Table of Contents Author Guidelines Submit a Manuscript
Oxidative Medicine and Cellular Longevity
Volume 2012 (2012), Article ID 428010, 11 pages
http://dx.doi.org/10.1155/2012/428010
Review Article

Mechanism of Oxidative Stress in Neurodegeneration

Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK

Received 13 December 2011; Accepted 14 March 2012

Academic Editor: Krzysztof Ksiazek

Copyright © 2012 Sonia Gandhi and Andrey Y. Abramov. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. T. Lin and M. F. Beal, “Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases,” Nature, vol. 443, no. 7113, pp. 787–795, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. B. Halliwell, “Oxidative stress and neurodegeneration: where are we now?” Journal of Neurochemistry, vol. 97, no. 6, pp. 1634–1658, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. M. Ahdab-Barmada, J. Moossy, E. M. Nemoto, and M. R. Lin, “Hyperoxia produces neuronal necrosis in the rat,” Journal of Neuropathology and Experimental Neurology, vol. 45, no. 3, pp. 233–246, 1986. View at Google Scholar · View at Scopus
  4. B. I. Davydov, V. I. Drobyshev, I. B. Ushakov, and V. P. Fyodorov, “Morphological analysis of animal brain reactions to short-term hyperoxia,” Kosmicheskaya Biologiya i Aviakosmicheskaya Meditsina, vol. 22, no. 2, pp. 56–62, 1988. View at Google Scholar · View at Scopus
  5. W. Dröge, “Free radicals in the physiological control of cell function,” Physiological Reviews, vol. 82, no. 1, pp. 47–95, 2002. View at Google Scholar · View at Scopus
  6. M. A. Lovell, W. D. Ehmann, S. M. Butler, and W. R. Markesbery, “Elevated thiobarbituric acid-reactive substances and antioxidant enzyme activity in the brain in Alzheimer's disease,” Neurology, vol. 45, no. 8, pp. 1594–1601, 1995. View at Google Scholar · View at Scopus
  7. K. Hensley, D. A. Butterfield, N. Hall et al., “Reactive oxygen species as causal agents in the neurotoxicity of the Alzheimer's disease-associated amyloid beta peptide,” Annals of the New York Academy of Sciences, vol. 786, pp. 120–134, 1996. View at Google Scholar · View at Scopus
  8. K. Hensley, N. Hall, R. Subramaniam et al., “Brain regional correspondence between Alzheimer's disease histopathology and biomarkers of protein oxidation,” Journal of Neurochemistry, vol. 65, no. 5, pp. 2146–2156, 1995. View at Google Scholar · View at Scopus
  9. P. Mecocci, A. Cherubini, M. C. Polidori, R. Cecchetti, F. Chionne, and U. Senin, “Oxidative stress and dementia: new perspectives in AD pathogenesis,” Aging, vol. 9, no. 4, pp. 51–52, 1997. View at Google Scholar · View at Scopus
  10. P. Mecocci, M. C. Polidori, T. Ingegni et al., “Oxidative damage to DNA in lymphocytes from AD patients,” Neurology, vol. 51, no. 4, pp. 1014–1017, 1998. View at Google Scholar · View at Scopus
  11. D. Praticò, “Evidence of oxidative stress in Alzheimer's disease brain and antioxidant therapy: lights and shadows,” Annals of the New York Academy of Sciences, vol. 1147, pp. 70–78, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. E. P. Dalfo, M. M. P. Portero-Otin, V. P. Ayala, A. Martinez, R. M. Pamplona, and I. M. Ferrer, “Evidence of oxidative stress in the neocortex in incidental lewy body disease,” Journal of Neuropathology & Experimental Neurology, vol. 64, pp. 816–830, 2005. View at Google Scholar
  13. M. F. Beal, “Oxidatively modified proteins in aging and disease,” Free Radical Biology and Medicine, vol. 32, no. 9, pp. 797–803, 2002. View at Publisher · View at Google Scholar · View at Scopus
