Table of Contents Author Guidelines Submit a Manuscript
Obstetrics and Gynecology International
Volume 2010, Article ID 682504, 7 pages
http://dx.doi.org/10.1155/2010/682504
Research Article

Hypermethylation of SOX2 Promoter in Endometrial Carcinogenesis

1Department of Pathology, Queen Mary Hospital, The University of Hong Kong, Pokfulam Road, Hong Kong
2Department of Pathology, Peking Union Medical College Hospital, CAMS and PUMC, Beijing 100730, China

Received 20 November 2009; Revised 4 June 2010; Accepted 7 July 2010

Academic Editor: Fan Jin

Copyright © 2010 Oscar Gee-Wan Wong et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Jemal, R. Siegel, E. Ward, T. Murray, J. Xu, and M. J. Thun, “Cancer statistics, 2007,” Ca: A Cancer Journal for Clinicians, vol. 57, no. 1, pp. 43–66, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. F. Amant, P. Moerman, P. Neven, D. Timmerman, E. Van Limbergen, and I. Vergote, “Endometrial cancer,” Lancet, vol. 366, no. 9484, pp. 491–505, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  3. Y. Shang, “Molecular mechanisms of oestrogen and SERMs in endometrial carcinogenesis,” Nature Reviews Cancer, vol. 6, no. 5, pp. 360–368, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  4. S. F. Lax, “Molecular genetic pathways in various types of endometrial carcinoma: from a phenotypical to a molecular-based classification,” Virchows Archiv, vol. 444, no. 3, pp. 213–223, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  5. P. Mhawech-Fauceglia, D. J. Smiraglia, and D. J. Smiraglia, “Prostate-specific membrane antigen expression is a potential prognostic marker in endometrial adenocarcinoma,” Cancer Epidemiology Biomarkers and Prevention, vol. 17, no. 3, pp. 571–577, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  6. F. D. Cirisano Jr., S. J. Robboy, and S. J. Robboy, “The outcome of stage I-II clinically and surgically staged papillary serous and clear cell endometrial cancers when compared with endometrioid carcinoma,” Gynecologic Oncology, vol. 77, no. 1, pp. 55–65, 2000. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  7. J. Bowles, G. Schepers, and P. Koopman, “Phylogeny of the SOX family of developmental transcription factors based on sequence and structural indicators,” Developmental Biology, vol. 227, no. 2, pp. 239–255, 2000. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  8. M. Wegner and C. C. Stolt, “From stem cells to neurons and glia: a Soxist's view of neural development,” Trends in Neurosciences, vol. 28, no. 11, pp. 583–588, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  9. G. E. Schepers, R. D. Teasdale, and P. Koopman, “Twenty pairs of sox: extent, homology, and nomenclature of the mouse and human sox transcription factor gene families,” Developmental Cell, vol. 3, no. 2, pp. 167–170, 2002. View at Publisher · View at Google Scholar · View at Scopus
  10. H. Fong, K. A. Hohenstein, and P. J. Donovan, “Regulation of self-renewal and pluripotency by Sox2 in human embryonic stem cells,” Stem Cells, vol. 26, no. 8, pp. 1931–1938, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  11. K. Takahashi and S. Yamanaka, “Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors,” Cell, vol. 126, no. 4, pp. 663–676, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  12. Y.-H. Loh, S. Agarwal, and S. Agarwal, “Generation of induced pluripotent stem cells from human blood,” Blood, vol. 113, no. 22, pp. 5476–5479, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  13. T. Tsukamoto, K. Inada, and K. Inada, “Down-regulation of a gastric transcription factor, Sox2, and ectopic expression of intestinal homeobox genes, Cdx1 and Cdx2: inverse correlation during progression from gastric/intestinal-mixed to complete intestinal metaplasia,” Journal of Cancer Research and Clinical Oncology, vol. 130, no. 3, pp. 135–145, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  14. T. Otsubo, Y. Akiyama, K. Yanagihara, and Y. Yuasa, “SOX2 is frequently downregulated in gastric cancers and inhibits cell growth through cell-cycle arrest and apoptosis,” British Journal of Cancer, vol. 98, no. 4, pp. 824–831, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  15. Q. I. Wang, W. He, and W. He, “Oct3/4 and sox2 are significantly associated with an unfavorable clinical outcome in human esophageal squamous cell carcinoma,” Anticancer Research, vol. 29, no. 4, pp. 1233–1241, 2009. View at Google Scholar · View at Scopus
  16. A. O. Güre, E. Stockert, and E. Stockert, “Serological identification of embryonic neural proteins as highly immunogenic tumor antigens in small cell lung cancer,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 8, pp. 4198–4203, 2000. View at Publisher · View at Google Scholar · View at Scopus
