Table of Contents Author Guidelines Submit a Manuscript
Oxidative Medicine and Cellular Longevity
Volume 2011, Article ID 809696, 9 pages
http://dx.doi.org/10.1155/2011/809696
Review Article

Hydroxyl Radical and Its Scavengers in Health and Disease

Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA

Received 30 March 2011; Accepted 7 June 2011

Academic Editor: Kenneth Maiese

Copyright © 2011 Boguslaw Lipinski. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. Halliwell, “Vitamin C: antioxidant or pro-oxidant in vivo?” Free Radical Research, vol. 25, no. 5, pp. 439–454, 1996. View at Google Scholar · View at Scopus
  2. N. I. Riabchenko, V. I. Riabchenko, B. P. Ivannik et al., “Antioxidant and prooxidant properties of the ascorbic acid, dihydroquercetine and mexidol in the radical reactions induced by the ionizing radiation and chemical reagents,” Radiat Biol Radioecol, vol. 50, no. 2, pp. 186–194, 2010. View at Google Scholar · View at Scopus
  3. S. R. Steinhubl, “Why have antioxidants failed in clinical trials?” American Journal of Cardiology, vol. 101, no. 10, pp. S14–S19, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  4. P. Sharma, S. A. V. Raghavan, R. Saini, and M. Dikshit, “Ascorbate-mediated enhancement of reactive oxygen species generation from polymorphonuclear leukocytes: modulatory effect of nitric oxide,” Journal of Leukocyte Biology, vol. 75, no. 6, pp. 1070–1078, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  5. C. Patterson, N. R. Madamanchi, and M. S. Runge, “The oxidative paradox: another piece in the puzzle,” Circulation Research, vol. 87, no. 12, pp. 1074–1078, 2000. View at Google Scholar · View at Scopus
  6. H. Sies, “Oxidative stress: oxidants and antioxidants,” Experimental Physiology, vol. 82, no. 2, pp. 291–295, 1997. View at Google Scholar · View at Scopus
  7. K. J. A. Davies, “An overview of oxidative stress,” IUBMB Life, vol. 50, no. 4-5, pp. 2441–2444, 2000. View at Publisher · View at Google Scholar · View at Scopus
  8. G. Cao, E. Sofic, and R. L. Prior, “Antioxidant and prooxidant behavior of flavonoids: structure-activity relationships,” Free Radical Biology and Medicine, vol. 22, no. 5, pp. 749–760, 1997. View at Publisher · View at Google Scholar · View at Scopus
  9. R. M. Toyoyz and A. M. Briones, “Reactive oxygen species and vascular biology: implications in human hypertension,” Hypertension Research, vol. 34, no. 1, pp. 5–14, 2011. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  10. L. Dauchet, P. Amouyel, and J. Dallongeville, “Fruits, vegetables and coronary heart disease,” Nature Reviews Cardiology, vol. 6, no. 9, pp. 599–608, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  11. C. Michiels, “Physiological and pathological responses to hypoxia,” American Journal of Pathology, vol. 164, no. 6, pp. 1875–1882, 2004. View at Google Scholar · View at Scopus
  12. M. Kruszewski, “The role of labile iron pool in cardiovascular diseases,” Acta Biochimica Polonica, vol. 51, no. 2, pp. 471–480, 2004. View at Google Scholar
  13. G. Sengoelge, G. Sunder-Plassmann, and W. H. Horl, “Potential risk for infection and atherosclerosis due to iron therapy,” Journal of Renal Nutrition, vol. 15, no. 1, pp. 105–110, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. K. A. Reis, G. Guz, H. Ozdemir et al., “Intravenous iron therapy as a possible risk factor for atherosclerosis in end-stage renal disease,” International Heart Journal, vol. 46, no. 2, pp. 255–264, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. G. Ramakrishna and L. T. Cooper, “Iron and