuscinski, and Z. Darzynkiewicz, “Caffeine modulates the effects of DNA-intercalating drugs in vitro: a flow cytometric and spectrophotometric analysis of caffeine interaction with novantrone, doxorubicin, ellipticine, and the doxorubicin analogue AD1981,” Cancer Research, vol. 51, no. 14, pp. 3682–3689, 1991. View at Google Scholar · View at Scopus
  34. C. Perez, F. Pelayo, N. E. Vilaboa, and P. Aller, “Caffeine attenuates the action of amsacrine and etoposide in U-937 cells by mechanisms which involve inhibition of RNA synthesis,” International Journal of Cancer, vol. 57, no. 6, pp. 889–893, 1994. View at Publisher · View at Google Scholar · View at Scopus
  35. Y. Sadzuka, E. Mochizuki, and Y. Takino, “Mechanism of caffeine modulation of the antitumor activity of adriamycin,” Toxicology Letters, vol. 75, no. 1–3, pp. 39–49, 1995. View at Publisher · View at Google Scholar · View at Scopus
  36. J. J. Roberts, “Mechanism of potentiation by Caffeine of genotoxic damage induced by physical and chemical agents,” in DNA Repair and Its Inhibitors, A. Colins, C. S. Dowens, and R. T. Johnson, Eds., pp. 193–216, IRL Press, Oxford, UK, 1984. View at Google Scholar
  37. J. Piosik, M. Zdunek, and J. Kapuscinski, “The modulation by xanthines of the DNA-damaging effect of polycyclic aromatic agents—part 2. The stacking complexes of caffeine with doxorubicin and mitoxantrone,” Biochemical Pharmacology, vol. 63, no. 4, pp. 635–646, 2002. View at Publisher · View at Google Scholar · View at Scopus
  38. G. M. Hill, D. M. Moriarity, and W. N. Setzer, “Attenuation of cytotoxic natural product DNA intercalating agents by caffeine,” Scientia Pharmaceutica, vol. 79, no. 4, pp. 729–747, 2011. View at Google Scholar
  39. J. Piosik, A. Gwizdek-Wisniewska, K. Ulanowska, J. Ochocinski, A. Czyz, and G. Wegrzyn, “Methylxanthines (caffeine, pentoxifylline and theophylline) decrease the mutagenic effect of daunomycin, doxorubicin and mitoxantrone,” Acta Biochimica Polonica, vol. 52, no. 4, pp. 923–926, 2005. View at Google Scholar · View at Scopus
  40. F. Traganos, J. Kapuscinski, J. Gong, B. Ardelt, R. J. Darzynkiewicz, and Z. Darzynkiewicz, “Caffeine prevents apoptosis and cell cycle effects induced by camptothecin or topotecan in HL-60 cells,” Cancer Research, vol. 53, no. 18, pp. 4613–4618, 1993. View at Google Scholar · View at Scopus
  41. S. A. Khalil, L. K. El Khordagui, and A. M. Saleh, “Interaction of caffeine with phenothiazine derivatives,” International Journal of Pharmaceutics, vol. 16, no. 3, pp. 271–283, 1983. View at Publisher · View at Google Scholar · View at Scopus
  42. H. Kimura and T. Aoyama, “Decrease in sensitivity to ethidium bromide by caffeine, dimethylsulfoxide or 3-aminobenzamide due to reduced permeability,” Journal of Pharmacobio-Dynamics, vol. 12, no. 10, pp. 589–595, 1989. View at Google Scholar
  43. K. Ulanowska, J. Piosik, A. Gwizdek-Wisniewska, and G. Wegrzyn, “Formation of stacking complexes between caffeine (1,2,3-trimethylxanthine) and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine may attenuate biological effects of this neurotoxin,” Bioorganic Chemistry, vol. 33, pp. 402–413, 2005. View at Google Scholar
