Table of Contents Author Guidelines Submit a Manuscript
Oxidative Medicine and Cellular Longevity
Volume 2012, Article ID 609421, 13 pages
http://dx.doi.org/10.1155/2012/609421
Review Article

Preclinical and Clinical Evidence of Antioxidant Effects of Antidepressant Agents: Implications for the Pathophysiology of Major Depressive Disorder

1Mood Disorders Program and Women's Health Concerns Clinic, Department of Psychiatry and Behavioural Neurosciences, McMaster University, 301 James Street South, Suite F614, Hamilton, ON, Canada L8P 3B6
2Center of Oxidative Stress Research, Professor Tuiskon Dick Department of Biochemistry, Institute of Health Basic Sciences, Federal University of Rio Grande do Sul (UFRGS), Ramiro Barcelos Street, 2600 Anexo, 90035-003 Porto Alegre, RS, Brazil

Received 4 February 2012; Accepted 2 March 2012

Academic Editor: Daniel Pens Gelain

Copyright © 2012 Guilherme A. Behr et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. Castrén, “Is mood chemistry?” Nature Reviews Neuroscience, vol. 6, no. 3, pp. 241–246, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. J. A. Imlay, “Cellular defenses against superoxide and hydrogen peroxide,” Annual Review of Biochemistry, vol. 77, pp. 755–776, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. B. Harwell, “Biochemistry of oxidative stress,” Biochemical Society Transactions, vol. 35, no. 5, pp. 1147–1150, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. M. Valko, D. Leibfritz, J. Moncol, M. T. D. Cronin, M. Mazur, and J. Telser, “Free radicals and antioxidants in normal physiological functions and human disease,” International Journal of Biochemistry and Cell Biology, vol. 39, no. 1, pp. 44–84, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. B. Halliwell, “Oxidative stress and neurodegeneration: where are we now?” Journal of Neurochemistry, vol. 97, no. 6, pp. 1634–1658, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. C. Curti, F. E. Mingatto, A. C. M. Polizello, L. O. Galastri, S. A. Uyemura, and A. C. Santos, “Fluoxetine interacts with the lipid bilayer of the inner membrane in isolated rat brain mitochondria, inhibiting electron transport and F1F0-ATPase activity,” Molecular and Cellular Biochemistry, vol. 199, no. 1-2, pp. 103–109, 1999. View at Publisher · View at Google Scholar · View at Scopus
  7. M. E. J. Souza, A. C. M. Polizello, S. A. Uyemura, O. Castro-Silva, and C. Curti, “Effect of fluoxetine on rat liver mitochondria,” Biochemical Pharmacology, vol. 48, no. 3, pp. 535–541, 1994. View at Publisher · View at Google Scholar · View at Scopus
  8. E. Nahon, A. Israelson, S. Abu-Hamad, and V. Shoshan-Barmatz, “Fluoxetine (Prozac) interaction with the mitochondrial voltage-dependent anion channel and protection against apoptotic cell death,” FEBS Letters, vol. 579, no. 22, pp. 5105–5110, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. W. H. Zhang, H. Wang, X. Wang et al., “Nortriptyline protects mitochondria and reduces cerebral ischemia/hypoxia injury,” Stroke, vol. 39, no. 2, pp. 455–462, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. N. Kolla, Z. Wei, J. S. Richardson, and X. M. Li, “Amitriptyline and fluoxetine protect PC12 cells from cell death induced by hydrogen peroxide,” Journal of Psychiatry and Neuroscience, vol. 30, no. 3, pp. 196–201, 2005. View at Google Scholar · View at Scopus
  11. S. Hashioka, A. Klegeris, A. Monji et al., “Antidepressants inhibit interferon-γ-induced microglial production of IL-6 and nitric oxide,” Experimental Neurology, vol. 206, no. 1, pp. 33–42, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. A. J. Schmidt, P. Heiser, U. M. Hemmeter, J. C. Krieg, and H. Vedder, “Effects of antidepressants on mRNA levels of antioxidant enzymes in human monocytic U-937 cells,” Progress in Neuro-Psychopharmacology and Biological Psychiatry, vol. 32, no. 6, pp. 1567–1573, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Dhir and S. K. Kulkarni, “Involvement of nitric oxide (NO) signaling pathway in the antidepressant action of bupropion, a dopamine reuptake inhibitor,” European Journal of Pharmacology, vol. 568, no. 1–3, pp. 177–185, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. A. D. E. Zomkowski, D. Engel, N. H. Gabilan, and A. L. S. Rodrigues, “Involvement of NMDA receptors and l-arginine-nitric oxide-cyclic guanosine monophosphate pathway in the antidepressant-like effects of escitalopram in the forced swimming test,” European Neuropsychopharmacology, vol. 20, no. 11, pp. 793–801, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Krass, G. Wegener, E. Vasar, and V. Volke, “The antidepressant action of imipramine and venlafaxine involves suppression of nitric oxide synthesis,” Behavioural Brain Research, vol. 218, no. 1, pp. 57–63, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. L. Vismari, G. J. Alves, M. N. Muscará, and J. Palermo-Neto, “A possible role to nitric oxide in the anti-inflammatory effects of amitriptyline,” Immunopharmacology and Immunotoxicology. In press.
  17. G. Z. Réus, R. B. Stringari, B. De Souza et al., “Harmine and imipramine promote antioxidant activities in prefrontal cortex and hippocampus,” Oxidative Medicine and Cellular Longevity, vol. 3, no. 5, pp. 325–331, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. G. Z. Reus, R. B. Stringari, and C. L. Gonçalves, “Administration of harmine and imipramine alters creatine kinase and mitochondrial respiratory chain activities in the rat brain,” Depression Research and Treatment, vol. 2012, Article ID 987397, 7 pages, 2012. View at Google Scholar
  19. K. R. Lobato, C. C. Cardoso, R. W. Binfaré et al., “α-Tocopherol administration produces an antidepressant-like effect in predictive animal models of depression,” Behavioural Brain Research, vol. 209, no. 2, pp. 249–259, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. S. S. Katyare and R. R. Rajan, “Effect of long-term in vivo treatment with imipramine on the oxidative energy metabolism in rat brain mitochondria,” Comparative Biochemistry and Physiology Part C, vol. 112, no. 3, pp. 353–357, 1995. View at Google Scholar
  21. H. Xu, J. Steven Richardson, and X. M. Li, “Dose-related effects of chronic antidepressants on neuroprotective proteins BDNF, Bcl-2 and Cu/Zn-SOD in rat hippocampus,” Neuropsychopharmacology, vol. 28, no. 1, pp. 53–62, 2003. View at Google Scholar · View at Scopus
  22. I. Inkielewicz-Stêpniak, “Impact of fluoxetine on liver damage in rats,” Pharmacological Reports, vol. 63, no. 2, pp. 441–447, 2011. View at Google Scholar · View at Scopus
  23. S. Novio, M. J. Núñez, G. Amigo, and M. Freire-Garabal, “Effects of fluoxetine on the oxidative status of peripheral blood leucocytes of restraint-stressed mice,” Basic & Clinical Pharmacology & Toxicology, vol. 109, no. 5, pp. 365–371, 2011. View at Google Scholar
  24. A. Zafir, A. Ara, and N. Banu, “In vivo antioxidant status: a putative target of antidepressant action,” Progress in Neuro-Psychopharmacology and Biological Psychiatry, vol. 33, no. 2, pp. 220–228, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. J. Djordjevic, A. Djordjevic, M. Adzic, I. Elaković, G. Matić, and M. B. Radojcic, “Fluoxetine affects antioxidant system and promotes apoptotic signaling in Wistar rat liver,” European Journal of Pharmacology, vol. 659, no. 1, pp. 61–66, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. B. A. Abdel-Wahab and R. H. Salama, “Venlafaxine protects against stress-induced oxidative DNA damage in hippocampus during antidepressant testing in mice,” Pharmacology Biochemistry and Behavior, vol. 100, no. 1, pp. 59–65, 2011. View at Google Scholar
  27. S. D. Khanzode, G. N. Dakhale, S. S. Khanzode, A. Saoji, and R. Palasodkar, “Oxidative damage and major depression: the potential antioxidant action of selective serotonin-re-uptake inhibitors,” Redox Report, vol. 8, no. 6, pp. 365–370, 2003. View at Publisher · View at Google Scholar · View at Scopus
  28. A. Sarandol, E. Sarandol, S. S. Eker, S. Erdinc, E. Vatansever, and S. Kirli, “Major depressive disorder is accompanied with oxidative stress: short-term antidepressant treatment does not alter oxidative—antioxidative systems,” Human Psychopharmacology, vol. 22, no. 2, pp. 67–73, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. H. Herken, A. Gurel, S. Selek et al., “Adenosine deaminase, nitric oxide, superoxide dismutase, and xanthine oxidase in patients with major depression: impact of antidepressant treatment,” Archives of Medical Research, vol. 38, no. 2, pp. 247–252, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. M. Bilici, H. Efe, M. A. Köroǧlu, H. A. Uydu, M. Bekaroǧlu, and O. Deǧer, “Antioxidative enzyme activities and lipid peroxidation in major depression: alterations by antidepressant treatments,” Journal of Affective Disorders, vol. 64, no. 1, pp. 43–51, 2001. View at Publisher · View at Google Scholar · View at Scopus
