Table of Contents Author Guidelines Submit a Manuscript
Oxidative Medicine and Cellular Longevity
Volume 2012, Article ID 132146, 9 pages
http://dx.doi.org/10.1155/2012/132146
Review Article

Oxidative Stress in Alzheimer's and Parkinson's Diseases: Insights from the Yeast Saccharomyces cerevisiae

Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal

Received 12 February 2012; Revised 3 April 2012; Accepted 3 April 2012

Academic Editor: Marcos Dias Pereira

Copyright © 2012 Catarina Pimentel et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. Mao and P. H. Reddy, “Is multiple sclerosis a mitochondrial disease?” Biochimica et Biophysica Acta, vol. 1802, no. 1, pp. 66–79, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. A. A. Starkov, C. Chinopoulos, and G. Fiskum, “Mitochondrial calcium and oxidative stress as mediators of ischemic brain injury,” Cell Calcium, vol. 36, no. 3-4, pp. 257–264, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. M. Valko, D. Leibfritz, J. Moncol, M. T. D. Cronin, M. Mazur, and J. Telser, “Free radicals and antioxidants in normal physiological functions and human disease,” International Journal of Biochemistry and Cell Biology, vol. 39, no. 1, pp. 44–84, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. M. Ramalingam and S. J. Kim, “Reactive oxygen/nitrogen species and their functional correlations in neurodegenerative diseases,” Journal of Neural Transmission. In press.
  5. K. Jomova and M. Valko, “Advances in metal-induced oxidative stress and human disease,” Toxicology, vol. 283, no. 2-3, pp. 65–87, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. K. Jomova, D. Vondrakova, M. Lawson, and M. Valko, “Metals, oxidative stress and neurodegenerative disorders,” Molecular and Cellular Biochemistry, vol. 345, no. 1-2, pp. 91–104, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. M. W. Hentze, M. U. Muckenthaler, B. Galy, and C. Camaschella, “Two to tango: regulation of mammalian iron metabolism,” Cell, vol. 142, no. 1, pp. 24–38, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. B. E. Kim, T. Nevitt, and D. J. Thiele, “Mechanisms for copper acquisition, distribution and regulation,” Nature Chemical Biology, vol. 4, no. 3, pp. 176–185, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. K. Jomova and M. Valko, “Importance of iron chelation in free radical-induced oxidative stress and human disease,” Current Pharmaceutical Design, vol. 17, no. 31, pp. 3460–3473, 2011. View at Google Scholar
  10. O. Kakhlon and Z. I. Cabantchik, “The labile iron pool: characterization, measurement, and participation in cellular processes,” Free Radical Biology and Medicine, vol. 33, no. 8, pp. 1037–1046, 2002. View at Publisher · View at Google Scholar · View at Scopus
  11. R. Meneghini, “Iron homeostasis, oxidative stress, and DNA damage,” Free Radical Biology and Medicine, vol. 23, no. 5, pp. 783–792, 1997. View at Publisher · View at Google Scholar · View at Scopus
  12. M. C. Carreras, M. C. Franco, J. G. Peralta, and J. J. Poderoso, “Nitric oxide, complex I, and the modulation of mitochondrial reactive species in biology and disease,” Molecular Aspects of Medicine, vol. 25, no. 1-2, pp. 125–139, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. R. G. Shulman, D. L. Rothman, K. L. Behar, and F. Hyder, “Energetic basis of brain activity: implications for neuroimaging,” Trends in Neurosciences, vol. 27, no. 8, pp. 489–495, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. B. Su, X. Wang, A. Nunomura et al., “Oxidative stress signaling in Alzheimer's disease,” Current Alzheimer Research, vol. 5, no. 6, pp. 525–532, 2008. View at Google Scholar