  44. J. Kapuscinski, B. Ardelt, J. Piosik, M. Zdunek, and Z. Darzynkiewicz, “The modulation of the DNA-damaging effect of polycyclic aromatic agents by xanthines—part 1. Reduction of cytostatic effects of quinacrine mustard by caffeine,” Biochemical Pharmacology, vol. 63, no. 4, pp. 625–634, 2002. View at Publisher · View at Google Scholar · View at Scopus
  45. J. Piosik, K. Ulanowska, A. Gwizdek-Wiśniewska, A. Czyz, J. Kapuściński, and G. Wȩgrzyn, “Alleviation of mutagenic effects of polycyclic aromatic agents (quinacrine mustard, ICR-191 and ICR-170) by caffeine and pentoxifylline,” Mutation Research, vol. 530, no. 1-2, pp. 47–57, 2003. View at Publisher · View at Google Scholar · View at Scopus
  46. A. Woziwodzka, A. Gwizdek-Wiśniewska, and J. Piosik, “Caffeine, pentoxifylline and theophylline form stacking complexes with IQ-type heterocyclic aromatic amines,” Bioorganic Chemistry, vol. 39, no. 1, pp. 10–17, 2011. View at Publisher · View at Google Scholar · View at Scopus
  47. D.-H. Chin, H.-H. Li, H.-M. Kuo, P.-D. Lee Chao, and C.-W. Liu, “Neocarzinostatin as a probe for DNA protection activity—molecular interaction with caffeine,” Molecular Carcinogenesis, vol. 51, pp. 327–338, 2012. View at Google Scholar
  48. R. W. Larsen, R. Jasuja, R. K. Hetzler, P. T. Muraoka, V. G. Andrada, and D. M. Jameson, “Spectroscopic and molecular modeling studies of caffeine complexes with DNA intercalators,” Biophysical Journal, vol. 70, no. 1, pp. 443–452, 1996. View at Google Scholar · View at Scopus
  49. D. B. Davies, D. A. Veselkov, L. N. Djimant, and A. N. Veselkov, “Hetero-association of caffeine and aromatic drugs and their competitive binding with a DNA oligomer,” European Biophysics Journal, vol. 30, no. 5, pp. 354–366, 2001. View at Publisher · View at Google Scholar · View at Scopus
  50. M. B. Lyles and I. L. Cameron, “Caffeine and other xanthines as cytochemical blockers and removers of heterocyclic dna intercalators from chromatin,” Cell Biology International, vol. 26, pp. 145–154, 2002. View at Google Scholar
  51. I. M. Johnson, S. G. Bhuvan Kumar, and R. Malathi, “De-intercalation of ethidium bromide and acridine orange by xanthine derivatives and their modulatory effect on anticancer agents,” Journal of Biomolecular Structure & Dynamics, vol. 20, pp. 677–685, 2003. View at Google Scholar
  52. E. Bedner, L. Du, F. Traganos, and Z. Darzynkiewicz, “Caffeine dissociates complexes between DNA and intercalating dyes: application for bleaching fluorochrome-stained cells for their subsequent restaining and analysis by laser scanning cytometry,” Cytometry, vol. 43, pp. 38–45, 2001. View at Google Scholar
  53. M. P. Evstigneev, V. V. Khomich, and D. B. Davies, “Complexation of anthracycline drugs with DNA in the presence of caffeine,” European Biophysics Journal, vol. 36, no. 1, pp. 1–11, 2006. View at Publisher · View at Google Scholar · View at Scopus
  54. M. P. Evstigneev, V. P. Evstigneev, and D. B. Davies, “NMR investigation of the effect of caffeine on the hetero-association of an anticancer drug with a vitamin,” Chemical Physics Letters, vol. 432, no. 1–3, pp. 248–251, 2006. View at Publisher · View at Google Scholar · View at Scopus
  55. M. P. Evstigneev, V. P. Evstigneev, and D. B. Davies, “A method for analysis of multicomponent systems of interacting aromatic molecules in solution,” Journal of Chemical Physics, vol. 127, no. 15, Article ID 154511, 2007. View at Google Scholar
  56. M. P. Evstigneev, V. P. Evstigneev, A. A. H. Santiago, and D. B. Davies, “Effect of a mixture of caffeine and nicotinamide on the solubility of vitamin (B2) in aqueous solution,” European Journal of Pharmaceutical Sciences, vol. 28, no. 1-2, pp. 59–66, 2006. View at Publisher · View at Google Scholar · View at Scopus
  57. J. Kapuscinski and M. Kimmel, “Thermodynamical model of mixed aggregation of intercalators with caffeine in aqueous solution,” Biophysical Chemistry, vol. 46, no. 2, pp. 153–163, 1993. View at Publisher · View at Google Scholar · View at Scopus
  58. M. Zdunek, J. Piosik, and J. Kapuscinski, “Thermodynamical model of mixed aggregation of ligands with caffeine in aqueous solution. Part II,” Biophysical Chemistry, vol. 84, no. 1, pp. 77–85, 2000. View at Publisher · View at Google Scholar · View at Scopus
  59. D. B. Davies, D. A. Veselkov, M. P. Evstigneev, and A. N. Veselkov, “Self-association of antitumour agent Novantrone (Mitoxamtrone) and its hetero-association with Caffeine,” Perkin Transactions II, vol. 1, pp. 61–67, 2001. View at Google Scholar
  60. M. B. Lyles, I. L. Cameron, and H. R. Rawls, “Structural basis for the binding affinity of xanthines with the DNA intercalator acridine orange,” Journal of Medicinal Chemistry, vol. 44, pp. 4650–4660, 2001. View at Google Scholar
  61. M. B. Lyles and I. I. Cameron, “Interactions of the DNA intercalator acridine orange, with itself, with caffeine, and with double stranded DNA,” Biophysical Chemistry, vol. 96, pp. 53–76, 2002. View at Google Scholar
  62. M. P. Evstigneev, K. A. Rybakova, and D. B. Davies, “Complexation of norfloxacin with DNA in the presence of caffeine,” Biophysical Chemistry, vol. 121, no. 2, pp. 84–95, 2006. View at Publisher · View at Google Scholar · View at Scopus
  63. P. A. Bolotin, S. F. Baranovsky, and M. P. Evstigneev, “Spectrophotometric investigation of the hetero-association of Caffeine and thiazine dye in aqueous solution,” Spectrochimica Acta Part A, vol. 64, no. 3, pp. 693–697, 2006. View at Publisher · View at Google Scholar · View at Scopus
  64. D. D. Andrejuk, A. A. Hernandez Santiago, V. V. Khomich, V. K. Voronov, D. B. Davies, and M. P. Evstigneev, “Structural and thermodynamic analysis of the hetero-association of theophylline with aromatic drug molecules,” Journal of Molecular Structure, vol. 889, no. 1–3, pp. 229–236, 2008. View at Publisher · View at Google Scholar · View at Scopus
  65. A. A. Hernandez Santiago, D. D. Andrejuk, A. M. Cervantes Tavera, D. B. Davies, and M. P. Evstigneev, “Complexation of biologically active aromatic compounds with DNA in the presence of theophylline,” Journal of Biological Physics, vol. 35, no. 2, pp. 115–126, 2009. View at Publisher · View at Google Scholar · View at Scopus
  66. J. Piosik, K. Wasielewski, A. Woziwodzka, W. Śledź, and A. Gwizdek-Wiśniewska, “De-intercalation of ethidium bromide and propidium iodine from DNA in the presence of caffeine,” Central European Journal of Biology, vol. 5, no. 1, pp. 59–66, 2010. View at Publisher · View at Google Scholar · View at Scopus
  67. M. P. Evstigneev, A. A. Mosunov, V. P. Evstigneev, H. G. Parkes, and D. B. Davies, “Quantification of the interceptor action of caffeine on the in vitro biological effect of the anti-tumour agent topotecan,” European Biophysics Journal, vol. 40, no. 8, pp. 969–980, 2011. View at Publisher · View at Google Scholar · View at Scopus
  68. A. Osowski, M. Pietrzak, Z. Wieczorek, and J. Wieczorek, “Natural compounds in the human diet and their ability to bind mutagens prevents DNA-mutagen intercalation,” Journal of Toxicology and Environmental Health Part A, vol. 73, no. 17-18, pp. 1141–1149, 2010. View at Publisher · View at Google Scholar · View at Scopus
  69. A. S. Buchelnikov, A. A. Hernandez Santiago, M. Gonzalez Flores, R. Vazquez Ramirez, D. B. Davies, and M. P. Evstigneev, “General analysis of competitive binding in drug-interceptor-DNA systems,” European Biophysics Journal, vol. 41, pp. 273–283, 2012. View at Google Scholar
  70. A. A. Hernandez Santiago, M. Gonzalez Flores, and S. A. Rosas Castilla, “1H NMR study of the complexation of aromatic drugs with dimethylxanthine derivatives,” Journal of Molecular Structure, vol. 1010, pp. 139–145, 2012. View at Google Scholar
  71. L. S. Kan, P. N. Borer, D. M. Cheng, and P. O. P. Ts'o, “1H- and 13C-NMR studies on caffeine and its interaction with nucleic acids,” Biopolymers, vol. 19, no. 9, pp. 1641–1654, 1980. View at Google Scholar · View at Scopus
  72. H. Fritzsche, I. Petri, H. Schütz, K. Weller, P. Sedmera, and H. Lang, “On the interaction of caffeine with nucleic acids—III. 1H NMR studies of caffeine—5-adenosine monophosphate and caffeine-poly(riboadenylate) interactions,” Biophysical Chemistry, vol. 11, no. 1, pp. 109–119, 1980. View at Google Scholar
  73. H. Fritzsche, H. Lang, H. Sprinz, and W. Pohle, “On the interaction of caffeine with nucleic acids—IV. Studies of the caffeine-DNA interaction by infrared and ultraviolet linear dichroism, proton and deuteron nuclear magnetic resonance,” Biophysical Chemistry, vol. 11, no. 1, pp. 121–131, 1980. View at Publisher · View at Google Scholar · View at Scopus
  74. S. Tornaletti, P. Russo, S. Parodi, and A. M. Pedrini, “Studies on DNA binding of caffeine and derivatives: evidence of intercalation by DNA-unwinding experiments,” Biochimica et Biophysica Acta, vol. 1007, no. 1, pp. 112–115, 1989. View at Google Scholar · View at Scopus
  75. S. F. Baranovsky, P. A. Bolotin, M. P. Evstigneev, and D. N. Chernyshev, “Interaction of ethidium bromide and caffeine with DNA in aqueous solution,” Journal of Applied Spectroscopy, vol. 76, no. 1, pp. 132–139, 2009. View at Publisher · View at Google Scholar · View at Scopus
  76. M. P. Evstigneev, A. O. Lantushenko, V. P. Evstigneev, Y. V. Mykhina, and D. B. Davies, “Quantitation of the molecular mechanisms of biological synergism in a mixture of DNA-acting aromatic drugs,” Biophysical Chemistry, vol. 132, no. 2-3, pp. 148–158, 2008. View at Publisher · View at Google Scholar · View at Scopus
  77. J. L. Quiles, J. R. Huertas, M. Battino, J. Mataix, and M. C. Ramírez-Tortosa, “Antioxidant nutrients and adriamycin toxicity,” Toxicology, vol. 180, no. 1, pp. 79–95, 2002. View at Publisher · View at Google Scholar · View at Scopus