  14. G. C. Brown and V. Borutaite, “Inhibition of mitochondrial respiratory complex I by nitric oxide, peroxynitrite and S-nitrosothiols,” Biochimica et Biophysica Acta, vol. 1658, no. 1-2, pp. 44–49, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. R. C. S. Seet, C. Y. J. Lee, E. C. H. Lim et al., “Oxidative damage in Parkinson disease: measurement using accurate biomarkers,” Free Radical Biology and Medicine, vol. 48, no. 4, pp. 560–566, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. A. Bender, K. J. Krishnan, C. M. Morris et al., “High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease,” Nature Genetics, vol. 38, no. 5, pp. 515–517, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. A. H. Schapira, “Mitochondria in the aetiology and pathogenesis of Parkinson's disease,” The Lancet Neurology, vol. 7, no. 1, pp. 97–109, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. J. Lotharius and K. L. O'Malley, “The Parkinsonism-inducing drug 1-methyl-4-phenylpyridinium triggers intracellular dopamine oxidation: a novel mechanism of toxicity,” Journal of Biological Chemistry, vol. 275, no. 49, pp. 38581–38588, 2000. View at Publisher · View at Google Scholar · View at Scopus
  19. T. S. Smith and J. P. Bennett, “Mitochondrial toxins in models of neurodegenerative diseases. I: in vivo brain hydroxyl radical production during sytemic MPTP treatment or following microdialysis infusion of methylpyridinium or azide ions,” Brain Research, vol. 765, no. 2, pp. 183–188, 1997. View at Publisher · View at Google Scholar · View at Scopus
  20. R. A. González-Polo, G. Soler, A. Rodríguezmartín, J. M. Morán, and J. M. Fuentes, “Protection against MPP+ neurotoxicity in cerebellar granule cells by antioxidants,” Cell Biology International, vol. 28, no. 5, pp. 373–380, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. Z. B. Andrews, B. Horvath, C. J. Barnstable et al., “Uncoupling protein-2 is critical for nigral dopamine cell survival in a mouse model of Parkinson's disease,” Journal of Neuroscience, vol. 25, no. 1, pp. 184–191, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. N. Lev, D. Ickowicz, E. Melamed, and D. Offen, “Oxidative insults induce DJ-1 upregulation and redistribution: implications for neuroprotection,” NeuroToxicology, vol. 29, no. 3, pp. 397–405, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. H. M. Li, T. Niki, T. Taira, S. M. M. Iguchi-Ariga, and H. Ariga, “Association of DJ-1 with chaperones and enhanced association and colocalization with mitochondrial Hsp70 by oxidative stress,” Free Radical Research, vol. 39, no. 10, pp. 1091–1099, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. S. Gandhi, A. Wood-Kaczmar, Z. Yao et al., “PINK1-associated Parkinson's disease is caused by neuronal vulnerability to calcium-induced cell death,” Molecular Cell, vol. 33, no. 5, pp. 627–638, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. C. Piccoli, A. Sardanelli, R. Scrima et al., “Mitochondrial respiratory dysfunction in familiar Parkinsonism associated with PINK1 mutation,” Neurochemical Research, vol. 33, no. 12, pp. 2565–2574, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. A. Wood-Kaczmar, S. Gandhi, Z. Yao et al., “PINK1 is necessary for long term survival and mitochondrial function in human dopaminergic neurons,” PLoS ONE, vol. 3, no. 6, Article ID e2455, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. M. Crompton, E. Barksby, N. Johnson, and M. Capano, “Mitochondrial intermembrane junctional complexes and their involvement in cell death,” Biochimie, vol. 84, no. 2-3, pp. 143–152, 2002. View at Publisher · View at Google Scholar · View at Scopus
  28. V. Giorgio, M. E. Soriano, E. Basso et al., “Cyclophilin D in mitochondrial pathophysiology,” Biochimica et Biophysica Acta, vol. 1797, no. 6-7, pp. 1113–1118, 2010. View at Google Scholar