  15. T. T. Reed, “Lipid peroxidation and neurodegenerative disease,” Free Radical Biology & Medicine, vol. 51, no. 7, pp. 1302–1319, 2011. View at Google Scholar
  16. J. A. Klein and S. L. Ackerman, “Oxidative stress, cell cycle, and neurodegeneration,” Journal of Clinical Investigation, vol. 111, no. 6, pp. 785–793, 2003. View at Publisher · View at Google Scholar · View at Scopus
  17. B. Palmieri and V. Sblendorio, “Oxidative stress tests: overview on reliability and use—Part I,” European Review for Medical and Pharmacological Sciences, vol. 11, no. 5, pp. 309–342, 2007. View at Google Scholar · View at Scopus
  18. K. Kannan and S. K. Jain, “Oxidative stress and apoptosis,” Pathophysiology, vol. 7, no. 3, pp. 153–163, 2000. View at Publisher · View at Google Scholar · View at Scopus
  19. H. Du and S. S. Yan, “Mitochondrial medicine for neurodegenerative diseases,” The International Journal of Biochemistry & Cell Biology, vol. 42, no. 5, pp. 560–572, 2010. View at Google Scholar
  20. H. Braak, E. Braak, D. Yilmazer, R. A. I. de Vos, E. N. H. Jansen, and J. Bohl, “Pattern of brain destruction in Parkinson's and Alzheimer's diseases,” Journal of Neural Transmission, vol. 103, no. 4, pp. 455–490, 1996. View at Google Scholar · View at Scopus
  21. C. Priller, T. Bauer, G. Mitteregger, B. Krebs, H. A. Kretzschmar, and J. Herms, “Synapse formation and function is modulated by the amyloid precursor protein,” The Journal of Neuroscience, vol. 26, no. 27, pp. 7212–7221, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. P. R. Turner, K. O'Connor, W. P. Tate, and W. C. Abraham, “Roles of amyloid precursor protein and its fragments in regulating neural activity, plasticity and memory,” Progress in Neurobiology, vol. 70, no. 1, pp. 1–32, 2003. View at Publisher · View at Google Scholar · View at Scopus
  23. R. J. O'Brien and P. C. Wong, “Amyloid precursor protein processing and Alzheimer's disease,” Annual Review of Neuroscience, vol. 34, pp. 185–204, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. V. N. Uversky, “Intrinsic disorder in proteins associated with neurodegenerative diseases,” Frontiers in Bioscience, vol. 14, no. 14, pp. 5188–5238, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. V. M. Y. Lee, M. Goedert, and J. Q. Trojanowski, “Neurodegenerative tauopathies,” Annual Review of Neuroscience, vol. 24, pp. 1121–1159, 2001. View at Publisher · View at Google Scholar · View at Scopus
  26. D. Avramopoulos, “Genetics of Alzheimer's disease: recent advances,” Genome Medicine, vol. 1, no. 3, p. 34, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. J. Hardy and D. Allsop, “Amyloid deposition as the central event in the aetiology of Alzheimer's disease,” Trends in Pharmacological Sciences, vol. 12, no. 10, pp. 383–388, 1991. View at Publisher · View at Google Scholar · View at Scopus
  28. L. L. Iversen, R. J. Mortishire-Smith, S. J. Pollack, and M. S. Shearman, “The toxicity in vitro of β-amyloid protein,” Biochemical Journal, vol. 311, pp. 1–16, 1995. View at Google Scholar · View at Scopus
  29. A. Kontush, “Amyloid-β: an antioxidant that becomes a pro-oxidant and critically contributes to Alzheimer's disease,” Free Radical Biology and Medicine, vol. 31, no. 9, pp. 1120–1131, 2001. View at Publisher · View at Google Scholar · View at Scopus
  30. B. J. Tabner, S. Turnbull, O. El-Agnaf, and D. Allsop, “Production of reactive oxygen species from aggregating proteins implicated in Alzheimer's disease, Parkinson's disease and other neurodegenerative diseases,” Current Topics in Medicinal Chemistry, vol. 1, no. 6, pp. 507–517, 2001. View at Google Scholar · View at Scopus
  31. B. J. Tabner, S. Turnbull, O. M. A. El-Agnaf, and D. Allsop, “Formation of hydrogen peroxide and hydroxyl radicals from Aβ and α-synuclein as a possible mechanism of cell death in Alzheimer's disease and Parkinson's disease,” Free Radical Biology and Medicine, vol. 32, no. 11, pp. 1076–1083, 2002. View at Publisher · View at Google Scholar · View at Scopus
  32. A. Nunomura, T. Hofer, P. I. Moreira, R. J. Castellani, M. A. Smith, and G. Perry, “RNA oxidation in Alzheimer disease and related neurodegenerative disorders,” Acta Neuropathologica, vol. 118, no. 1, pp. 151–166, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. D. R. D. Premkumar, M. A. Smith, P. L. Richey et al., “Induction of heme oxygenase-1 mRNA and protein in neocortex and cerebral vessels in Alzheimer's disease,” Journal of Neurochemistry, vol. 65, no. 3, pp. 1399–1402, 1995. View at Google Scholar · View at Scopus
  34. M. Dumont and M. F. Beal, “Neuroprotective strategies involving ROS in Alzheimer disease,” Free Radical Biology and Medicine, vol. 51, no. 5, pp. 1014–1026, 2011. View at Google Scholar · View at Scopus
  35. F. Molina-Holgado, R. C. Hider, A. Gaeta, R. Williams, and P. Francis, “Metals ions and neurodegeneration,” BioMetals, vol. 20, no. 3-4, pp. 639–654, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. G. A. Salvador, R. M. Uranga, and N. M. Giusto, “Iron and mechanisms of neurotoxicity,” International Journal of Alzheimer's Disease, vol. 2010, Article ID 720658, 9 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  37. Y. H. Hung, A. I. Bush, and R. A. Cherny, “Copper in the brain and Alzheimer's disease,” Journal of Biological Inorganic Chemistry, vol. 15, no. 1, pp. 61–76, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. R. Rajendran, R. Minqin, M. D. Ynsa et al., “A novel approach to the identification and quantitative elemental analysis of amyloid deposits-Insights into the pathology of Alzheimer's disease,” Biochemical and Biophysical Research Communications, vol. 382, no. 1, pp. 91–95, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. D. A. Butterfield and A. I. Bush, “Alzheimer's amyloid β-peptide (1–42): Involvement of methionine residue 35 in the oxidative stress and neurotoxicity properties of this peptide,” Neurobiology of Aging, vol. 25, no. 5, pp. 563–568, 2004. View at Publisher · View at Google Scholar · View at Scopus
  40. D. A. Butterfield and R. Sultana, “Methionine-35 of Aβ(1–42): importance for oxidative stress in Alzheimer disease,” Journal of Amino Acids, vol. 2011, Article ID 198430, 10 pages, 2011. View at Publisher · View at Google Scholar
  41. J. Naslund, A. Schierhorn, U. Hellman et al., “Relative abundance of Alzheimer Aβ amyloid peptide variants in Alzheimer disease and normal aging,” Proceedings of the National Academy of Sciences of the United States of America, vol. 91, no. 18, pp. 8378–8382, 1994. View at Google Scholar · View at Scopus
  42. K. Hirai, G. Aliev, A. Nunomura et al., “Mitochondrial abnormalities in Alzheimer's disease,” Journal of Neuroscience, vol. 21, no. 9, pp. 3017–3023, 2001. View at Google Scholar · View at Scopus
  43. D. F. F. Silva, A. R. Esteves, C. R. Oliveira, and S. M. Cardoso, “Mitochondria: the common upstream driver of amyloid-β and tau pathology in Alzheimer's disease,” Current Alzheimer Research, vol. 8, no. 5, pp. 563–572, 2011. View at Publisher · View at Google Scholar · View at Scopus
  44. B. Cameron and G. E. Landreth, “Inflammation, microglia, and Alzheimer's disease,” Neurobiology of Disease, vol. 37, no. 3, pp. 503–509, 2010. View at Publisher · View at Google Scholar · View at Scopus
  45. P. Eikelenboom, E. van Exel, J. J. M. Hoozemans, R. Veerhuis, A. J. M. Rozemuller, and W. A. Van Gool, “Neuroinflammation—an early event in both the history and pathogenesis of Alzheimer's disease,” Neurodegenerative Diseases, vol. 7, no. 1–3, pp. 38–41, 2010. View at Publisher · View at Google Scholar · View at Scopus
  46. P. Eikelenboom and R. Veerhuis, “The role of complement and activated microglia in the pathogenesis of Alzheimer's disease,” Neurobiology of Aging, vol. 17, no. 5, pp. 673–680, 1996. View at Publisher · View at Google Scholar · View at Scopus
  47. P. Jenner, Hunot, Olanow et al., “Oxidative stress in Parkinson's disease,” Annals of Neurology, vol. 53, supplement 3, pp. S26–S38, 2003. View at Publisher · View at Google Scholar · View at Scopus
  48. M. G. Spillantini, M. L. Schmidt, V. M. Y. Lee, J. Q. Trojanowski, R. Jakes, and M. Goedert, “α-synuclein in Lewy bodies,” Nature, vol. 388, no. 6645, pp. 839–840, 1997. View at Publisher · View at Google Scholar · View at Scopus
  49. M. C. Irizarry, W. Growdon, T. Gomez-Isla et al., “Nigral and cortical Lewy bodies and dystrophic nigral neurites in Parkinson's disease and cortical Lewy body disease contain α-synuclein immunoreactivity,” Journal of Neuropathology and Experimental Neurology, vol. 57, no. 4, pp. 334–337, 1998. View at Google Scholar · View at Scopus
  50. M. H. Polymeropoulos, C. Lavedan, E. Leroy et al., “Mutation in the α-synuclein gene identified in families with Parkinson's disease,” Science, vol. 276, no. 5321, pp. 2045–2047, 1997. View at Publisher · View at Google Scholar · View at Scopus
  51. E. Jo, J. McLaurin, C. M. Yip, P. St. George-Hyslop, and P. E. Fraser, “α-synuclein membrane interactions and lipid specificity,” Journal of Biological Chemistry, vol. 275, no. 44, pp. 34328–34334, 2000. View at Google Scholar · View at Scopus
  52. P. K. Auluck, G. Caraveo, and S. Lindquist, “α-synuclein: membrane interactions and toxicity in parkinson's disease,” Annual Review of Cell and Developmental Biology, vol. 26, pp. 211–233, 2010. View at Publisher · View at Google Scholar · View at Scopus
  53. B. C. McNulty, G. B. Young, and G. J. Pielak, “Macromolecular crowding in the Escherichia coli periplasm maintains α-synuclein disorder,” Journal of Molecular Biology, vol. 355, no. 5, pp. 893–897, 2006. View at Publisher · View at Google Scholar · View at Scopus
  54. V. N. Uversky, J. Li, and A. L. Fink, “Evidence for a partially folded intermediate in α-synuclein fibril formation,” Journal of Biological Chemistry, vol. 276, no. 14, pp. 10737–10744, 2001. View at Publisher · View at Google Scholar · View at Scopus
  55. V. N. Uversky, “Neuropathology, biochemistry, and biophysics of α-synuclein aggregation,” Journal of Neurochemistry, vol. 103, no. 1, pp. 17–37, 2007. View at Publisher · View at Google Scholar · View at Scopus
  56. P. Jenner and C. W. Olanow, “Oxidative stress and the pathogenesis of Parkinson's disease,” Neurology, vol. 47, supplement 6, pp. S161–S170, 1996. View at Google Scholar · View at Scopus
  57. G. Perry, J. Avila, M. G. Espey et al., “Biochemistry of neurodegeneration,” Science, vol. 291, no. 5504, pp. 595–597, 2001. View at Google Scholar · View at Scopus
  58. L. M. Sayre, P. I. Moreira, M. A. Smith, and G. Perry, “Metal ions and oxidative protein modification in neurological disease,” Annali dell'Istituto Superiore di Sanita, vol. 41, no. 2, pp. 143–164, 2005. View at Google Scholar · View at Scopus
