Table of Contents Author Guidelines Submit a Manuscript
Oxidative Medicine and Cellular Longevity
Volume 2 (2009), Issue 3, Pages 160-165

Chenopodium Album Prevents Progression of Cell Growth and Enhances Cell Toxicity in Human Breast Cancer Cell Lines

1Department of Chemistry, Faculty of Science, Dayalbagh Educational Institute, Agra, India
2National JALMA Institute for Leprosy and other Microbial Disease, Agra, India

Received 23 March 2009; Revised 24 April 2009; Accepted 24 April 2009

Copyright © 2009 Hindawi Publishing Corporation. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


The present study is aimed to investigate the effects of Chenopodium album (leaves) on the growth of estrogen dependent (MCF-7) and estrogen independent (MDA-MB-468) human breast cancer cell lines. The different solvent extracts (petroleum ether, ethyl acetate and methanol) were assessed for their cytotoxicity using TBE (Trypan blue exclusion) and MTT [3-(4, 5-dimethyl thiazol-2-yl)-2, 5-diphenyl tetrazolium] bioassay. These cells were cultured in MEM (minimum essential medium) medium and incubated with the dilution series of extracts (10–100 mg/ml) in CO2 incubator at 37°C for 24 h. Among the various extracts studied for two cell lines, methanolic extract of C. album (leaves) exhibited maximum antibreast cancer activity having IC50 (the concentration of an individual compound leading to 50% inhibition) value 27.31 mg/ml against MCF-7 cell line. Significant percent inhibition (94.06%) in the MeOH extract of C. album (leaves) at 48 h of exposure and concentration 100 mg/ml (p < 0.05) against MCF-7 breast cancer cell line, indicates the presence of some structural moiety responsible for this observed antiproliferative effect. In vivo study and structural elucidation of its bioactive principle are in progress. Our findings highlight the potential of this plant for its possible clinical use to counteract malignancy development as antibreast cancer bioagent.