  29. C. Cleren, A. A. Starkov, N. Y. Calingasan, B. J. Lorenzo, J. Chen, and M. F. Beal, “Promethazine protects against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine neurotoxicity,” Neurobiology of Disease, vol. 20, no. 3, pp. 701–708, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. S. Geisler, K. M. Holmström, D. Skujat et al., “PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1,” Nature Cell Biology, vol. 12, no. 2, pp. 119–131, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. D. P. Narendra, S. M. Jin, A. Tanaka et al., “PINK1 is selectively stabilized on impaired mitochondria to activate Parkin,” PLoS Biology, vol. 8, no. 1, Article ID e1000298, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. C. Vives-Bauza, C. Zhou, Y. Huang et al., “PINK1-dependent recruitment of Parkin to mitochondria in mitophagy,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 1, pp. 378–383, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. L. Devi, V. Raghavendran, B. M. Prabhu, N. G. Avadhani, and H. K. Anandatheerthavarada, “Mitochondrial import and accumulation of α-synuclein impair complex I in human dopaminergic neuronal cultures and Parkinson disease brain,” Journal of Biological Chemistry, vol. 283, no. 14, pp. 9089–9100, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. L. J. Martin, Y. Pan, A. C. Price et al., “Parkinson's disease α-synuclein transgenic mice develop neuronal mitochondrial degeneration and cell death,” Journal of Neuroscience, vol. 26, no. 1, pp. 41–50, 2006. View at Publisher · View at Google Scholar · View at Scopus
  35. A. R. Esteves, D. M. Arduíno, R. H. Swerdlow, C. R. Oliveira, and S. M. Cardoso, “Oxidative stress involvement in α-synuclein oligomerization in Parkinson's disease cybrids,” Antioxidants and Redox Signaling, vol. 11, no. 3, pp. 439–448, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. F. Kamp, N. Exner, A. K. Lutz et al., “Inhibition of mitochondrial fusion by α-synuclein is rescued by PINK1, Parkin and DJ-1,” EMBO Journal, vol. 29, no. 20, pp. 3571–3589, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. H. Du, L. Guo, S. Yan, A. A. Sosunov, G. M. McKhann, and S. S. Yan, “Early deficits in synaptic mitochondria in an Alzheimer's disease mouse model,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 43, pp. 18670–18675, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. C. Caspersen, N. Wang, J. Yao et al., “Mitochondrial Aβ: a potential focal point for neuronal metabolic dysfunction in Alzheimer's disease,” The FASEB Journal, vol. 19, no. 14, pp. 2040–2041, 2005. View at Publisher · View at Google Scholar · View at Scopus
  39. A. Y. Abramov, L. Canevari, and M. R. Duchen, “Changes in intracellular calcium and glutathione in astrocytes as the primary mechanism of amyloid neurotoxicity,” Journal of Neuroscience, vol. 23, no. 12, pp. 5088–5095, 2003. View at Google Scholar · View at Scopus
  40. A. Y. Abramov, L. Canevari, and M. R. Duchen, “Calcium signals induced by amyloid β peptide and their consequences in neurons and astrocytes in culture,” Biochimica et Biophysica Acta, vol. 1742, no. 1-3, pp. 81–87, 2004. View at Publisher · View at Google Scholar · View at Scopus
  41. J. K. Parks, T. S. Smith, P. A. Trimmer, J. P. Bennett, and W. Davis Parker, “Neurotoxic Aβ peptides increase oxidative stress in vivo through NMDA-receptor and nitric-oxide-synthase mechanisms, and inhibit complex IV activity and induce a mitochondrial permeability transition in vitro,” Journal of Neurochemistry, vol. 76, no. 4, pp. 1050–1056, 2001. View at Publisher · View at Google Scholar · View at Scopus
  42. E. F. Shevtzova, E. G. Kireeva, and S. O. Bachurin, “Effect of β-amyloid peptide fragment 25-35 on nonselective permeability of mitochondria,” Bulletin of Experimental Biology and Medicine, vol. 132, no. 6, pp. 1173–1176, 2001. View at Publisher · View at Google Scholar · View at Scopus
  43. A. Y. Abramov, L. Canevari, and M. R. Duchen, “Beta-amyloid peptides induce mitochondrial dysfunction and oxidative stress in astrocytes and death of neurons through activation of NADPH oxidase,” Journal of Neuroscience, vol. 24, no. 2, pp. 565–575, 2004. View at Publisher · View at Google Scholar · View at Scopus
  44. A. Y. Abramov and M. R. Duchen, “The role of an astrocytic NADPH oxidase in the neurotoxicity of amyloid beta peptides,” Philosophical Transactions of the Royal Society B, vol. 360, no. 1464, pp. 2309–2314, 2005. View at Publisher · View at Google Scholar · View at Scopus
  45. A. Y. Abramov, C. Fraley, C. T. Diao et al., “Targeted polyphosphatase expression alters mitochondrial metabolism and inhibits calcium-dependent cell death,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 46, pp. 18091–18096, 2007. View at Publisher · View at Google Scholar · View at Scopus
  46. H. Du, L. Guo, W. Zhang, M. Rydzewska, and S. Yan, “Cyclophilin D deficiency improves mitochondrial function and learning/memory in aging Alzheimer disease mouse model,” Neurobiology of Aging, vol. 32, no. 3, pp. 398–406, 2011. View at Google Scholar
  47. X. Wang, B. Su, S. L. Siedlak et al., “Amyloid-β overproduction causes abnormal mitochondrial dynamics via differential modulation of mitochondrial fission/fusion proteins,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 49, pp. 19318–19323, 2008. View at Publisher · View at Google Scholar · View at Scopus
  48. S. Shimohama, H. Tanino, N. Kawakami et al., “Activation of NADPH oxidase in Alzheimer's disease brains,” Biochemical and Biophysical Research Communications, vol. 273, no. 1, pp. 5–9, 2000. View at Publisher · View at Google Scholar · View at Scopus
  49. S. M. De La Monte and J. R. Wands, “Molecular indices of oxidative stress and mitochondrial dysfunction occur early and often progress with severity of Alzheimer's disease,” Journal of Alzheimer's Disease, vol. 9, no. 2, pp. 167–181, 2006. View at Google Scholar · View at Scopus
  50. L. Park, J. Anrather, P. Zhou et al., “NADPH oxidase-derived reactive oxygen species mediate the cerebrovascular dysfunction induced by the amyloid β peptide,” Journal of Neuroscience, vol. 25, no. 7, pp. 1769–1777, 2005. View at Publisher · View at Google Scholar · View at Scopus
  51. L. Park, P. Zhou, R. Pitstick et al., “Nox2-derived radicals contribute to neurovascular and behavioral dysfunction in mice overexpressing the amyloid precursor protein,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 4, pp. 1347–1352, 2008. View at Publisher · View at Google Scholar · View at Scopus
  52. V. Della Bianca, S. Dusi, E. Bianchini, I. Dal Prà, and F. Rossi, “β-amyloid activates the O2 forming NADPH oxidase in microglia, monocytes, and neutrophils. A possible inflammatory mechanism of neuronal damage in Alzheimer's disease,” Journal of Biological Chemistry, vol. 274, no. 22, pp. 15493–15499, 1999. View at Publisher · View at Google Scholar · View at Scopus
  53. B. Wilkinson, J. Koenigsknecht-Talboo, C. Grommes, C. Y. D. Lee, and G. Landreth, “Fibrillar β-amyloid-stimulated intracellular signaling cascades require Vav for induction of respiratory burst and phagocytosis in monocytes and microglia,” Journal of Biological Chemistry, vol. 281, no. 30, pp. 20842–20850, 2006. View at Publisher · View at Google Scholar · View at Scopus
  54. T. E. DeCoursey, D. Morgan, and V. V. Cherny, “The voltage dependence of NADPH oxidase reveals why phagocytes need proton channels,” Nature, vol. 422, no. 6931, pp. 531–534, 2003. View at Publisher · View at Google Scholar · View at Scopus
  55. R. H. Milton, R. Abeti, S. Averaimo et al., “CLIC1 function is required for β-amyloid-induced generation of reactive oxygen species by microglia,” Journal of Neuroscience, vol. 28, no. 45, pp. 11488–11499, 2008. View at Publisher · View at Google Scholar · View at Scopus
  56. Y. A. Abramov, V. A. Kasymov, and V. P. Zinchenko, “Beta-amyloid activates synthesis of nitric oxide in hyppocampal astrocytes and causes death of neurons,” Biologicheskie Membrany, vol. 25, no. 1, pp. 11–17, 2008. View at Google Scholar · View at Scopus
  57. G. C. Brown, “Mechanisms of inflammatory neurodegeneration: INOS and NADPH oxidase,” Biochemical Society Transactions, vol. 35, no. 5, pp. 1119–1121, 2007. View at Publisher · View at Google Scholar · View at Scopus
  58. M. Ionov, V. Burchell, B. Klajnert, M. Bryszewska, and A. Y. Abramov, “Mechanism of neuroprotection of melatonin against beta-amyloid neurotoxicity,” Neuroscience, vol. 180, pp. 229–237, 2011. View at Publisher · View at Google Scholar · View at Scopus
  59. R. Reiter, L. Tang, J. J. Garcia, and A. Muñoz-Hoyos, “Pharmacological actions of melatonin in oxygen radical pathophysiology,” Life Sciences, vol. 60, no. 25, pp. 2255–2271, 1997. View at Publisher · View at Google Scholar · View at Scopus
  60. J. B. Hicks, Y. Lai, W. Sheng et al., “Amyloid-β peptide induces temporal membrane biphasic changes in astrocytes through cytosolic phospholipase A2,” Biochimica et Biophysica Acta, vol. 1778, no. 11, pp. 2512–2519, 2008. View at Publisher · View at Google Scholar · View at Scopus
  61. Y. Hashimoto, T. Niikura, I. T. O. Yuko, Y. Kita, K. Terashita, and I. Nishimoto, “Neurotoxic mechanisms by Alzheimer's disease-linked N141l mutant presenilin 2,” Journal of Pharmacology and Experimental Therapeutics, vol. 300, no. 3, pp. 736–745, 2002. View at Publisher · View at Google Scholar · View at Scopus
  62. Y. Hashimoto, E. Tsukamoto, T. Niikura et al., “Amino- and carboxyl-terminal mutants of presenilin 1 cause neuronal cell death through distinct toxic mechanisms: study of 27 different presenilin 1 mutants,” Journal of Neuroscience Research, vol. 75, no. 3, pp. 417–428, 2004. View at Publisher · View at Google Scholar · View at Scopus
  63. P. B. Shelat, M. Chalimoniuk, J. H. Wang et al., “Amyloid beta peptide and NMDA induce ROS from NADPH oxidase and AA release from cytosolic phospholipase A2 in cortical neurons,” Journal of Neurochemistry, vol. 106, no. 1, pp. 45–55, 2008. View at Publisher · View at Google Scholar · View at Scopus
  64. H. M. Gao, B. Liu, and J. S. Hong, “Critical role for microglial NADPH oxidase in rotenone-induced degeneration of dopaminergic neurons,” Journal of Neuroscience, vol. 23, no. 15, pp. 6181–6187, 2003. View at Google Scholar · View at Scopus
  65. D. C. Wu, P. Teismann, K. Tieu et al., “NADPH oxidase mediates oxidative stress in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson's disease,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 10, pp. 6145–6150, 2003. View at Publisher · View at Google Scholar · View at Scopus
  66. V. Anantharam, S. Kaul, C. Song, A. Kanthasamy, and A. G. Kanthasamy, “Pharmacological inhibition of neuronal NADPH oxidase protects against 1-methyl-4-phenylpyridinium (MPP+)-induced oxidative stress and apoptosis in mesencephalic dopaminergic neuronal cells,” NeuroToxicology, vol. 28, no. 5, pp. 988–997, 2007. View at Publisher · View at Google Scholar · View at Scopus
  67. Y. Abe, Y. Hashimoto, Y. Tomita et al., “Cytotoxic mechanisms by M239V presenilin 2, a little-analyzed Alzheimer's disease-causative mutant,” Journal of Neuroscience Research, vol. 77, no. 4, pp. 583–595, 2004. View at Publisher · View at Google Scholar · View at Scopus
  68. Y. G. Kaminsky and E. A. Kosenko, “Effects of amyloid-beta peptides on hydrogen peroxide-metabolizing enzymes in rat brain in vivo,” Free Radical Research, vol. 42, no. 6, pp. 564–573, 2008. View at Publisher · View at Google Scholar · View at Scopus
  69. T. Obata, S. Kubota, and Y. Yamanaka, “Allopurinol suppresses para-nonylphenol and 1-methyl-4-phenylpyridinium ion (MPP+)-induced hydroxyl radical generation in rat striatum,” Neuroscience Letters, vol. 306, no. 1-2, pp. 9–12, 2001. View at Publisher · View at Google Scholar · View at Scopus
  70. X. Wang and E. K. Michaelis, “Selective neuronal vulnerability to oxidative stress in the brain,” Frontiers in Aging Neuroscience, vol. 2, p. 12, 2010. View at Google Scholar
  71. T. Müller, “Motor complications, levodopa metabolism and progression of Parkinson's disease,” Expert Opinion on Drug Metabolism and Toxicology, vol. 7, no. 7, pp. 847–855, 2011. View at Publisher · View at Google Scholar · View at Scopus
  72. T. Müller and S. Muhlack, “Cysteinyl-glycine reduction as marker for levodopa-induced oxidative stress in Parkinson's disease patients,” Movement Disorders, vol. 26, no. 3, pp. 543–546, 2011. View at Publisher · View at Google Scholar · View at Scopus
  73. A. Vaarmann, S. Gandhi, and A. Y. Abramov, “Dopamine induces Ca2+ signaling in astrocytes through reactive oxygen species generated by monoamine oxidase,” Journal of Biological Chemistry, vol. 285, no. 32, pp. 25018–25023, 2010. View at Publisher · View at Google Scholar · View at Scopus
  74. D. J. Surmeier, J. N. Guzman, J. Sanchez-Padilla, and J. A. Goldberg, “The origins of oxidant stress in parkinson's disease and therapeutic strategies,” Antioxidants and Redox Signaling, vol. 14, no. 7, pp. 1289–1301, 2011. View at Publisher · View at Google Scholar · View at Scopus
  75. V. Conte, K. Uryu, S. Fujimoto et al., “Vitamin E reduces amyloidosis and improves cognitive function in Tg2576 mice following repetitive concussive brain injury,” Journal of Neurochemistry, vol. 90, no. 3, pp. 758–764, 2004. View at Publisher · View at Google Scholar · View at Scopus
  76. S. Sung, Y. Yao, K. Uryu et al., “Early vitamin E supplementation in young but not aged mice reduces Abeta levels and amyloid deposition in a transgenic model of Alzheimer's disease.,” The FASEB Journal, vol. 18, no. 2, pp. 323–325, 2004. View at Google Scholar · View at Scopus
  77. H. Du and S. S. Yan, “Mitochondrial permeability transition pore in Alzheimer's disease: cyclophilin D and amyloid beta,” Biochimica et Biophysica Acta, vol. 1802, no. 1, pp. 198–204, 2010. View at Publisher · View at Google Scholar · View at Scopus
  78. M. Dumont, M. T. Lin, and M. F. Beal, “Mitochondria and antioxidant targeted therapeutic strategies for Alzheimer's disease,” Journal of Alzheimer's Disease, vol. 20, no. 2, pp. S633–S643, 2010. View at Publisher · View at Google Scholar · View at Scopus
  79. V. S. Burchell, S. Gandhi, E. Deas, N. W. Wood, A. Y. Abramov, and H. Plun-Favreau, “Targeting mitochondrial dysfunction in neurodegenerative disease: part II,” Expert Opinion on Therapeutic Targets, vol. 14, no. 5, pp. 497–511, 2010. View at Publisher · View at Google Scholar · View at Scopus
  80. T. Müller, “New small molecules for the treatment of Parkinson's disease,” Expert Opinion on Investigational Drugs, vol. 19, no. 9, pp. 1077–1086, 2010. View at Publisher · View at Google Scholar · View at Scopus
  81. C. A. Weber and M. E. Ernst, “Antioxidants, supplements, and Parkinson's disease,” Annals of Pharmacotherapy, vol. 40, no. 5, pp. 935–938, 2006. View at Publisher · View at Google Scholar · View at Scopus
  82. B. M. Babior, R. S. Kipnes, and J. T. Curnutte, “Biological defense mechanisms. The production by leukocytes of superoxide, a potential bactericidal agent,” Journal of Clinical Investigation, vol. 52, no. 3, pp. 741–744, 1973. View at Google Scholar · View at Scopus
  83. B. M. Babior, “NADPH oxidase,” Current Opinion in Immunology, vol. 16, no. 1, pp. 42–47, 2004. View at Publisher · View at Google Scholar · View at Scopus
  84. C. A. Colton and D. L. Gilbert, “Production of superoxide anions by a CNS macrophage, the microglia,” FEBS Letters, vol. 223, no. 2, pp. 284–288, 1987. View at Google Scholar · View at Scopus
  85. A. Y. Abramov, J. Jacobson, F. Wientjes, J. Hothersall, L. Canevari, and M. R. Duchen, “Expression and modulation of an NADPH oxidase in mammalian astrocytes,” Journal of Neuroscience, vol. 25, no. 40, pp. 9176–9184, 2005. View at Publisher · View at Google Scholar · View at Scopus
  86. K. M. Noh and J. Y. Koh, “Induction and activation by zinc of NADPH oxidase in cultured cortical neurons and astrocytes.,” The Journal of Neuroscience, vol. 20, no. 23, p. RC111, 2000. View at Google Scholar · View at Scopus
  87. D. I. Brown and K. K. Griendling, “Nox proteins in signal transduction,” Free Radical Biology and Medicine, vol. 47, no. 9, pp. 1239–1253, 2009. View at Publisher · View at Google Scholar · View at Scopus