  31. J. W. Gawryluk, J. F. Wang, A. C. Andreazza, L. Shao, and L. T. Young, “Decreased levels of glutathione, the major brain antioxidant, in post-mortem prefrontal cortex from patients with psychiatric disorders,” International Journal of Neuropsychopharmacology, vol. 14, no. 1, pp. 123–130, 2011. View at Publisher · View at Google Scholar · View at Scopus
  32. B. E. Cumurcu, H. Ozyurt, I. Etikan, S. Demir, and R. Karlidag, “Total antioxidant capacity and total oxidant status in patients with major depression: impact of antidepressant treatment,” Psychiatry and Clinical Neurosciences, vol. 63, no. 5, pp. 639–645, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. V. O. Kotan, E. Sarandol, E. Kirhan, G. Ozkaya, and S. Kirli, “Effects of long-term antidepressant treatment on oxidative status in major depressive disorder: a 24-week follow-up study,” Progress in Neuro-Psychopharmacology and Biological Psychiatry, vol. 35, no. 5, pp. 1284–1290, 2011. View at Publisher · View at Google Scholar · View at Scopus
  34. M. Maes, I. Mihaylova, M. Kubera, M. Uytterhoeven, N. Vrydags, and E. Bosmans, “Lower plasma Coenzyme Q10 in depression: a marker for treatment resistance and chronic fatigue in depression and a risk factor to cardiovascular disorder in that illness,” Neuroendocrinology Letters, vol. 30, no. 4, pp. 462–469, 2009. View at Google Scholar · View at Scopus
  35. T. M. Michel, S. Camara, T. Tatschner et al., “Increased xanthine oxidase in the thalamus and putamen in depression,” World Journal of Biological Psychiatry, vol. 11, no. 2, pp. 314–320, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. J. W. Gawryluk, J. F. Wang, A. C. Andreazza, L. Shao, L. N. Yatham, and L. T. Young, “Prefrontal cortex glutathione S-transferase levels in patients with bipolar disorder, major depression and schizophrenia,” The International Journal of Neuropsychopharmacology, vol. 14, no. 8, pp. 1069–1074, 2011. View at Google Scholar
  37. B. Halliwell, “Free radicals and antioxidants—quo vadis?” Trends in Pharmacological Sciences, vol. 32, no. 3, pp. 125–130, 2011. View at Publisher · View at Google Scholar · View at Scopus
  38. D. R. Janero, “Malondialdehyde and thiobarbituric acid-reactivity as diagnostic indices of lipid peroxidation and peroxidative tissue injury,” Free Radical Biology and Medicine, vol. 9, no. 6, pp. 515–540, 1990. View at Publisher · View at Google Scholar · View at Scopus
  39. D. Del Rio, A. J. Stewart, and N. Pellegrini, “A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress,” Nutrition, Metabolism and Cardiovascular Diseases, vol. 15, no. 4, pp. 316–328, 2005. View at Publisher · View at Google Scholar · View at Scopus
  40. N. Zarkovic, “4-Hydroxynonenal as a bioactive marker of pathophysiological processes,” Molecular Aspects of Medicine, vol. 24, no. 4-5, pp. 281–291, 2003. View at Publisher · View at Google Scholar · View at Scopus
  41. B. Halliwell and C. Y. J. Lee, “Using isoprostanes as biomarkers of oxidative stress: some rarely considered issues,” Antioxidants and Redox Signaling, vol. 13, no. 2, pp. 145–156, 2010. View at Publisher · View at Google Scholar · View at Scopus
  42. I. Dalle-Donne, R. Rossi, D. Giustarini, A. Milzani, and R. Colombo, “Protein carbonyl groups as biomarkers of oxidative stress,” Clinica Chimica Acta, vol. 329, no. 1-2, pp. 23–38, 2003. View at Publisher · View at Google Scholar · View at Scopus
  43. G. L. Ellman, “Tissue sulfhydryl groups,” Archives of Biochemistry and Biophysics, vol. 82, no. 1, pp. 70–77, 1959. View at Google Scholar · View at Scopus
  44. I. S. Young, “Measurement of total antioxidant capacity,” Journal of Clinical Pathology, vol. 54, no. 5, p. 339, 2001. View at Publisher · View at Google Scholar · View at Scopus
  45. J. T. Coyle and P. Puttfarcken, “Oxidative stress, glutamate, and neurodegenerative disorders,” Science, vol. 262, no. 5134, pp. 689–695, 1993. View at Google Scholar · View at Scopus
  46. A. Gardner and R. G. Boles, “Beyond the serotonin hypothesis: mitochondria, inflammation and neurodegeneration in major depression and affective spectrum disorders,” Progress in Neuro-Psychopharmacology and Biological Psychiatry, vol. 35, no. 3, pp. 730–743, 2011. View at Publisher · View at Google Scholar · View at Scopus
  47. K. Chopra, B. Kumar, and A. Kuhad, “Pathobiological targets of depression,” Expert Opinion on Therapeutic Targets, vol. 15, no. 4, pp. 379–400, 2011. View at Publisher · View at Google Scholar · View at Scopus
  48. P. Gałecki, J. Szemraj, M. Bieńkiewicz, A. Florkowski, and E. Gałecka, “Lipid peroxidation and antioxidant protection in patients during acute depressive episodes and in remission after fluoxetine treatment,” Pharmacological Reports, vol. 61, no. 3, pp. 436–447, 2009. View at Google Scholar · View at Scopus
  49. R. Harrison, “Physiological roles of xanthine oxidoreductase,” Drug Metabolism Reviews, vol. 36, no. 2, pp. 363–375, 2004. View at Publisher · View at Google Scholar · View at Scopus
  50. N. Dimopoulos, C. Piperi, V. Psarra, R. W. Lea, and A. Kalofoutis, “Increased plasma levels of 8-iso-PGF2α and IL-6 in an elderly population with depression,” Psychiatry Research, vol. 161, no. 1, pp. 59–66, 2008. View at Publisher · View at Google Scholar · View at Scopus
  51. D. Praticò, J. Rokach, J. Lawson, and G. A. FitzGerald, “F2-isoprostanes as indices of lipid peroxidation in inflammatory diseases,” Chemistry and Physics of Lipids, vol. 128, no. 1-2, pp. 165–171, 2004. View at Publisher · View at Google Scholar · View at Scopus
  52. M. Maes, I. Mihaylova, M. Kubera, M. Uytterhoeven, N. Vrydags, and E. Bosmans, “Increased 8-hydroxy-deoxyguanosine, a marker of oxidative damage to DNA, in major depression and myalgic encephalomyelitis/chronic fatigue syndrome,” Neuroendocrinology Letters, vol. 30, no. 6, pp. 715–722, 2009. View at Google Scholar · View at Scopus
  53. G. Z. Reus, R. B. Stringari, G. T. Rezin et al., “Administration of memantine and imipramine alters mitochondrial respiratory chain and creatine kinase activities in rat brain,” Journal of Neural Transmission, vol. 119, no. 4, pp. 481–491, 2012. View at Google Scholar
  54. P. Rojas, N. Serrano-García, O. N. Medina-Campos, J. Pedraza-Chaverri, S. O. Ögren, and C. Rojas, “Antidepressant-like effect of a Ginkgo biloba extract (EGb761) in the mouse forced swimming test: role of oxidative stress,” Neurochemistry International, vol. 59, no. 5, pp. 628–638, 2011. View at Publisher · View at Google Scholar · View at Scopus
  55. Z. Zhao, W. Wang, H. Guo, and D. Zhou, “Antidepressant-like effect of liquiritin from Glycyrrhiza uralensis in chronic variable stress induced depression model rats,” Behavioural Brain Research, vol. 194, no. 1, pp. 108–113, 2008. View at Publisher · View at Google Scholar · View at Scopus
  56. T. Satoh, K. Ishige, and Y. Sagara, “Protective effects on neuronal cells of mouse afforded by ebselen against oxidative stress at multiple steps,” Neuroscience Letters, vol. 371, no. 1, pp. 1–5, 2004. View at Publisher · View at Google Scholar · View at Scopus