  78. A. Ramu, M. M. Mehta, J. Liu, I. Turyan, and A. Aleksic, “The riboflavin-mediated photooxidation of doxorubicin,” Cancer Chemotherapy and Pharmacology, vol. 46, no. 6, pp. 449–458, 2000. View at Google Scholar · View at Scopus
  79. A. P. Odin, “Vitamins as antimutagens: advantages and some possible mechanisms of antimutagenic action,” Mutation Research, vol. 386, no. 1, pp. 39–67, 1997. View at Publisher · View at Google Scholar · View at Scopus
  80. G. B. Raiczyk and J. Pinto, “Inhibition of flavin metabolism by adriamycin in skeletal muscle,” Biochemical Pharmacology, vol. 37, no. 9, pp. 1741–1744, 1988. View at Publisher · View at Google Scholar · View at Scopus
  81. E. D. Kharasch and R. F. Novak, “The molecular basis for complexation of adriamycin with flavin mononucleotide and flavin adenine dinucleotide,” Archives of Biochemistry and Biophysics, vol. 212, no. 1, pp. 20–36, 1981. View at Google Scholar
  82. E. D. Kharasch and R. F. Novak, “Structural and mechanistic related to antitumor antibiotics,” Archives of Biochemistry and Biophysics, vol. 234, pp. 497–512, 1984. View at Google Scholar
  83. A. Galat, “Interaction of riboflavin binding protein with riboflavin, quinacrine, chlorpromazine and daunomycin,” International Journal of Biochemistry, vol. 20, no. 9, pp. 1021–1029, 1988. View at Google Scholar · View at Scopus
  84. A. W. Wood, J. M. Sayer, H. L. Newmark et al., “Mechanism of the inhibition of mutagenicity of a benzo[a]pyrene 7,8-diol 9,10-epoxide by riboflavin 5-phosphate,” Proceedings of the National Academy of Sciences of the United States of America, vol. 79, no. 17, pp. 5122–5126, 1982. View at Google Scholar
  85. J. Pangrekar, K. Krishnaswamy, and V. Jagadeesan, “Effects of riboflavin deficiency and riboflavin administration on carcinogen-DNA binding,” Food and Chemical Toxicology, vol. 31, no. 10, pp. 745–750, 1993. View at Publisher · View at Google Scholar · View at Scopus
  86. M. A. Munoz, C. Carmona, J. Hidalgo, P. Guardado, and M. Balon, “Molecular associations of flavins with betacarbolines and related indoles,” Bioorganic and Medicinal Chemistry, vol. 3, no. 1, pp. 41–47, 1995. View at Publisher · View at Google Scholar · View at Scopus
  87. A. Codoner, I. S. Monzo, C. Ortiz, and A. Olba, “Spectroscopic study of molecular associations between riboflavin and some betacarboline derivatives,” Journal of the Chemical Society, Perkin Transactions, vol. 2, pp. 107–111, 1989. View at Google Scholar
  88. A. Codoner, P. Medina, C. Ortiz, and E. Jover, “Spectroscopic study of molecular associations between riboflavin and some (dihydro) β-carboline derivatives,” Spectrochimica Acta, vol. 49, pp. 321–327, 1993. View at Google Scholar
  89. A. Codoner, I. S. Monzo, F. Tomas, and R. Valero, “Spectroscopic study of intermolecular complexes between FAD and some β-carboline derivatives,” Spectrochimica Acta, vol. 42, no. 7, pp. 765–769, 1986. View at Google Scholar
  90. A. Codoner, I. S. Monzo, P. Medina, and F. Tomas, “Spectroscopic study of molecular associations between flavins FAD and RFN and some indole derivatives,” Spectrochimica Acta, vol. 43, pp. 389–394, 1987. View at Google Scholar
  91. A. N. Veselkov, M. P. Evstigneev, and A. O. Rozvadovska, “A structural and thermodynamic analysis of novatrone and flavin mononucleotide heteroassociation in aqueous solution by 1H NMR Spectroscopy,” Russian Journal of Bioorganic Chemistry, vol. 31, pp. 453–459, 2005. View at Google Scholar
  92. M. P. Evstigneev, V. Y. Mykhina, and D. B. Davies, “Complexation of daunomycin with a DNA oligomer in the presence of an aromatic vitamin (B2) determined by NMR spectroscopy,” Biophysical Chemistry, vol. 118, pp. 118–127, 2005. View at Google Scholar
  93. A. N. Veselkov, M. P. Evstigneev, A. O. Rozvadovskaya, Y. V. Mukhina, K. A. Rybakova, and D. B. Davies, “1H NMR study of the complexation of aromatic molecules of an antibiotic and a vitamin in aqueous solution: heteroassociation of actinomycin D and flavin mononucleotide,” Biophysics, vol. 50, no. 1, pp. 20–27, 2005. View at Google Scholar
  94. M. P. Evstigneev, A. O. Rozvadovskaya, A. S. Chubarov, A. A. Hernandez Santiago, D. B. Davies, and A. N. Veselkov, “Structural and thermodynamic analysis of heteroassociation of daunomycin and flavin mononucleotide molecules in water by 1H NMR spectroscopy,” Journal of Structural Chemistry, vol. 46, no. 1, pp. 67–74, 2005. View at Publisher · View at Google Scholar · View at Scopus
  95. M. P. Evstigneev, K. A. Rybakova, and D. B. Davies, “Heteroassociation of antibiotic norfloxacin with aromatic vitamins in aqueous solution,” Biophysics, vol. 51, no. 4, pp. 592–598, 2006. View at Publisher · View at Google Scholar · View at Scopus
  96. A. A. Mosunov, V. V. Kostjukov, and M. P. Evstigneev, “Studies by means of 1H NMR spectroscopy of complex formation of aromatic biologically active compounds with antibiotic topotecan,” Ukrainian Biochemical Journal, vol. 84, pp. 61–72, 2012. View at Google Scholar
  97. M. P. Evstigneev, Y. V. Mukhina, and D. B. Davies, “1H NMR study of the hetero-association of flavin-mononucleotide with mutagenic dyes: ethidium bromide and proflavine,” Molecular Physics, vol. 104, no. 4, pp. 647–654, 2006. View at Publisher · View at Google Scholar · View at Scopus
  98. Y. Mizuki, I. Fujiwara, and T. Yamaguchi, “Pharmacokinetic interactions related to the chemical structures of fluoroquinolones,” Journal of Antimicrobial Chemotherapy, vol. 37, pp. 41–55, 1996. View at Google Scholar · View at Scopus
  99. K. C. Yoovathaworn, K. Sriwatanakul, and A. Thithapandha, “Influence of caffeine on aspirin pharmacokinetics,” European Journal of Drug Metabolism and Pharmacokinetics, vol. 11, no. 1, pp. 71–76, 1986. View at Google Scholar · View at Scopus
  100. A. N. Veselkov, M. P. Evstigneev, A. O. Rozvadovskaya et al., “1H NMR structural and thermodynamical analysis of the hetero-association of daunomycin and novatrone in aqueous solution,” Journal of Molecular Structure, vol. 701, no. 1–3, pp. 31–37, 2004. View at Publisher · View at Google Scholar · View at Scopus
  101. D. B. Davies, M. P. Evstigneev, D. A. Veselkov, and A. N. Veselkov, “Hetero-association of anticancer antibiotics in aqueous solution: NMR and molecular mechanics analysis,” Biophysical Chemistry, vol. 117, no. 2, pp. 111–118, 2005. View at Publisher · View at Google Scholar · View at Scopus