peripheral arterial disease: revisiting the iron hypothesis in a different light,” Vascular Medicine, vol. 8, no. 3, pp. 203–210, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Altamura and M. U. Muckenthaler, “Iron toxicity in diseases of aging: Alzheimer's disease, Parkinson's disease and atherosclerosis,” Journal of Alzheimer's Disease, vol. 16, no. 4, pp. 879–895, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  17. G. J. Brewer, “Iron and copper toxicity in diseases of aging, particularly atherosclerosis and Alzheimer's disease,” Experimental Biology and Medicine, vol. 232, no. 2, pp. 323–325, 2007. View at Google Scholar · View at Scopus
  18. D. B. Kell, “Towards a unifying, systems biology understanding of large-scale cellular death and destruction caused by poorly liganded iron: Parkinson's, Huntington's, Alzheimer's, prions, bactericides, chemical toxicology and others as examples,” Archives of Toxicology, vol. 84, no. 11, pp. 825–889, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  19. S.-Y. Jung, S.-M. Lim, F. Albertorio et al., “The Vroman effect: a molecular level description of fibrinogen displacement,” Journal of the American Chemical Society, vol. 125, no. 42, pp. 12782–12786, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  20. C. J. Van Oss, “Surface properties of fibrinogen and fibrin,” Journal of Protein Chemistry, vol. 9, no. 4, pp. 487–491, 1990. View at Google Scholar · View at Scopus
  21. G. Marx and M. Chevion, “Fibrinogen coagulation without thrombin: reaction with vitamin C and copper(II),” Thrombosis Research, vol. 40, no. 1, pp. 11–18, 1985. View at Google Scholar · View at Scopus
  22. G. R. Upchurch, N. Ramdev, M. T. Walsh, and J. Loscalzo, “Prothrombotic consequences of the oxidation of fibrinogen and their inhibition by aspirin,” Journal of Thrombosis and Thrombolysis, vol. 5, no. 1, pp. 9–14, 1998. View at Publisher · View at Google Scholar · View at Scopus
  23. J. B. Duguid, “Thrombosis as a factor in the pathogenesis of coronary atherosclerosis,” Journal of Pathology & Bacteriology, vol. 58, pp. 207–212, 1946. View at Google Scholar
  24. E. B. Smith, “Fibrin deposition and fibrin degradation products in atherosclerotic plaques,” Thrombosis Research, vol. 75, no. 3, pp. 329–335, 1994. View at Publisher · View at Google Scholar · View at Scopus
  25. V. Costantini, L. R. Zacharski, V. A. Memoli, W. Kisiel, B. J. Kudryk, and S. Rousseau, “Fibrinogen deposition without thrombin generation in primary human breast cancer tissue,” Cancer Research, vol. 51, no. 1, pp. 349–351, 1991. View at Google Scholar · View at Scopus
  26. T. Takemura, K. Yoshioka, N. Akano, H. Miyamoto, K. Matsumoto, and S. Maki, “Glomerular deposition of cross-linked fibrin in human kidney diseases,” Kidney International, vol. 32, no. 1, pp. 102–111, 1987. View at Google Scholar
  27. V. Calabrese, E. Guagliano, M. Sapienza, C. Mancuso, D. A. Butterfield, and A. M. Stella, “Redox regulation of cellular stress response in neurodegenerative disorders,” The Italian Journal of Biochemistry, vol. 55, no. 3-4, pp. 263–282, 2006. View at Google Scholar · View at Scopus
  28. E. Schmidt, “N-3 fatty acids and the risk of coronary heart disease,” Danish Medical Bulletin, vol. 44, no. 1, pp. 1–22, 1997. View at Google Scholar · View at Scopus
  29. T. A. Mori, R. J. Woodman, V. Burke, J. B. Puddey, K. D. Croft, and L. J. Beili, “Effects of eicosapentanoic acid and docosahexanoic acid on oxidative stress and inflammatory markers in treated-hypertensive type 2 diabetic patients,” Free Radical Biology & Medicine, vol. 35, pp. 772–781, 2003. View at Google Scholar
