Table of Contents Author Guidelines Submit a Manuscript
Obstetrics and Gynecology International
Volume 2010, Article ID 923824, 8 pages
http://dx.doi.org/10.1155/2010/923824
Review Article

Preclinical Studies of Chemotherapy Using Histone Deacetylase Inhibitors in Endometrial Cancer

Department of Obstetrics and Gynecology, Faculty of Medicine, Oita University, Hasama-machi, Yufu-shi, Oita 879-5593, Japan

Received 15 September 2009; Revised 23 November 2009; Accepted 14 January 2010

Academic Editor: Paul J. Hoskins

Copyright © 2010 Noriyuki Takai and Hisashi Narahara. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. N. I. Medel, S. Bansal, D. S. Miller, J. D. Wright, and T. J. Herzog, “Pharmacotherapy of endometrial cancer,” Expert Opinion on Pharmacotherapy, vol. 10, no. 12, pp. 1939–1951, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. B. D. Strahl and C. D. Allis, “The language of covalent histone modifications,” Nature, vol. 403, no. 6765, pp. 41–45, 2000. View at Publisher · View at Google Scholar · View at Scopus
  3. T. Jenuwein and C. D. Allis, “Translating the histone code,” Science, vol. 293, no. 5532, pp. 1074–1080, 2001. View at Publisher · View at Google Scholar · View at Scopus
  4. J. E. Bolden, M. J. Peart, and R. W. Johnstone, “Anticancer activities of histone deacetylase inhibitors,” Nature Reviews Drug Discovery, vol. 5, no. 9, pp. 769–784, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. N. Takai and H. Narahara, “Human endometrial and ovarian cancer cells: histone deacetylase inhibitors exhibit antiproliferative activity, potently induce cell cycle arrest, and stimulate apoptosis,” Current Medicinal Chemistry, vol. 14, no. 24, pp. 2548–2553, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Haberland, R. L. Montgomery, and E. N. Olson, “The many roles of histone deacetylases in development and physiology: implications for disease and therapy,” Nature Reviews Genetics, vol. 10, no. 1, pp. 32–42, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. N. Takai, N. Kawamata, D. Gui, J. W. Said, I. Miyakawa, and H. P. Koeffler, “Human ovarian carcinoma cells: histone deacetylase inhibitors exhibit antiproliferative activity and potently induce apoptosis,” Cancer, vol. 101, no. 12, pp. 2760–2770, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. C.-Y. Gui, L. Ngo, W. S. Xu, V. M. Richon, and P. A. Marks, “Histone deacetylase (HDAC) inhibitor activation of p21WAF1 involves changes in promoter-associated proteins, including HDAC1,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 5, pp. 1241–1246, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. N. Takai, J. C. Desmond, T. Kumagai et al., “Histone deacetylase inhibitors have a profound antigrowth activity in endometrial cancer cells,” Clinical Cancer Research, vol. 10, no. 3, pp. 1141–1149, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. N. Takai, T. Ueda, M. Nishida et al., “CBHA is a family of hybrid polar compounds that inhibit histone deacetylase, and induces growth inhibition, cell cycle arrest and apoptosis in human endometrial and ovarian cancer cells,” Oncology, vol. 70, no. 2, pp. 97–105, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. N. Takai, T. Ueda, M. Nishida, K. Nasu, and H. Narahara, “A novel histone deacetylase inhibitor, Scriptaid, induces growth inhibition, cell cycle arrest and apoptosis in human endometrial cancer and ovarian cancer cells,” International Journal of Molecular Medicine, vol. 17, no. 2, pp. 323–329, 2006. View at Google Scholar · View at Scopus
  12. N. Takai, T. Ueda, M. Nishida, K. Nasu, and H. Narahara, “Anticancer activity of MS-275, a novel histone deacetylase inhibitor, against human endometrial cancer cells,” Anticancer Research, vol. 26, no. 2, pp. 939–945, 2006. View at Google Scholar · View at Scopus