  88. R. Harrison, “Structure and function of xanthine oxidoreductase: where are we now?” Free Radical Biology and Medicine, vol. 33, no. 6, pp. 774–797, 2002. View at Publisher · View at Google Scholar · View at Scopus
  89. D. N. Granger, M. E. Hollwarth, and D. A. Parks, “Ischemia-reperfusion injury: role of oxygen-derived free radicals,” Acta Physiologica Scandinavica, vol. 126, no. 548, pp. 47–63, 1986. View at Google Scholar · View at Scopus
  90. A. Y. Andreyev, Y. E. Kushnareva, and A. A. Starkov, “Mitochondrial metabolism of reactive oxygen species,” Biochemistry, vol. 70, no. 2, pp. 200–214, 2005. View at Publisher · View at Google Scholar · View at Scopus
  91. P. K. Jensen, “Antimycin-insensitive oxidation of succinate and reduced nicotinamide-adenine dinucleotide in electron-transport particles I. pH dependency and hydrogen peroxide formation,” Biochimica et Biophysica Acta, vol. 122, no. 2, pp. 157–166, 1966. View at Google Scholar · View at Scopus
  92. G. Loschen, L. Flohé, and B. Chance, “Respiratory chain linked H2O2 production in pigeon heart mitochondria,” FEBS Letters, vol. 18, no. 2, pp. 261–264, 1971. View at Google Scholar · View at Scopus
  93. L. Tretter and V. Adam-Vizi, “Generation of reactive oxygen species in the reaction catalyzed by α-ketoglutarate dehydrogenase,” Journal of Neuroscience, vol. 24, no. 36, pp. 7771–7778, 2004. View at Publisher · View at Google Scholar · View at Scopus
  94. A. Y. Abramov, A. Scorziello, and M. R. Duchen, “Three distinct mechanisms generate oxygen free radicals in neurons and contribute to cell death during anoxia and reoxygenation,” Journal of Neuroscience, vol. 27, no. 5, pp. 1129–1138, 2007. View at Publisher · View at Google Scholar · View at Scopus
  95. S. L. Mehta and P. A. Li, “Neuroprotective role of mitochondrial uncoupling protein 2 in cerebral stroke,” Journal of Cerebral Blood Flow and Metabolism, vol. 29, no. 6, pp. 1069–1078, 2009. View at Publisher · View at Google Scholar · View at Scopus
  96. G. Huang, Y. Chen, H. Lu, and X. Cao, “Coupling mitochondrial respiratory chain to cell death: an essential role of mitochondrial complex I in the interferon-β and retinoic acid-induced cancer cell death,” Cell Death and Differentiation, vol. 14, no. 2, pp. 327–337, 2007. View at Publisher · View at Google Scholar · View at Scopus
  97. A. Iuso, S. Scacco, C. Piccoli et al., “Dysfunctions of cellular oxidative metabolism in patients with mutations in the NDUFS1 and NDUFS4 genes of complex I,” Journal of Biological Chemistry, vol. 281, no. 15, pp. 10374–10380, 2006. View at Publisher · View at Google Scholar · View at Scopus
  98. A. Y. Abramov, T. K. Smulders-Srinivasan, D. M. Kirby et al., “Mechanism of neurodegeneration of neurons with mitochondrial DNA mutations,” Brain, vol. 133, no. 3, pp. 797–807, 2010. View at Publisher · View at Google Scholar · View at Scopus
  99. D. E. Edmondson, C. Binda, J. Wang, A. K. Upadhyay, and A. Mattevi, “Molecular and mechanistic properties of the membrane-bound mitochondrial monoamine oxidases,” Biochemistry, vol. 48, no. 20, pp. 4220–4230, 2009. View at Publisher · View at Google Scholar · View at Scopus
  100. L. Miao and D. K. S. Clair, “Regulation of superoxide dismutase genes: implications in disease,” Free Radical Biology and Medicine, vol. 47, no. 4, pp. 344–356, 2009. View at Publisher · View at Google Scholar · View at Scopus
  101. R. Margis, C. Dunand, F. K. Teixeira, and M. Margis-Pinheiro, “Glutathione peroxidase family—an evolutionary overview,” FEBS Journal, vol. 275, no. 15, pp. 3959–3970, 2008. View at Publisher · View at Google Scholar · View at Scopus
  102. R. Dringen and J. Hirrlinger, “Glutathione pathways in the brain,” Biological Chemistry, vol. 384, no. 4, pp. 505–516, 2003. View at Publisher · View at Google Scholar · View at Scopus