  30. J. P. Vazquez-Medina, T. Zenteno-Savin, and R. Elsner, “Antioxidant enzymes in ringed seal tissues: potential protection against dive-associated ischemia/reperfusion,” Comparative Biochemistry and Physiology, vol. 142, no. 3-4, pp. 198–204, 2006. View at Publisher · View at Google Scholar · View at PubMed
  31. G. M. Cole, G. P. Lim, F. Yang et al., “Prevention of Alzheimer's disease: omega-3 fatty acid and phenolic anti-oxidant interventions,” Neurobiology of Aging, vol. 26, no. 1, pp. S133–S136, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  32. M. Cognault, M. L. Jourdan, E. Germain et al., “Effect of an α-linolenic acid-rich diet on rat mammary tumor growth depends on the dietary oxidative status,” Nutrition and Cancer, vol. 36, no. 1, pp. 33–41, 2000. View at Google Scholar · View at Scopus
  33. S. Toyokuni, “Role of iron in carcinogenesis: cancer as a ferrotoxic disease,” Cancer Science, vol. 100, no. 1, pp. 9–16, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  34. H. Shapiro, M. Theilla, J. Attal-Singer, and P. Singer, “Effects of polyunsaturated fatty acid consumption in diabetic nephropathy,” Nature Reviews Nephrology, vol. 7, pp. 110–121, 2011. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  35. A. M. Abbatecola, W. Evans, and G. Paolisso, “PUFA supplements and type 2 diabetes in the elderly,” Current Pharmaceutical Design, vol. 15, no. 36, pp. 4126–4134, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. B. McEwen, M. C. Morel-Kopp, G. Tofler, and C. Ward, “Effect of omega-3 fish oil on cardiovascular risk in diabetes,” Diabetes Educator, vol. 36, no. 4, pp. 565–584, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  37. G. Czapski, “Reactions of OH radical,” Methods in Enzymology, vol. 105, pp. 209–215, 1984. View at Publisher · View at Google Scholar
  38. K. T. Lu, R. Y. Chiou, L. G. Chen, M. H. Chen, and W. T. Tseng, “Neuroprotective effects of resveratrol on cerebral ischemia-induced neuron loss mediated by free radical scavenging and cerebral blood flow elevation,” Journal of Agricultural and Food Chemistry, vol. 54, no. 8, pp. 3126–3131, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  39. H. P. Podhaisky, A. Abate, T. Polte, S. Oberle, and H. Schroder, “Aspirin protects endothelial cells from oxidative stress—possible synergism with vitamin E,” FEBS Letters, vol. 417, no. 3, pp. 349–351, 1997. View at Publisher · View at Google Scholar · View at Scopus
  40. J. K. Kim, Y. J. Kim, J. J. Fillmore et al., “Prevention of fat-induced insulin resistance by salicylate,” Journal of Clinical Investigation, vol. 108, no. 3, pp. 437–446, 2001. View at Publisher · View at Google Scholar · View at Scopus
  41. R. T. Williamson and M. D. Lond, “On the treatment of glycosuria and diabetes mellitus with sodium salicylate,” British Medical Journal, vol. 1, pp. 760–762, 1901. View at Google Scholar
  42. A. Ghiselli, O. Laurenti, G. DeMattia, G. Maiani, and A. Ferro-Luzzi, “Salicylate hydroxylation as an early marker of in vivo oxidative stress in diabetic patients,” Free Radical Biology and Medicine, vol. 13, no. 6, pp. 621–626, 1992. View at Publisher · View at Google Scholar · View at Scopus
  43. B. Lipinski, “Pathophysiology of oxidative stress in diabetes mellitus,” Journal of Diabetes and its Complications, vol. 15, no. 4, pp. 203–209, 2001. View at Google Scholar · View at Scopus
  44. F. M. Areias, A. C. Rego, C. R. Oliveira, and R. M. Seabra, “Antioxidant effect of flavonoids after ascorbate/Fe2+-induced oxidative stress in cultured retinal cells,” Biochemical Pharmacology, vol. 62, no. 1, pp. 111–118, 2001. View at Publisher · View at Google Scholar · View at Scopus
  45. B. Benedek, B. Weniger, I. Parejo et al., “Antioxidant activity of isoflavones and biflavones isolated from Godoya antioquiensis,” Arzneimittel-Forschung, vol. 56, no. 9, pp. 661–664, 2006. View at Google Scholar · View at Scopus
  46. J. H. Moon, T. Tsushida, K. Nakahara, and K. J. Terao, “Identification of quercetin 3-O-β-glucuronide as an antioxidative metabolite in rat plasma after oral administration of quercetin,” Free Radical Biology and Medicine, vol. 30, no. 11, pp. 1274–1285, 2001. View at Publisher · View at Google Scholar · View at Scopus
  47. K. L. Tuck, M. P. Freeman, P. J. Hayball, G. L. Stretch, and I. Stupans, “The in vivo fate of hydroxytyrosol and tyrosol, antioxidant phenolic constituents of olive oil, after intravenous and oral dosing of labeled compounds to rats,” Journal of Nutrition, vol. 131, no. 7, pp. 1993–1996, 2001. View at Google Scholar · View at Scopus
  48. J. Zielonka, J. Gebicki, and G. Grynkiewicz, “Radical scavenging properties of genistein,” Free Radical Biology and Medicine, vol. 35, no. 8, pp. 958–965, 2003. View at Publisher · View at Google Scholar · View at Scopus
  49. S. M. Attia, S. A. Bakheet, and N. M. Al-Rasheed, “Protoanthocyanidins produce significant attenuation of doxorubicin-induced mutagenicity via suppression of oxidative stress,” Oxidative Medicine and Cellular Longevity, vol. 3, no. 6, pp. 404–413, 2010. View at Publisher · View at Google Scholar
  50. A. Acharya, I. Das, D. Chandhok, and T. Saha, “Redox regulation in cancer: a double-edged sword with therapeutic potential,” Oxidative Medicine and Cellular Longevity, vol. 3, no. 1, pp. 23–34, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  51. I. Afanasev, “Reactive oxygen species and age-related genes p66hc, sirtuin, Fox03 and klotho in senescene,” Oxidative Medicine and Cellular Longevity, vol. 3, pp. 1–9, 2010. View at Google Scholar
  52. O. I. Aruoma, B. Sun, H. Fuji, V. S. Neergheen, and T. Bahorun, “Low molecular weight proanthocyanides dietary biofactor oligonol: its modulation of oxidative stress, bioefficiency, neuroprotection, food application and chemoprevention potentials,” Biofactors, vol. 27, pp. 245–265, 2006. View at Google Scholar
  53. C. Siquet, F. Paiva-Martins, J. L. Lima, S. Reis, and F. Borges, “Antioxidant profile of dihydroxy- and trihydroxyphenolic acids: a structure-activity relationship study,” Free Radical Research, vol. 40, no. 4, pp. 433–442, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  54. A. Menotti, S. Conti, F. Dima, S. Giampaoli, and B. Giuil, “Prediction of all causes of death as a function of some factors commonly measured in cardiovascular population surveys,” Preventive Medicine, vol. 12, no. 2, pp. 318–325, 1983. View at Google Scholar · View at Scopus
  55. N. Crokart, K. Radermacher, B. F. Jordan et al., “Tumor radiosensitization by antiinflammatory drugs: evidence for a new mechanism involving the oxygen effect,” Cancer Research, vol. 65, no. 17, pp. 7911–7916, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  56. K. J. A. Davies and M. A. Delsignore, “Protein damage and degradation by oxygen radicals. III. Modification of secondary and tertiary structure,” Journal of Biological Chemistry, vol. 262, no. 20, pp. 9908–9913, 1987. View at Google Scholar · View at Scopus
  57. M. Bennett, J. Feldmeier, R. Smee, and R. C. Milross, “Hyperbaric oxygenation for tumour sensitisation to radiotherapy,” Cochrane Database of Systematic Reviews, vol. 19, no. 4, pp. 50–57, 2005. View at Google Scholar · View at Scopus