  13. N. Takai, T. Ueda, M. Nishida, K. Nasu, and H. Narahara, “M344 is a novel synthesized histone deacetylase inhibitor that induces growth inhibition, cell cycle arrest, and apoptosis in human endometrial cancer and ovarian cancer cells,” Gynecologic Oncology, vol. 101, no. 1, pp. 108–113, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. T. Ueda, N. Takai, M. Nishida, K. Nasu, and H. Narahara, “Apicidin, a novel histone deacetylase inhibitor, has profound anti-growth activity in human endometrial and ovarian cancer cells,” International Journal of Molecular Medicine, vol. 19, no. 2, pp. 301–308, 2007. View at Google Scholar · View at Scopus
  15. A. A. Ruefli, M. J. Ausserlechner, D. Bernhard et al., “The histone deacetylase inhibitor and chemotherapeutic agent suberoylanilide hydroxamic acid (SAHA) induces a cell-death pathway characterized by cleavage of Bid and production of reactive oxygen species,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 19, pp. 10833–10838, 2001. View at Publisher · View at Google Scholar · View at Scopus
  16. W. Xu, L. Ngo, G. Perez, M. Dokmanovic, and P. A. Marks, “Intrinsic apoptotic and thioredoxin pathways in human prostate cancer cell response to histone deacetylase inhibitor,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 42, pp. 15540–15545, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. R. R. Rosato, J. A. Almenara, and S. Grant, “The histone deacetylase inhibitor MS-275 promotes differentiation or apoptosis in human leukemia cells through a process regulated by generation of reactive oxygen species and induction of p21CIP1/WAF1,” Cancer Research, vol. 63, no. 13, pp. 3637–3645, 2003. View at Google Scholar · View at Scopus
  18. D. Marchion and P. Münster, “Development of histone deacetylase inhibitors for cancer treatment,” Expert Review of Anticancer Therapy, vol. 7, no. 4, pp. 583–598, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Nishida, “The Ishikawa cells from birth to the present,” Human Cell, vol. 15, no. 3, pp. 104–117, 2002. View at Google Scholar · View at Scopus
  20. N. Tsuji, M. Kobayashi, and K. Nagashima, “A new antifungal antibiotic, trichostatin,” Journal of Antibiotics, vol. 29, no. 1, pp. 1–6, 1976. View at Google Scholar · View at Scopus
  21. N. Tsuji and M. Kobayashi, “Trichostatin C, a glucopyranosyl hydroxamate,” Journal of Antibiotics, vol. 31, no. 10, pp. 939–944, 1978. View at Google Scholar · View at Scopus
  22. V. Sandor, A. R. Robbins, R. Robey et al., “FR901228 causes mitotic arrest but does not alter microtubule polymerization,” Anti-Cancer Drugs, vol. 11, no. 6, pp. 445–454, 2000. View at Publisher · View at Google Scholar · View at Scopus
  23. C. Van Lint, S. Emiliani, and E. Verdin, “The expression of a small fraction of cellular genes is changed in response to histone hyperacetylation,” Gene Expression, vol. 5, no. 4-5, pp. 245–253, 1996. View at Google Scholar · View at Scopus
  24. S. C. Dowdy, S. Jiang, X. C. Zhou et al., “Histone deacetylase inhibitors and paclitaxel cause synergistic effects on apoptosis and microtubule stabilization in papillary serous endometrial cancer cells,” Molecular Cancer Therapeutics, vol. 5, no. 11, pp. 2767–2776, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. M. S. Finnin, J. R. Donigian, A. Cohen et al., “Structures of a histone deacetylase homologue bound to the TSA and SAHA inhibitors,” Nature, vol. 401, no. 6749, pp. 188–193, 1999. View at Publisher · View at Google Scholar · View at Scopus