  17. S. M. Rodriguez-Pinilla, D. Sarrio, and D. Sarrio, “Sox2: a possible driver of the basal-like phenotype in sporadic breast cancer,” Modern Pathology, vol. 20, no. 4, pp. 474–481, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  18. M. Schmitz, A. Temme, and A. Temme, “Identification of SOX2 as a novel glioma-associated antigen and potential target for T cell-based immunotherapy,” British Journal of Cancer, vol. 96, no. 8, pp. 1293–1301, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  19. Y. Chen, L. Shi, and L. Shi, “The molecular mechanism governing the oncogenic potential of SOX2 in breast cancer,” Journal of Biological Chemistry, vol. 283, no. 26, pp. 17969–17978, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  20. R. M. R. Gangemi, F. Griffero, and F. Griffero, “SOX2 silencing in glioblastoma tumor-initiating cells causes stop of proliferation and loss of tumorigenicity,” Stem Cells, vol. 27, no. 1, pp. 40–48, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  21. A. S. M. Li, M. K. Y. Siu, H. Zhang, E. S. Y. Wong, K. Y. K. Chan, H. Y. S. Ngan, and A. N. Y. Cheung, “Hypermethylation of SOX2 gene in hydatidiform mole and choriocarcinoma,” Reproductive Sciences, vol. 15, no. 7, pp. 735–744, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  22. H.-J. Yang, V. W. S. Liu, Y. Wang, P. C. K. Tsang, and H. Y. S. Ngan, “Differential DNA methylation profiles in gynecological cancers and correlation with clinico-pathological data,” BMC Cancer, vol. 6, article 212, 2006. View at Publisher · View at Google Scholar · View at PubMed
  23. X. Liao, M. K.-Y. Siu, and M. K.-Y. Siu, “Hypermethylation of RAS effector related genes and DNA methyltransferase 1 expression in endometrial carcinogenesis,” International Journal of Cancer, vol. 123, no. 2, pp. 296–302, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  24. W.-C. Xue, K. Y. K. Chan, H.-C. Feng, P.-M. Chiu, H. Y. S. Ngan, S.-W. Tsao, and A. N. Y. Cheung, “Promoter hypermethylation of multiple genes in hydatidiform mole and choriocarcinoma,” Journal of Molecular Diagnostics, vol. 6, no. 4, pp. 326–334, 2004. View at Google Scholar · View at Scopus
  25. D. H. Shen, U. S. Khoo, W. C. Xue et al., “Primary peritoneal malignant mixed Müllerian tumors: a clinicopathologic, immunohistochemical, and genetic study,” Cancer, vol. 91, no. 5, pp. 1052–1060, 2001. View at Publisher · View at Google Scholar · View at Scopus
  26. H. Jo, J. W. Kim, G. H. Kang, N.-H. Park, Y.-S. Song, S.-B. Kang, and H.-P. Lee, “Association of promoter hypermethylation of the RASSF1A gene with prognostic parameters in endometrial cancer,” Oncology Research, vol. 16, no. 4, pp. 205–209, 2006. View at Google Scholar · View at Scopus
  27. R. Xie, D. S. Loose, G. L. Shipley, S. Xie, R. L. Bassett Jr., and R. R. Broaddus, “Hypomethylation-induced expression of S100A4 in endometrial carcinoma,” Modern Pathology, vol. 20, no. 10, pp. 1045–1054, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  28. K. Y. Tse, V. W. S. Liu, and V. W. S. Liu, “Epigenetic alteration of the metallothionein 1e gene in human endometrial carcinomas,” Tumor Biology, vol. 30, no. 2, pp. 93–99, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  29. A. E. Schindler, “Progestogen deficiency and endometrial cancer risk,” Maturitas, vol. 62, no. 4, pp. 334–337, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  30. K. Fukuda, M. Mori, M. Uchiyama, K. Iwai, T. Iwasaka, and H. Sugimori, “Prognostic significance of progesterone receptor immunohistochemistry in endometrial carcinoma,” Gynecologic Oncology, vol. 69, no. 3, pp. 220–225, 1998. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  31. P. Kastner, A. Krust, B. Turcotte, U. Stropp, L. Tora, H. Gronemeyer, and P. Chambon, “Two distinct estrogen-regulated promoters generate transcripts encoding the two functionally different human progesterone receptor forms A and B,” EMBO Journal, vol. 9, no. 5, pp. 1603–1614, 1990. View at Google Scholar · View at Scopus
  32. B. Mulac-Jericevic, R. A. Mullinax, F. J. DeMayo, J. P. Lydon, and O. M. Conneely, “Subgroup of reproductive functions of progesterone mediated by progesterone receptor-B isoform,” Science, vol. 289, no. 5485, pp. 1751–1754, 2000. View at Publisher · View at Google Scholar · View at Scopus
  33. V. Jongen, J. Briët, and J. Briët, “Expression of estrogen receptor-alpha and -beta and progesterone receptor-A and -B in a large cohort of patients with endometrioid endometrial cancer,” Gynecologic Oncology, vol. 112, no. 3, pp. 537–542, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  34. M. Schoenhals, A. Kassambara, J. De Vos, D. Hose, J. Moreaux, and B. Klein, “Embryonic stem cell markers expression in cancers,” Biochemical and Biophysical Research Communications, vol. 383, no. 2, pp. 157–162, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  35. S. Asonuma, A. Imatani, and A. Imatani, “Helicobacter pylori induces gastric mucosal intestinal metaplasia through the inhibition of interleukin-4-mediated HMG box protein Sox2 expression,” American Journal of Physiology, vol. 297, no. 2, pp. G312–G322, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus