Table of Contents Author Guidelines Submit a Manuscript
Oxidative Medicine and Cellular Longevity
Volume 2012 (2012), Article ID 795259, 12 pages
http://dx.doi.org/10.1155/2012/795259
Review Article

Oxidative Stress and Epilepsy: Literature Review

1School of Medicine, University of Fortaleza (UNIFOR)/RENORBIO, Rua Desembargador Floriano Benevides Magalhães, 221 3° Andar, 60811-690 Fortaleza, CE, Brazil
2Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Rua Coronel Nunes de Melo, 1127, 60430-270 Fortaleza, CE, Brazil
3School of Nursing, University of Fortaleza (UNIFOR)/RENORBIO, Avenida Washington Soares, 1321, 60811-905 Fortaleza, CE, Brazil
4School of Pharmacy, University of Otago, P.O. Box 913, Dunedin, New Zealand
5Pharmacy Department, Faculty of Dentistry, Nursing and Pharmacy, Federal University of Ceará, Rua Capitão Francisco Pedro, 1210, 60430-370 Fortaleza, CE, Brazil

Received 8 March 2012; Revised 7 May 2012; Accepted 24 May 2012

Academic Editor: Regina Menezes

Copyright © 2012 Carlos Clayton Torres Aguiar et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. S. Stamler, D. J. Simon, O. Jaraki et al., “S-nitrosylation of tissue-type plasminogen activator confers vasodilatory and antiplatelet properties on the enzyme,” Proceedings of the National Academy of Sciences of the United States of America, vol. 89, no. 17, pp. 8087–8091, 1992. View at Google Scholar · View at Scopus
  2. J. Emerit, M. Edeas, and F. Bricaire, “Neurodegenerative diseases and oxidative stress,” Biomedicine and Pharmacotherapy, vol. 58, no. 1, pp. 39–46, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. D. M. Tabima, S. Frizzell, and M. T. Gladwin, “Reactive oxygen and nitrogen species in pulmonary hypertension,” Free Radical Biology and Medicine, vol. 52, no. 9, pp. 1970–1986, 2012. View at Publisher · View at Google Scholar · View at Scopus
  4. M. Maes, P. Galecki, Y. S. Chang, and M. Berk, “A review on the oxidative and nitrosative stress (O&NS) pathways in major depression and their possible contribution to the (neuro)degenerative processes in that illness,” Progress in Neuro-Psychopharmacology and Biological Psychiatry, vol. 35, no. 3, pp. 676–692, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. K. J. Barnham, C. L. Masters, and A. I. Bush, “Neurodegenerative diseases and oxidatives stress,” Nature Reviews Drug Discovery, vol. 3, no. 3, pp. 205–214, 2004. View at Google Scholar · View at Scopus
  6. L. Vercueil, “Epilepsy and neurodegenerative diseases in adults: a clinical review,” Epileptic Disorders, vol. 8, supplement 1, pp. S44–S54, 2006. View at Google Scholar · View at Scopus
  7. C. D. McCullagh, D. Craig, S. P. McIlroy, and A. P. Passmore, “Risk factors for dementia,” Advances in Psychiatric Treatment, vol. 7, no. 1, pp. 24–31, 2001. View at Publisher · View at Google Scholar · View at Scopus
  8. A. J. Rowan, “Epilepsy and the elderly,” Epilepsy and Behavior, vol. 1, supplement 1, pp. S12–S14, 2000. View at Publisher · View at Google Scholar · View at Scopus
  9. P. Masnou, “Epilepsie du sujet âgé,” La Lettre du neurologue, vol. 5, pp. 337–341, 2001. View at Google Scholar
  10. A. C. Van Cott, “Epilepsy and EEG in the elderly,” Epilepsia, vol. 43, supplement 3, pp. 94–102, 2002. View at Publisher · View at Google Scholar · View at Scopus
  11. L. J. Stephen and M. J. Brodie, “Epilepsy in elderly people,” The Lancet, vol. 355, no. 9213, pp. 1441–1446, 2000. View at Google Scholar · View at Scopus
  12. R. Tallis, P. Boon, E. Perucca, and L. Stephen, “Epilepsy in elderly people: management issues,” Epileptic Disorders, vol. 4, supplement 2, pp. S33–S39, 2002. View at Google Scholar · View at Scopus
  13. E. Trinka, “Epilepsy: comorbidity in the elderly,” Acta Neurologica Scandinavica, Supplement, vol. 180, pp. 33–36, 2003. View at Google Scholar · View at Scopus
  14. T. T. Sïrvfn, “Acute and chronic seizures in patients older than 60 years,” Mayo Clinic Proceedings, vol. 76, no. 2, pp. 175–183, 2001. View at Google Scholar · View at Scopus
  15. D. P. Jones, “Disruption of mitochondrial redox circuitry in oxidative stress,” Chemico-Biological Interactions, vol. 163, no. 1-2, pp. 38–53, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. D. Harman, “Aging: a theory based on free radical and radiation chemistry,” Journal of gerontology, vol. 11, no. 3, pp. 298–300, 1956. View at Google Scholar · View at Scopus