  58. Y. Suzuki, T. Nakano, T. Ohno et al., “Oxygenated and reoxygenated tumors show better local control in radiation therapy for cervical cancer,” International Journal of Gynecological Cancer, vol. 16, no. 1, pp. 306–311, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  59. F. Sweet, M. S. Kao, S. C. Lee, W. L. Hagar, and W. E. Sweet, “Ozone selectively inhibits growth of human cancer cells,” Science, vol. 209, no. 4459, pp. 931–933, 1980. View at Google Scholar · View at Scopus
  60. K. S. Zanker and R. Kroczek, “In vitro synergistic activity of 5-fluorouracil with low-dose ozone against a chemoresistant tumor cell line and fresh human tumor cells,” Chemotherapy, vol. 36, no. 2, pp. 147–151, 1990. View at Google Scholar · View at Scopus
  61. V. Bocci, E. Borrelli, V. Travagli, and I. Zanardi, “The ozone paradox: ozone is a strong oxidant as well as a medical drug,” Medicinal Research Reviews, vol. 29, no. 4, pp. 646–682, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  62. Z. J. Yang, Y. Xie, G. M. Bosco, C. Chen, and E. M. Camporesi, “Hyperbaric oxygenation alleviates MCAO-induced brain injury and reduces hydroxyl radical formation and glutamate release,” European Journal of Applied Physiology, vol. 108, no. 3, pp. 513–522, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  63. M. Bader, W. Muse, D. P. Ballou, C. Gassner, and J. C. R. Bardwell, “Oxidative protein folding is driven by the electron transport system,” Cell, vol. 98, no. 2, pp. 217–227, 1999. View at Publisher · View at Google Scholar · View at Scopus
  64. L. Packer, K. Kraemer, and G. Rimbach, “Molecular aspects of lipoic acid in the prevention of diabetes complications,” Nutrition, vol. 17, no. 10, pp. 888–895, 2001. View at Publisher · View at Google Scholar · View at Scopus
  65. R. G. Gifford, L. Xu, H. Zhao et al., “Chaperones, protein aggregation, and brain protection from hypoxic/ischemic injury,” Journal of Experimental Biology, vol. 207, no. 18, pp. 3213–3220, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  66. J. Brozanova, D. Manikova, V. Vlckova, and M. Chovanec, “Seleium: a double-edged sward for defense and offense in cancer,” Archives of Toxicology, vol. 84, pp. 919–983, 2010. View at Google Scholar
  67. O. Micke, L. Schomburg, J. Buentzel, K. Kisters, and R. Muecke, “Selenium in oncology: from chemistry to clinics,” Molecules, vol. 14, no. 10, pp. 3975–3988, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  68. V. N. Gladyshev, “The 15 kDa selenoprotein: functional studies and a role in cancer etiology,” in Selenium: Its Molecular Biology and Role in Human Health, D. L. Hatfield, Ed., pp. 147–156, Kluwer Academic Publishers, 2001. View at Google Scholar
  69. B. Lipinski, “Rationale for the treatment of cancer with sodium selenite,” Medical Hypotheses, vol. 64, no. 4, pp. 806–810, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  70. J. Kramer and B. N. Ames, “Mechanisms of mutagenicity and toxicity of sodium selenite in Salmonella typhimurium,” Mutation Research, vol. 201, no. 1, pp. 169–180, 1988. View at Google Scholar · View at Scopus
  71. A. Terada, M. Yoshida, Y. Seko et al., “Active oxygen species generation and cellular damage by additives of parenteral preparations: selenium and sulfhydryl compounds,” Nutrition, vol. 15, no. 9, pp. 651–655, 1999. View at Publisher · View at Google Scholar · View at Scopus