  59. R. Castellani, M. A. Smith, P. L. Richey, and G. Perry, “Glycoxidation and oxidative stress in Parkinson disease and diffuse Lewy body disease,” Brain Research, vol. 737, no. 1-2, pp. 195–200, 1996. View at Publisher · View at Google Scholar · View at Scopus
  60. K. Jellinger, E. Kienzl, G. Rumpelmair et al., “Iron-melanin complex in substantia nigra of Parkinsonian brains: an x-ray microanalysis,” Journal of Neurochemistry, vol. 59, no. 3, pp. 1168–1171, 1992. View at Google Scholar · View at Scopus
  61. R. J. Castellani, S. L. Siedlak, G. Perry, and M. A. Smith, “Sequestration of iron by Lewy bodies in Parkinson's disease,” Acta Neuropathologica, vol. 100, no. 2, pp. 111–114, 2000. View at Google Scholar · View at Scopus
  62. D. Ben-Shachar and M. B. H. Youdim, “Iron, melanin and dopamine interaction: relevance to Parkinson's disease,” Progress in Neuro-Psychopharmacology and Biological Psychiatry, vol. 17, no. 1, pp. 139–150, 1993. View at Google Scholar · View at Scopus
  63. M. T. Lin and M. F. Beal, “Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases,” Nature, vol. 443, no. 7113, pp. 787–795, 2006. View at Publisher · View at Google Scholar · View at Scopus
  64. C. Zhou, Y. Huang, and S. Przedborski, “Oxidative stress in Parkinson's disease: a mechanism of pathogenic and therapeutic significance,” Annals of the New York Academy of Sciences, vol. 1147, pp. 93–104, 2008. View at Publisher · View at Google Scholar · View at Scopus
  65. J. W. Langston, P. Ballard, J. W. Tetrud, and I. Irwin, “Chronic parkinsonism in humans due to a product of meperidine-analog synthesis,” Science, vol. 219, no. 4587, pp. 979–980, 1983. View at Google Scholar · View at Scopus
  66. C. M. Testa, T. B. Sherer, and J. T. Greenamyre, “Rotenone induces oxidative stress and dopaminergic neuron damage in organotypic substantia nigra cultures,” Molecular Brain Research, vol. 134, no. 1, pp. 109–118, 2005. View at Publisher · View at Google Scholar · View at Scopus
  67. T. B. Sherer, R. Betarbet, C. M. Testa et al., “Mechanism of toxicity in rotenone models of Parkinson's disease,” Journal of Neuroscience, vol. 23, no. 34, pp. 10756–10764, 2003. View at Google Scholar · View at Scopus
  68. G. U. Höglinger, W. H. Oertel, and E. C. Hirsch, “The rotenone model of Parkinsonism—the five years inspection,” Journal of Neural Transmission, Supplement, no. 70, pp. 269–272, 2006. View at Google Scholar · View at Scopus
  69. T. B. Sherer, J. H. Kim, R. Betarbet, and J. T. Greenamyre, “Subcutaneous rotenone exposure causes highly selective dopaminergic degeneration and α-synuclein aggregation,” Experimental Neurology, vol. 179, no. 1, pp. 9–16, 2003. View at Publisher · View at Google Scholar · View at Scopus
  70. H. L. Martin and P. Teismann, “Glutathione—a review on its role and significance in Parkinson's disease,” The FASEB Journal, vol. 23, no. 10, pp. 3263–3272, 2009. View at Publisher · View at Google Scholar · View at Scopus
  71. K. F. Winklhofer and C. Haass, “Mitochondrial dysfunction in Parkinson's disease,” Biochimica et Biophysica Acta, vol. 1802, no. 1, pp. 29–44, 2010. View at Publisher · View at Google Scholar · View at Scopus
  72. S. J. Chinta and J. K. Andersen, “Redox imbalance in Parkinson's disease,” Biochimica et Biophysica Acta, vol. 1780, no. 11, pp. 1362–1367, 2008. View at Publisher · View at Google Scholar · View at Scopus