  26. L. H. Camacho, J. Olson, W. P. Tong, C. W. Young, D. R. Spriggs, and M. G. Malkin, “Phase I dose escalation clinical trial of phenylbutyrate sodium administered twice daily to patients with advanced solid tumors,” Investigational New Drugs, vol. 25, no. 2, pp. 131–138, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. S. C. Modesitt, M. Sill, J. S. Hoffman, and D. P. Bender, “A phase II study of vorinostat in the treatment of persistent or recurrent epithelial ovarian or primary peritoneal carcinoma: a Gynecologic Oncology Group study,” Gynecologic Oncology, vol. 109, no. 2, pp. 182–186, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. R. Piekarz and S. Bates, “A review of depsipeptide and other histone deacetylase inhibitors in clinical trials,” Current Pharmaceutical Design, vol. 10, no. 19, pp. 2289–2298, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. V. M. Richon, S. Emiliani, E. Verdin et al., “A class of hybrid polar inducers of transformed cell differentiation inhibits histone deacetylases,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 6, pp. 3003–3007, 1998. View at Publisher · View at Google Scholar · View at Scopus
  30. V. M. Richon, Y. Webb, R. Merger et al., “Second generation hybrid polar compounds are potent inducers of transformed cell differentiation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 12, pp. 5705–5708, 1996. View at Publisher · View at Google Scholar · View at Scopus
  31. G. H. Su, T. A. Sohn, B. Ryu, and S. E. Kern, “A novel histone deacetylase inhibitor identified by high-throughput transcriptional screening of a compound library,” Cancer Research, vol. 60, no. 12, pp. 3137–3142, 2000. View at Google Scholar · View at Scopus
  32. J. C. Keen, L. Yan, K. M. Mack et al., “A novel histone deacetylase inhibitor, scriptaid, enhances expression of functional estrogen receptor alpha (ER) in ER negative human breast cancer cells in combination with 5-aza 2'-deoxycytidine,” Breast Cancer Research and Treatment, vol. 81, no. 3, pp. 177–186, 2003. View at Publisher · View at Google Scholar · View at Scopus
  33. E. P. M. Candido, R. Reeves, and J. R. Davie, “Sodium butyrate inhibits histone deacetylation in cultured cells,” Cell, vol. 14, no. 1, pp. 105–113, 1978. View at Google Scholar · View at Scopus
  34. Y. Terao, J.-I. Nishida, S. Horiuchi et al., “Sodium butyrate induces growth arrest and senescence-like phenotypes in gynecologic cancer cells,” International Journal of Cancer, vol. 94, no. 2, pp. 257–267, 2001. View at Publisher · View at Google Scholar · View at Scopus
  35. R. P. Warrell Jr., L.-Z. He, V. Richon, E. Calleja, and P. P. Pandolfi, “Therapeutic targeting of transcription in acute promyelocytic leukemia by use of an inhibitor of histone deacetylase,” Journal of the National Cancer Institute, vol. 90, no. 21, pp. 1621–1625, 1998. View at Google Scholar · View at Scopus
  36. R. A. Blaheta, H. Nau, M. Michaelis, and J. Cinatl Jr., “Valproate and valproate-analogues: potent tools to fight against cancer,” Current Medicinal Chemistry, vol. 9, no. 15, pp. 1417–1433, 2002. View at Google Scholar · View at Scopus
  37. C. J. Phiel, F. Zhang, E. Y. Huang, M. G. Guenther, M. A. Lazar, and P. S. Klein, “Histone deacetylase is a direct target of valproic acid, a potent anticonvulsant, mood stabilizer, and teratogen,” The Journal of Biological Chemistry, vol. 276, no. 39, pp. 36734–36741, 2001. View at Publisher · View at Google Scholar · View at Scopus
  38. A. Chapman, P. E. Keane, B. S. Meldrum, J. Simiand, and J. C. Vernieres, “Mechanism of anticonvulsant action of valproate,” Progress in Neurobiology, vol. 19, no. 4, pp. 315–359, 1982. View at Publisher · View at Google Scholar · View at Scopus