  72. L. Kiremidjian-Schumacher, M. Roy, H. I. Wishe, M. W. Cohen, and G. Stotzky, “Supplementation with selenium augments the functions of natural killer cells,” Biological Trace Element Research, vol. 52, no. 3, pp. 227–239, 1996. View at Google Scholar · View at Scopus
  73. A. M. Fan and K. W. Kizer, “Selenium. nutritional, toxicologic, and clinical aspects,” Western Journal of Medicine, vol. 153, no. 2, pp. 10–17, 1990. View at Google Scholar
  74. L. A. Daniels, “Selenium: does selenium status have health outcomes beyond overt deficiency?” Medical Journal of Australia, vol. 180, no. 8, pp. 373–374, 2004. View at Google Scholar · View at Scopus
  75. J. E. Spallholz, “On the nature of selenium toxicity and carcinostatic activity,” Free Radical Biology and Medicine, vol. 17, no. 1, pp. 45–64, 1994. View at Publisher · View at Google Scholar
  76. P. D. Whanger, “Selenium and its relationship to cancer: an update,” British Journal of Nutrition, vol. 91, no. 1, pp. 11–28, 2004. View at Publisher · View at Google Scholar
  77. M. P. Rayman, “Selenium in cancer prevention: a review of the evidence and mechanism of action,” Proceedings of the Nutrition Society, vol. 64, no. 4, pp. 527–542, 2005. View at Publisher · View at Google Scholar
  78. G. N. Schrauzer and P. F. Surai, “Selenium in human and animal nutrition: resolved and unresolved issues,” Critical Reviews in Biotechnology, vol. 29, no. 1, pp. 2–9, 2009. View at Publisher · View at Google Scholar · View at PubMed
  79. J. L. Vincent and X. Forceville, “Critically elucidating the role of selenium,” Current Opinion in Anaesthesiology, vol. 21, no. 2, pp. 148–154, 2008. View at Publisher · View at Google Scholar · View at PubMed
  80. P. Brenneisen, H. Steinbrenner, and H. Sies, “Selenium, oxidative stress, and health aspects,” Molecular Aspects of Medicine, vol. 26, no. 4-5, pp. 256–267, 2005. View at Publisher · View at Google Scholar · View at PubMed
  81. M. A. Beck, “Selenium and vitamin E status: impact on viral pathogenicity,” Journal of Nutrition, vol. 137, no. 5, pp. 1330–1340, 2007. View at Google Scholar
  82. V. Kralova, K. Brigulova, M. Cervinka, and E. Rudolf, “Antiproliferative and cytotoxic effects of sodium selenite in human colon cancer,” Toxicology in Vitro, vol. 23, no. 8, pp. 1497–1503, 2009. View at Publisher · View at Google Scholar · View at PubMed
  83. Y. S. Chan, L. N. Cheng, J. H. Wu et al., “A review of the pharmacological effects of Arctium lappa (burdock),” Inflammopharmacology. In press. View at Publisher · View at Google Scholar · View at PubMed
  84. M. Naruszewicz, I. Laniewska, B. Millo, and M. Dłuzniewski, “Combination therapy of statin with flavonoids rich extract from chokeberry fruits enhanced reduction in cardiovascular risk markers in patients after myocardial infarction (MI),” Atherosclerosis, vol. 194, no. 2, pp. 179–184, 2007. View at Google Scholar
  85. J. C. Stoclet, T. Chataigneau, M. Ndiaye et al., “Vascular protection by dietary polyphenols,” European Journal of Pharmacology, vol. 500, no. 1–3, pp. 299–313, 2004. View at Publisher · View at Google Scholar · View at PubMed
  86. B. Olas, B. Wachowicz, P. Nowak et al., “Studies on antioxidant properties of polyphenol-rich extract from berries of aronia melanocarla in blood platelets,” Journal of Physiology and Pharmacology, vol. 59, pp. 823–835, 2008. View at Google Scholar
  87. M. Philpott, C. C. Lim, and L. R. Ferguson, “Dietary protection against free radicals: a case for multiple testing to establish structure-activity relationships for antioxidant potential of anthocyanic plant species,” International Journal of Molecular Sciences, vol. 10, no. 3, pp. 1081–1103, 2009. View at Publisher · View at Google Scholar · View at PubMed