  102. M. P. Evstigneev, A. O. Rozvadovskaya, O. V. Zubchenok, Y. V. Mukhina, D. B. Davies, and A. N. Veselkov, “Analysis by means of 1H NMR spectroscopy of heteroassociaion in water solution of antitumor antibiotics daunomycin and actinomycin D,” Russian Journal of Organic Chemistry, vol. 41, no. 8, pp. 1158–1164, 2005. View at Publisher · View at Google Scholar · View at Scopus
  103. M. P. Evstigneev, K. A. Rybakova, and D. B. Davies, “Formation of complexes of antimicrobial agent norfloxacin with antitumor antibiotics of anthracycline series,” Russian Journal of Physical Chemistry A, vol. 81, no. 5, pp. 802–807, 2007. View at Publisher · View at Google Scholar · View at Scopus
  104. J. L. Bernier, M. Lohez, N. Helbecque, and J. P. Henichart, “Effect of combination of m-AMSA and doxorubicin on their redox properties and on DNA cleavage,” Chemico-Biological Interactions, vol. 70, no. 1-2, pp. 103–115, 1989. View at Google Scholar · View at Scopus
  105. M. Sorensen, M. Sehested, and P. B. Jensen, “pH-Dependent regulation of camptothecin-induced cytotoxicity and cleavable complex formation by the antimalarial agent chloroquine,” Biochemical Pharmacology, vol. 54, no. 3, pp. 373–380, 1997. View at Publisher · View at Google Scholar · View at Scopus
  106. B. S. Sorensen, P. B. Jensen, M. Sehested et al., “Antagonistic effect of aclarubicin on camptothecin induced cytotoxicity: role of topoisomerase I,” Biochemical Pharmacology, vol. 47, no. 11, pp. 2105–2110, 1994. View at Publisher · View at Google Scholar · View at Scopus
  107. B. C. Baguley, “The possible role of electron-transfer complexes in the antitumour action of amsacrine analogues,” Biophysical Chemistry, vol. 35, pp. 203–212, 1990. View at Google Scholar
  108. L. M. Davis, J. D. Harvey, and B. C. Baguley, “Electron donor properties of the antitumour drug amsacrine as studied by fluorescence quenching of DNA-bound ethidium,” Chemico-Biological Interactions, vol. 62, pp. 45–58, 1987. View at Google Scholar
  109. G. S. Ridge, C. Bailly, D. E. Graves, and M. J. Waring, “Daunomycin modifies the sequence-selective recognition of DNA by actinomycin,” Nucleic Acids Research, vol. 22, no. 24, pp. 5241–5246, 1994. View at Google Scholar · View at Scopus
  110. L. Blau and R. Bittman, “Equilibrium and kinetic measurements of actinomycin binding to deoxyribonucleic acid in the presence of competing drugs,” Molecular Pharmacology, vol. 11, no. 6, pp. 716–721, 1975. View at Google Scholar · View at Scopus
  111. T. A. Beerman, J. M. Woynarowski, and M. McHugh, “Modylation of topoisomerase targeted drugs by minor-groove binding agents,” in DNA Topoisomerases in Cancer, M. Potmesil and K. W. Kohn, Eds., pp. 172–181, Oxford University Press, New York, NY, USA, 1991. View at Google Scholar
  112. A. H. J. Wang, Y. G. Gao, Y. C. Liaw, and Y. K. Li, “Formaldehyde cross-links daunorubicin and DNA efficiently: HPLC and X-ray diffraction studies,” Biochemistry, vol. 30, no. 16, pp. 3812–3815, 1991. View at Google Scholar · View at Scopus
  113. H. Zhang, Y. G. Gao, G. A. Van der Marel, J. H. Van Boom, and A. H. J. Wang, “Simultaneous incorporations of two anticancer drugs into DNA. The structures of formaldehyde-cross linked adducts of daunorubicin-d(CG(araC)G0CG) and doxorubicin-d(CA(araC)GTG) complexes at high resolution,” Journal of Biological Chemistry, vol. 268, no. 14, pp. 10095–10101, 1993. View at Google Scholar · View at Scopus