  73. A. H. Schapira, “Mitochondria in the aetiology and pathogenesis of Parkinson's disease,” The Lancet Neurology, vol. 7, no. 1, pp. 97–109, 2008. View at Publisher · View at Google Scholar · View at Scopus
  74. A. H. V. Schapira, J. M. Cooper, D. Dexter, P. Jenner, J. B. Clark, and C. D. Marsden, “Mitochondrial complex I deficiency in Parkinson's disease,” The Lancet, vol. 1, no. 8649, p. 1269, 1989. View at Google Scholar · View at Scopus
  75. S. J. Chinta, J. K. Mallajosyula, A. Rane, and J. K. Andersen, “Mitochondrial α-synuclein accumulation impairs complex I function in dopaminergic neurons and results in increased mitophagy in vivo,” Neuroscience Letters, vol. 486, no. 3, pp. 235–239, 2010. View at Publisher · View at Google Scholar · View at Scopus
  76. G. E. Gibson, A. Starkov, J. P. Blass, R. R. Ratan, and M. F. Beal, “Cause and consequence: mitochondrial dysfunction initiates and propagates neuronal dysfunction, neuronal death and behavioral abnormalities in age-associated neurodegenerative diseases,” Biochimica et Biophysica Acta, vol. 1802, no. 1, pp. 122–134, 2010. View at Publisher · View at Google Scholar · View at Scopus
  77. B. Alvarez-Castelao, C. Muñoz, I. Sánchez, M. Goethals, J. Vandekerckhove, and J. G. Castaño, “Reduced protein stability of human DJ-1/PARK7 L166P, linked to autosomal recessive Parkinson disease, is due to direct endoproteolytic cleavage by the proteasome,” Biochimica et Biophysica Acta, vol. 1823, no. 2, pp. 524–533, 2012. View at Google Scholar
  78. R. M. Canet-Avilés, M. A. Wilson, D. W. Miller et al., “The Parkinson's disease DJ-1 is neuroprotective due to cysteine-sulfinic acid-driven mitochondrial localization,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 24, pp. 9103–9108, 2004. View at Publisher · View at Google Scholar · View at Scopus
  79. H. J. Kwon, J. Y. Heo, J. H. Shim et al., “DJ-1 mediates paraquat-induced dopaminergic neuronal cell death,” Toxicology Letters, vol. 202, no. 2, pp. 85–92, 2011. View at Publisher · View at Google Scholar · View at Scopus
  80. K. J. Thomas, M. K. McCoy, J. Blackinton et al., “DJ-1 acts in parallel to the PINK1/parkin pathway to control mitochondrial function and autophagy,” Human Molecular Genetics, vol. 20, no. 1, pp. 40–50, 2011. View at Google Scholar · View at Scopus
  81. S. Hunot, F. Boissière, B. Faucheux et al., “Nitric oxide synthase and neuronal vulnerability in Parkinson's disease,” Neuroscience, vol. 72, no. 2, pp. 355–363, 1996. View at Publisher · View at Google Scholar · View at Scopus
  82. G. Boka, P. Anglade, D. Wallach, F. Javoy-Agid, Y. Agid, and E. C. Hirsch, “Immunocytochemical analysis of tumor necrosis factor and its receptors in Parkinson's disease,” Neuroscience Letters, vol. 172, no. 1-2, pp. 151–154, 1994. View at Publisher · View at Google Scholar · View at Scopus
  83. D. Botstein and G. R. Fink, “Yeast: an experimental organism for 21st century biology,” Genetics, vol. 189, no. 3, pp. 695–704, 2011. View at Google Scholar
  84. L. Miller-Fleming, F. Giorgini, and T. F. Outeiro, “Yeast as a model for studying human neurodegenerative disorders,” Biotechnology Journal, vol. 3, no. 3, pp. 325–338, 2008. View at Publisher · View at Google Scholar · View at Scopus
  85. S. Heinicke, M. S. Livstone, C. Lu et al., “The Princeton Protein Orthology Database (P-POD): a comparative genomics analysis tool for biologists,” PLoS ONE, vol. 2, no. 8, p. e766, 2007. View at Publisher · View at Google Scholar · View at Scopus
  86. S. Tenreiro and T. F. Outeiro, “Simple is good: yeast models of neurodegeneration,” FEMS Yeast Research, vol. 10, no. 8, pp. 970–979, 2010. View at Publisher · View at Google Scholar · View at Scopus