  88. S. E. Kulling and H. M. Rawel, “Chokeberry (Aronia melanocarpa)—a review on the characteristic components and potential health effects,” Planta Medica, vol. 74, no. 13, pp. 1625–1634, 2008. View at Publisher · View at Google Scholar · View at PubMed
  89. M. Srinivasan, A. R. Sudheer, and V. P. Menon, “Ferulic acid: therapeutic potential through its antioxidant property,” Journal of Clinical Biochemistry and Nutrition, vol. 40, no. 2, pp. 92–100, 2007. View at Publisher · View at Google Scholar · View at PubMed
  90. H. Hatcher, R. Planalp, J. Cho, F. M. Torti, and S. V. Torti, “Curcumin: from ancient medicine to current clinical trials,” Cellular and Molecular Life Sciences, vol. 65, no. 11, pp. 1631–1652, 2008. View at Publisher · View at Google Scholar · View at PubMed
  91. N. P. Visavadiya, B. Soni, and N. Dalwadi, “Free radical scavenging and antiatherogenic activities of Sesamum indicum seed extracts in chemical and biological model systems,” Food and Chemical Toxicology, vol. 47, no. 10, pp. 2507–2515, 2009. View at Publisher · View at Google Scholar · View at PubMed
  92. D. R. Jacobs, M. D. Gross, and L. C. Tapsell, “Food synergy: an operational concept for understanding nutrition,” American Journal of Clinical Nutrition, vol. 89, no. 5, pp. 1543S–1548S, 2009. View at Publisher · View at Google Scholar · View at PubMed
  93. C. S. Patch, L. C. Tapsell, P. G. Williams, and M. Gordon, “Plant sterols as dietary adjuvants in the reduction of cardiovascular risk: theory and evidence,” Vascular Health and Risk Management, vol. 2, no. 2, pp. 157–162, 2006. View at Publisher · View at Google Scholar
  94. P. Mladenka, L. Zatloukalova, T. Filipsky, and R. Hrdina, “Cardiovascular effects of flavonoids are not caused only by direct antioxidant activity,” Free Radical Biology and Medicine, vol. 72, no. 6, pp. 533–537, 2010. View at Publisher · View at Google Scholar · View at PubMed
  95. M. Rahmatullah, M. A. Rahman, M. S. Hossan, M. Taufiq-Ur-Rahman, R. Jahan, and M. A. H. Mollik, “A pharmacological and phytochemical evaluation of medicinal plants used by the harbang clan of the tripura tribal community of Mirsharai area, Chittagong district, Bangladesh,” Journal of Alternative and Complementary Medicine, vol. 16, no. 7, pp. 769–785, 2010. View at Publisher · View at Google Scholar · View at PubMed
  96. S. Kumar, R. Malhotra, and D. Kumar, “Antidiabetic and free radicals scavenging potential of Euphorbia hirta flower extract,” Indian Journal of Pharmaceutical Sciences, vol. 72, no. 4, pp. 533–537, 2010. View at Publisher · View at Google Scholar · View at PubMed
  97. H. Hosseinzadeh and H. R. Sadeghnia, “Safranal, a constituent of Crocus sativus (saffron), attenuated cerebral ischemia induced oxidative damage in rat hippocampus,” Journal of Pharmacy and Pharmaceutical Sciences, vol. 8, no. 3, pp. 394–399, 2005. View at Google Scholar
  98. S. Dudonne, X. Vitrac, P. Coutiere, M. Woillez, and J. M. Merillon, “Comparative study of antioxidant properties and total phenolic content of 30 plant extracts of industrial interest using DPPH, ABTS, FRAP, SOD, and ORAC assays,” Journal of Agricultural and Food Chemistry, vol. 57, no. 5, pp. 1768–1774, 2009. View at Publisher · View at Google Scholar · View at PubMed
  99. K. B. Pandey and S. I. Rizvi, “Plant polyphenols as dietary antioxidants in human health and disease,” Oxidative Medicine and Cellular Longevity, vol. 2, no. 5, pp. 270–278, 2009. View at Publisher · View at Google Scholar · View at PubMed