Table of Contents Author Guidelines Submit a Manuscript
Oxidative Medicine and Cellular Longevity
Volume 2012 (2012), Article ID 756132, 12 pages
Review Article

Oxidants, Antioxidants, and the Beneficial Roles of Exercise-Induced Production of Reactive Species

1Department of Biochemistry and Immunology, Institute of Biological Science, Federal University of Minas Gerais (UFMG), 31270-901 Belo Horizonte, MG, Brazil
2Department of Morphology, Institute of Biological Sciences (UFMG); and Santa Casa de Misericórdia, 30150-221 Belo Horizonte, MG, Brazil
3School of Sport, Exercise and Health Sciences, Loughborough University, Leicestershire LE11 3TU, UK

Received 16 March 2012; Accepted 2 April 2012

Academic Editor: Michalis G. Nikolaidis

Copyright © 2012 Elisa Couto Gomes et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


This review offers an overview of the influence of reactive species produced during exercise and their effect on exercise adaptation. Reactive species and free radicals are unstable molecules that oxidize other molecules in order to become stable. Although they play important roles in our body, they can also lead to oxidative stress impairing diverse cellular functions. During exercise, reactive species can be produced mainly, but not exclusively, by the following mechanisms: electron leak at the mitochondrial electron transport chain, ischemia/reperfusion and activation of endothelial xanthine oxidase, inflammatory response, and autooxidation of catecholamines. Chronic exercise also leads to the upregulation of the body's antioxidant defence mechanism, which helps minimize the oxidative stress that may occur after an acute bout of exercise. Recent studies show a beneficial role of the reactive species, produced during a bout of exercise, that lead to important training adaptations: angiogenesis, mitochondria biogenesis, and muscle hypertrophy. The adaptations occur depending on the mechanic, and consequently biochemical, stimulus within the muscle. This is a new area of study that promises important findings in the sphere of molecular and cellular mechanisms involved in the relationship between oxidative stress and exercise.