  87. V. Khurana and S. Lindquist, “Modelling neurodegeneration in Saccharomyces cerevisiae why cook with baker's yeast?” Nature Reviews Neuroscience, vol. 11, no. 6, pp. 436–449, 2010. View at Publisher · View at Google Scholar · View at Scopus
  88. P. Bharadwaj, R. Martins, and I. Macreadie, “Yeast as a model for studying Alzheimer's disease,” FEMS Yeast Research, vol. 10, no. 8, pp. 961–969, 2010. View at Publisher · View at Google Scholar · View at Scopus
  89. D. M. Walsh, B. P. Tseng, R. E. Rydel, M. B. Podlisny, and D. J. Selkoe, “The oligomerization of amyloid β-protein begins intracellularly in cells derived from human brain,” Biochemistry, vol. 39, no. 35, pp. 10831–10839, 2000. View at Publisher · View at Google Scholar · View at Scopus
  90. G. M. Shankar, S. Li, T. H. Mehta et al., “Amyloid-β protein dimers isolated directly from Alzheimer's brains impair synaptic plasticity and memory,” Nature Medicine, vol. 14, no. 8, pp. 837–842, 2008. View at Publisher · View at Google Scholar · View at Scopus
  91. E. B. Lee, L. Z. Leng, B. Zhang et al., “Targeting amyloid-β peptide (Aβ) oligomers by passive immunization with a conformation-selective monoclonal antibody improves learning and memory in Aβ precursor protein (APP) transgenic mice,” Journal of Biological Chemistry, vol. 281, no. 7, pp. 4292–4299, 2006. View at Publisher · View at Google Scholar · View at Scopus
  92. M. Knobloch, U. Konietzko, D. C. Krebs, and R. M. Nitsch, “Intracellular Aβ and cognitive deficits precede β-amyloid deposition in transgenic arcAβ mice,” Neurobiology of Aging, vol. 28, no. 9, pp. 1297–1306, 2007. View at Publisher · View at Google Scholar · View at Scopus
  93. S. R. Hughes, S. Goyal, J. E. Sun et al., “Two-hybrid system as a model to study the interaction of ß-amyloid peptide monomers,” Proceedings of the National Academy of Sciences of the United States, vol. 93, no. 5, pp. 2065–2070, 1996. View at Google Scholar
  94. S. Bagriantsev and S. Liebman, “Modulation of Aβ42 low-n oligomerization using a novel yeast reporter system,” BMC Biology, vol. 4, article 32, 2006. View at Publisher · View at Google Scholar · View at Scopus
  95. T. von der Haar, L. Jossé, P. Wright, J. Zenthon, and M. F. Tuite, “Development of a novel yeast cell-based system for studying the aggregation of Alzheimer's disease-associated Aβ peptides in vivo,” Neurodegenerative Diseases, vol. 4, no. 2-3, pp. 136–147, 2007. View at Publisher · View at Google Scholar · View at Scopus
  96. M. F. Tuite and B. S. Cox, “The [PSI+] prion of yeast: a problem of inheritance,” Methods, vol. 39, no. 1, pp. 9–22, 2006. View at Publisher · View at Google Scholar · View at Scopus
  97. A. D. Williams, E. Portelius, I. Kheterpal et al., “Mapping Aβ amyloid fibril secondary structure using scanning proline mutagenesis,” Journal of Molecular Biology, vol. 335, no. 3, pp. 833–842, 2004. View at Publisher · View at Google Scholar · View at Scopus
  98. S. Krobitsch and S. Lindquist, “Aggregation of huntingtin in yeast varies with the length of the polyglutamine expansion and the expression of chaperone proteins,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 4, pp. 1589–1594, 2000. View at Publisher · View at Google Scholar · View at Scopus
  99. Y. O. Chernoff, S. L. Lindquist, B. I. Ono, S. G. Inge-Vechtomov, and S. W. Liebman, “Role of the chaperone protein Hsp104 in propagation of the yeast prion-like factor [PSI+],” Science, vol. 268, no. 5212, pp. 880–884, 1995. View at Google Scholar · View at Scopus