  17. D. Harman, “The biologic clock: the mitochondria?” Journal of the American Geriatrics Society, vol. 20, no. 4, pp. 145–147, 1972. View at Google Scholar · View at Scopus
  18. Q. Kong and C. L. G. Lin, “Oxidative damage to RNA: mechanisms, consequences, and diseases,” Cellular and Molecular Life Sciences, vol. 67, no. 11, pp. 1817–1829, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. D. Malinska, B. Kulawiak, A. P. Kudin et al., “Complex III-dependent superoxide production of brain mitochondria contributes to seizure-related ROS formation,” Biochimica et Biophysica Acta, vol. 1797, no. 6-7, pp. 1163–1170, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. A. Y. Estevez, S. Pritchard, K. Harper et al., “Neuroprotective mechanisms of cerium oxide nanoparticles in a mouse hippocampal brain slice model of ischemia,” Free Radical Biology and Medicine, vol. 51, pp. 1155–1163, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. B. Halliwell, “Free radicals, proteins and DNA: oxidative damage versus redox regulation,” Biochemical Society Transactions, vol. 24, no. 4, pp. 1023–1027, 1996. View at Google Scholar · View at Scopus
  22. I. Silver and M. Erecinska, “Oxygen and ion concentrations in normoxic and hypoxic brain cells,” Advances in Experimental Medicine and Biology, vol. 454, pp. 7–16, 1998. View at Google Scholar · View at Scopus
  23. O. Kann and R. Kovács, “Mitochondria and neuronal activity,” American Journal of Physiology, vol. 292, no. 2, pp. C641–C657, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. S. Waldbaum, L. P. Liang, and M. Patel, “Persistent impairment of mitochondrial and tissue redox status during lithium-pilocarpine-induced epileptogenesis,” Journal of Neurochemistry, vol. 115, no. 5, pp. 1172–1182, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. M. Valko, C. J. Rhodes, J. Moncol, M. Izakovic, and M. Mazur, “Free radicals, metals and antioxidants in oxidative stress-induced cancer,” Chemico-Biological Interactions, vol. 160, no. 1, pp. 1–40, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. V. J. Tang, K. M. Konigsfeld, J. A. Aguilera, and J. R. Milligan, “DNA binding hydroxyl radical probes,” Radiation Physics and Chemistry, vol. 81, pp. 46–51, 2012. View at Publisher · View at Google Scholar
  27. M. Valko, D. Leibfritz, J. Moncol, M. T. D. Cronin, M. Mazur, and J. Telser, “Free radicals and antioxidants in normal physiological functions and human disease,” International Journal of Biochemistry and Cell Biology, vol. 39, no. 1, pp. 44–84, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. S. A. A. Comhair and S. C. Erzurum, “Antioxidant responses to oxidant-mediated lung diseases,” American Journal of Physiology, vol. 283, no. 2, pp. L246–L255, 2002. View at Google Scholar · View at Scopus
  29. M. Gulumian and J. A. van Wyk, “Hydroxyl radical production in the presence of fibres by a Fenton-type reaction,” Chemico-Biological Interactions, vol. 62, no. 1, pp. 89–97, 1987. View at Google Scholar · View at Scopus
  30. P. Voss, M. Engels, M. Strosova, T. Grune, and L. Horakova, “Protective effect of antioxidants against sarcoplasmic reticulum (SR) oxidation by Fenton reaction, however without prevention of Ca-pump activity,” Toxicology in Vitro, vol. 22, no. 7, pp. 1726–1733, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. C. Szabó, H. Ischiropoulos, and R. Radi, “Peroxynitrite: biochemistry, pathophysiology and development of therapeutics,” Nature Reviews Drug Discovery, vol. 6, no. 8, pp. 662–680, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. M. Whiteman, J. P. E. Spencer, A. Jenner, and B. Halliwell, “Hypochlorous acid-induced DNA base modification: potentiation by nitrite: biomarkers of DNA damage by reactive oxygen species,” Biochemical and Biophysical Research Communications, vol. 257, no. 2, pp. 572–576, 1999. View at Publisher · View at Google Scholar · View at Scopus
  33. R. C. Silva and A. A. Goncalves, “Espécies reativas do oxigênio e as doenças respiratórias em grandes animais,” Ciência Rural, vol. 40, pp. 994–1002, 2010. View at Google Scholar
  34. J. Limón-Pacheco and M. E. Gonsebatt, “The role of antioxidants and antioxidant-related enzymes in protective responses to environmentally induced oxidative stress,” Mutation Research, vol. 674, no. 1-2, pp. 137–147, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. L. M. Ellerby, D. E. Cabelli, J. A. Graden, and J. S. Valentine, “Copper-zinc superoxide dismutase: why not pH-dependent?” Journal of the American Chemical Society, vol. 118, no. 28, pp. 6556–6561, 1996. View at Publisher · View at Google Scholar · View at Scopus
  36. J. M. Matés and F. Sánchez-Jiménez, “Antioxidant enzymes and their implications in pathophysiologic processes,” Frontiers in Bioscience, vol. 4, pp. D339–D345, 1999. View at Google Scholar · View at Scopus
  37. S. Usui, K. Komeima, S. Y. Lee et al., “Increased expression of catalase and superoxide dismutase 2 reduces cone cell death in retinitis pigmentosa,” Molecular Therapy, vol. 17, no. 5, pp. 778–786, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. M. Bjornstedt, M. Hamberg, S. Kumar, J. Xue, and A. Holmgren, “Human thioredoxin reductase directly reduces lipid hydroperoxides by NADPH and selenocystine strongly stimulates the reaction via catalytically generated selenols,” Journal of Biological Chemistry, vol. 270, no. 20, pp. 11761–11764, 1995. View at Publisher · View at Google Scholar · View at Scopus
  39. J. Gromadzinska, E. Reszka, K. Bruzelius, W. Wasowicz, and B. Akesson, “Selenium and cancer: biomarkers of selenium status and molecular action of selenium supplements,” European Journal of Nutrition, vol. 47, supplement 2, pp. 29–50, 2008. View at Publisher · View at Google Scholar · View at Scopus
  40. G. Powis and W. R. Montfort, “Properties and biological activities of thioredoxins,” Annual Review of Biophysics and Biomolecular Structure, vol. 30, pp. 421–455, 2001. View at Publisher · View at Google Scholar · View at Scopus
  41. M. Bjornstedt, J. Xue, W. Huang, B. Akesson, and A. Holmgren, “The thioredoxin and glutaredoxin systems are efficient electron donors to human plasma glutathione peroxidase,” Journal of Biological Chemistry, vol. 269, no. 47, pp. 29382–29384, 1994. View at Google Scholar · View at Scopus
  42. S. Wassmann, K. Wassmann, and G. Nickenig, “Modulation of oxidant and antioxidant enzyme expression and function in vascular cells,” Hypertension, vol. 44, no. 4, pp. 381–386, 2004. View at Publisher · View at Google Scholar · View at Scopus
  43. J. Nordberg and E. S. J. Arnér, “Reactive oxygen species, antioxidants, and the mammalian thioredoxin system,” Free Radical Biology and Medicine, vol. 31, no. 11, pp. 1287–1312, 2001. View at Publisher · View at Google Scholar · View at Scopus
  44. J. M. May, J. D. Morrow, and R. F. Burk, “Thioredoxin reductase reduces lipid hydroperoxides and spares α-tocopherol,” Biochemical and Biophysical Research Communications, vol. 292, no. 1, pp. 45–49, 2002. View at Publisher · View at Google Scholar · View at Scopus
  45. M. M. Nelson and D. L. Cox, Lehninger Principles of Biochemistry, W. H. Freeman, New York, NY, USA, 2005.
  46. H. Nohl, A. V. Kozlov, K. Staniek, and L. Gille, “The multiple functions of coenzyme Q,” Bioorganic Chemistry, vol. 29, no. 1, pp. 1–13, 2001. View at Publisher · View at Google Scholar · View at Scopus
  47. E. G. Bliznakov, “Cardiovascular diseases, oxidative stress and antioxidants: the decisive role of coenzyme Q10,” Cardiovascular Research, vol. 43, no. 1, pp. 248–249, 1999. View at Publisher · View at Google Scholar · View at Scopus
  48. A. L. B. S. Barreiros, J. M. David, and J. P. David, “Estresse oxidativo: relação entre geração de espécies reativas e defesa do organismo,” Química Nova, vol. 29, no. 1, pp. 113–123, 2006. View at Google Scholar · View at Scopus
  49. E. Niki, “Antioxidants in relation to lipid peroxidation,” Chemistry and Physics of Lipids, vol. 44, no. 2–4, pp. 227–253, 1987. View at Google Scholar · View at Scopus
  50. I. Rahman, S. K. Biswas, and A. Kode, “Oxidant and antioxidant balance in the airways and airway diseases,” European Journal of Pharmacology, vol. 533, no. 1–3, pp. 222–239, 2006. View at Publisher · View at Google Scholar · View at Scopus
  51. World Health Organization, Epilepsy in the WHO Africa Region, Bridging the Gap: The Global Campaign against Epilepsy,“Out of the Shadows”, World Health Organization, Geneva, Switzerland, 2004.