  39. T. Suzuki, T. Ando, K. Tsuchiya et al., “Synthesis and histone deacetylase inhibitory activity of new benzamide derivatives,” Journal of Medicinal Chemistry, vol. 42, no. 15, pp. 3001–3003, 1999. View at Publisher · View at Google Scholar · View at Scopus
  40. A. Saito, T. Yamashita, Y. Mariko et al., “A synthetic inhibitor of histone deacetylase, MS-27-275, with marked in vivo antitumor activity against human tumors,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 8, pp. 4592–4597, 1999. View at Publisher · View at Google Scholar · View at Scopus
  41. B. I. Lee, S. H. Park, J. W. Kim et al., “MS-275, a histone deacetylase inhibitor, selectively induces transforming growth factor beta type II receptor expression in human breast cancer cells,” Cancer Research, vol. 61, no. 3, pp. 931–934, 2001. View at Google Scholar · View at Scopus
  42. Q. C. Ryan, D. Headlee, M. Acharya et al., “Phase I and pharmacokinetic study of MS-275, a histone deacetylase inhibitor, in patients with advanced and refractory solid tumors or lymphoma,” Journal of Clinical Oncology, vol. 23, no. 17, pp. 3912–3922, 2005. View at Publisher · View at Google Scholar · View at Scopus
  43. S. Jiang, S. C. Dowdy, X. W. Meng et al., “Histone deacetylase inhibitors induce apoptosis in both type I and type II endometrial cancer cells,” Gynecologic Oncology, vol. 105, no. 2, pp. 493–500, 2007. View at Publisher · View at Google Scholar · View at Scopus
  44. M. Jung, G. Brosch, D. Kölle, H. Scherf, C. Gerhäuser, and P. Loidl, “Amide analogues of trichostatin A as inhibitors of histone deacetylase and inducers of terminal cell differentiation,” Journal of Medicinal Chemistry, vol. 42, no. 22, pp. 4669–4679, 1999. View at Publisher · View at Google Scholar · View at Scopus
  45. S. J. Darkin-Rattray, A. M. Gurnett, R. W. Myers et al., “Apicidin: a novel antiprotozoal agent that inhibits parasite histone deacetylase,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 23, pp. 13143–13147, 1996. View at Publisher · View at Google Scholar · View at Scopus
  46. J.-W. Han, S. H. Ahn, S. H. Park et al., “Apicidin, a histone deacetylase inhibitor, inhibits proliferation of tumor cells via induction of p21WAF1/Cip1 and gelsolin,” Cancer Research, vol. 60, no. 21, pp. 6068–6074, 2000. View at Google Scholar · View at Scopus
  47. M. Y. Ahn, J. Lee, Y. J. Na et al., “Mechanism of apicidin-induced cell cycle arrest and apoptosis in Ishikawa human endometrial cancer cells,” Chemico-Biological Interactions, vol. 179, no. 2-3, pp. 169–177, 2009. View at Publisher · View at Google Scholar · View at Scopus
  48. M. Y. Ahn, J. H. Jung, Y. J. Na, and H. S. Kim, “A natural histone deacetylase inhibitor, Psammaplin A, induces cell cycle arrest and apoptosis in human endometrial cancer cells,” Gynecologic Oncology, vol. 108, no. 1, pp. 27–33, 2008. View at Publisher · View at Google Scholar · View at Scopus
  49. I. C. Pina, J. T. Gautschi, G. Wang et al., “Psammaplins from the sponge Pseudoceratina purpurea: inhibition of both histone deacetylase and DNA methyltransferase,” Journal of Organic Chemistry, vol. 68, no. 10, pp. 3866–3873, 2003. View at Google Scholar · View at Scopus
  50. H. Sonoda, K. Nishida, T. Yoshioka, M. Ohtani, and K. Sugita, “Oxamflatin : a novel compound which reverses malignant phenotype to normal one via induction of JunD,” Oncogene, vol. 13, no. 1, pp. 143–149, 1996. View at Google Scholar · View at Scopus
  51. Y. B. Kim, K.-H. Lee, K. Sugita, M. Yoshida, and S. Horinouchi, “Oxamflatin is a novel antitumor compound that inhibits mammalian histone deacetylase,” Oncogene, vol. 18, no. 15, pp. 2461–2470, 1999. View at Publisher · View at Google Scholar · View at Scopus