  100. J. Caine, S. Sankovich, H. Antony et al., “Alzheimer's Aβ fused to green fluorescent protein induces growth stress and a heat shock response,” FEMS Yeast Research, vol. 7, no. 8, pp. 1230–1236, 2007. View at Publisher · View at Google Scholar · View at Scopus
  101. S. Treusch, S. Hamamichi, J. L. Goodman et al., “Functional links between Aß toxicity, endocytic trafficking, and Alzheimer's disease risk factors in yeast,” Science, vol. 334, no. 6060, pp. 1241–1245, 2011. View at Publisher · View at Google Scholar
  102. T. F. Outeiro and S. Lindquist, “Yeast cells provide insight into α-synuclein biology and pathobiology,” Science, vol. 302, no. 5651, pp. 1772–1775, 2003. View at Publisher · View at Google Scholar · View at Scopus
  103. A. D. Gitler, B. J. Bevis, J. Shorter et al., “The Parkinson's disease protein α-synuclein disrupts cellular Rab homeostasis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 1, pp. 145–150, 2008. View at Publisher · View at Google Scholar · View at Scopus
  104. A. A. Cooper, A. D. Gitler, A. Cashikar et al., “α-synuclein blocks ER-Golgi traffic and Rab1 rescues neuron loss in Parkinson's models,” Science, vol. 313, no. 5785, pp. 324–328, 2006. View at Publisher · View at Google Scholar · View at Scopus
  105. N. M. Lewandowski, S. Ju, M. Verbitsky et al., “Polyamine pathway contributes to the pathogenesis of Parkinson disease,” Proceedings of the National Academy of Sciences of the United States, vol. 107, no. 39, pp. 16970–16975, 2010. View at Google Scholar
  106. E. Yeger-Lotem, L. Riva, L. J. Su et al., “Bridging high-throughput genetic and transcriptional data reveals cellular responses to alpha-synuclein toxicity,” Nature Genetics, vol. 41, no. 3, pp. 316–323, 2009. View at Publisher · View at Google Scholar · View at Scopus
  107. L. J. Su, P. K. Auluck, T. F. Outeiro et al., “Compounds from an unbiased chemical screen reverse both ER-to-Golgi trafficking defects and mitochondrial dysfunction in Parkinson's disease models,” Disease Models and Mechanisms, vol. 3, no. 3-4, pp. 194–208, 2010. View at Publisher · View at Google Scholar · View at Scopus
  108. Y. J. Lee, S. Wang, S. R. Slone, T. A. Yacoubian, and S. N. Witt, “Defects in very long chain fatty acid synthesis enhance α-synuclein toxicity in a yeast model of Parkinson's disease,” PLoS ONE, vol. 6, no. 1, Article ID e15946, 2011. View at Publisher · View at Google Scholar · View at Scopus
  109. Y. Y. Sere, M. Regnacq, J. Colas, and T. Berges, “A Saccharomyces cerevisiae strain unable to store neutral lipids is tolerant to oxidative stress induced by α-synuclein,” Free Radical Biology and Medicine, vol. 49, no. 11, pp. 1755–1764, 2010. View at Publisher · View at Google Scholar · View at Scopus
  110. H. G. Lee, X. Zhu, A. Nunomura, G. Perry, and M. A. Smith, “Amyloid β: the alternate hypothesis,” Current Alzheimer Research, vol. 3, no. 1, pp. 75–80, 2006. View at Publisher · View at Google Scholar · View at Scopus
  111. A. Kontush, C. Berndt, W. Weber et al., “Amyloid-β is an antioxidant for lipoproteins in cerebrospinal fluid and plasma,” Free Radical Biology and Medicine, vol. 30, no. 1, pp. 119–128, 2001. View at Publisher · View at Google Scholar · View at Scopus
  112. I. Macreadie, M. Lotfi-Miri, S. Mohotti, D. Shapira, L. Bennett, and J. Varghese, “Validation of folate in a convenient yeast assay suited for identification of inhibitors of Alzheimer's amyloid-β aggregation,” Journal of Alzheimer's Disease, vol. 15, no. 3, pp. 391–396, 2008. View at Google Scholar · View at Scopus