  57. T. Posser, M. P. Kaster, S. C. Baraúna, J. B. T. Rocha, A. L. S. Rodrigues, and R. B. Leal, “Antidepressant-like effect of the organoselenium compound ebselen in mice: evidence for the involvement of the monoaminergic system,” European Journal of Pharmacology, vol. 602, no. 1, pp. 85–91, 2009. View at Publisher · View at Google Scholar · View at Scopus
  58. C. A. Stockmeier, G. J. Mahajan, L. C. Konick et al., “Cellular changes in the postmortem hippocampus in major depression,” Biological Psychiatry, vol. 56, no. 9, pp. 640–650, 2004. View at Publisher · View at Google Scholar · View at Scopus
  59. K. Zou, W. Deng, T. Li et al., “Changes of brain morphometry in first-episode, drug-Naïve, non-late-life adult patients with major depression: an optimized voxel-based morphometry study,” Biological Psychiatry, vol. 67, no. 2, pp. 186–188, 2010. View at Publisher · View at Google Scholar · View at Scopus
  60. S. Campbell and G. MacQueen, “An update on regional brain volume differences associated with mood disorders,” Current Opinion in Psychiatry, vol. 19, no. 1, pp. 25–33, 2006. View at Publisher · View at Google Scholar · View at Scopus
  61. A. Kumar, W. Bilker, Z. Jin, and J. Udupa, “Atrophy and high intensity lesions: complementary neurobiological mechanisms in late-life major depression,” Neuropsychopharmacology, vol. 22, no. 3, pp. 264–274, 2000. View at Publisher · View at Google Scholar · View at Scopus
  62. P. J. Olesen, D. R. Gustafson, M. Simoni et al., “Temporal lobe atrophy and white matter lesions are related to major depression over 5 years in the elderly,” Neuropsychopharmacology, vol. 35, no. 13, pp. 2638–2645, 2010. View at Publisher · View at Google Scholar · View at Scopus
  63. M. Maes, P. Ruckoanich, Y. S. Chang, N. Mahanonda, and M. Berk, “Multiple aberrations in shared inflammatory and oxidative & nitrosative stress (IO&NS) pathways explain the co-association of depression and cardiovascular disorder (CVD), and the increased risk for CVD and due mortality in depressed patients,” Progress in Neuro-Psychopharmacology and Biological Psychiatry, vol. 35, no. 3, pp. 769–783, 2011. View at Publisher · View at Google Scholar · View at Scopus
  64. M. Maes, P. Galecki, Y. S. Chang, and M. Berk, “A review on the oxidative and nitrosative stress (O&NS) pathways in major depression and their possible contribution to the (neuro)degenerative processes in that illness,” Progress in Neuro-Psychopharmacology and Biological Psychiatry, vol. 35, no. 3, pp. 676–692, 2011. View at Publisher · View at Google Scholar · View at Scopus
  65. J. R. Teyssier, S. Ragot, J. C. Chauvet-Gélinier, B. Trojak, and B. Bonin, “Expression of oxidative stress-response genes is not activated in the prefrontal cortex of patients with depressive disorder,” Psychiatry Research, vol. 186, no. 2-3, pp. 244–247, 2011. View at Publisher · View at Google Scholar · View at Scopus
  66. B. N. Frey, G. B. Zunta-Soares, S. C. Caetano et al., “Illness duration and total brain gray matter in bipolar disorder: evidence for neurodegeneration?” European Neuropsychopharmacology, vol. 18, no. 10, pp. 717–722, 2008. View at Publisher · View at Google Scholar · View at Scopus
  67. L. Minuzzi, G. A. Behr, J. C. F. Moreira, and B. N. Frey, “Mitochondrial dysfunction in bipolar disorder: lessons from brain imaging and molecular markers,” Revista Colombiana de Psiquiatría, vol. 40, pp. 166–182, 2011. View at Google Scholar
  68. F. Kapczinski, F. Dal-Pizzol, A. L. Teixeira et al., “A systemic toxicity index developed to assess peripheral changes in mood episodes,” Molecular Psychiatry, vol. 15, no. 8, pp. 784–786, 2010. View at Publisher · View at Google Scholar · View at Scopus