  52. A. K. Ngugi, C. Bottomley, I. Kleinschmidt, J. W. Sander, and C. R. Newton, “Estimation of the burden of active and life-time epilepsy: a meta-analytic approach,” Epilepsia, vol. 51, no. 5, pp. 883–890, 2010. View at Publisher · View at Google Scholar · View at Scopus
  53. S. D. Shorvon, “The etiologic classification of epilepsy,” Epilepsia, vol. 52, no. 6, pp. 1052–1057, 2011. View at Publisher · View at Google Scholar · View at Scopus
  54. S. D. Shorvon, “The causes of epilepsy: changing concepts of etiology of epilepsy over the past 150 years,” Epilepsia, vol. 52, no. 6, pp. 1033–1044, 2011. View at Publisher · View at Google Scholar · View at Scopus
  55. J. C. Amatniek, W. A. Hauser, C. DelCastillo-Castaneda et al., “Incidence and predictors of seizures in patients with Alzheimer's disease,” Epilepsia, vol. 47, no. 5, pp. 867–872, 2006. View at Publisher · View at Google Scholar · View at Scopus
  56. M. Arundine and M. Tymianski, “Molecular mechanisms of calcium-dependent neurodegeneration in excitotoxicity,” Cell Calcium, vol. 34, no. 4-5, pp. 325–337, 2003. View at Publisher · View at Google Scholar · View at Scopus
  57. S. J. Chang and B. C. Yu, “Mitochondrial matters of the brain: mitochondrial dysfunction and oxidative status in epilepsy,” Journal of Bioenergetics and Biomembranes, vol. 42, no. 6, pp. 457–459, 2010. View at Publisher · View at Google Scholar · View at Scopus
  58. C. G. Wasterlain, D. G. Fujikawa, L. Penix, and R. Sankar, “Pathophysiological mechanisms of brain damage from status epilepticus,” Epilepsia, vol. 34, supplement 1, pp. S37–S53, 1993. View at Google Scholar · View at Scopus
  59. L. P. Liang and M. Patel, “Seizure-induced changes in mitochondrial redox status,” Free Radical Biology and Medicine, vol. 40, no. 2, pp. 316–322, 2006. View at Publisher · View at Google Scholar · View at Scopus
  60. A. J. Bruce and M. Baudry, “Oxygen free radicals in rat limbic structures after kainate-induced seizures,” Free Radical Biology and Medicine, vol. 18, no. 6, pp. 993–1002, 1995. View at Publisher · View at Google Scholar · View at Scopus
  61. M. R. Gluck, E. Jayatilleke, S. Shaw, A. J. Rowan, and V. Haroutunian, “CNS oxidative stress associated with the kainic acid rodent model of experimental epilepsy,” Epilepsy Research, vol. 39, no. 1, pp. 63–71, 2000. View at Publisher · View at Google Scholar · View at Scopus
  62. Y. C. Chuang, “Mitochondrial dysfunction and oxidative stress in seizure-induced neuronal cell death,” Acta Neurologica Taiwanica, vol. 19, no. 1, pp. 3–15, 2010. View at Google Scholar · View at Scopus
  63. H. R. Cock, “The role of mitochondria and oxidative stress in neuronal damage after brief and prolonged seizures,” Progress in Brain Research, vol. 135, pp. 187–196, 2002. View at Publisher · View at Google Scholar · View at Scopus
  64. L. P. Liang, Y. S. Ho, and M. Patel, “Mitochondrial superoxide production in kainate-induced hippocampal damage,” Neuroscience, vol. 101, no. 3, pp. 563–570, 2000. View at Publisher · View at Google Scholar · View at Scopus
  65. D. C. Wallace, X. Zheng, M. T. Lott et al., “Familial mitochondrial encephalomyopathy (MERRF): genetic, pathophysiological, and biochemical characterization of a mitochondrial DNA disease,” Cell, vol. 55, no. 4, pp. 601–610, 1988. View at Google Scholar · View at Scopus
  66. J. M. Shoffner, M. T. Lott, A. M. S. Lezza, P. Seibel, S. W. Ballinger, and D. C. Wallace, “Myoclonic epilepsy and ragged-red fiber disease (MERRF) is associated with a mitochondrial DNA tRNA(Lys) mutation,” Cell, vol. 61, no. 6, pp. 931–937, 1990. View at Publisher · View at Google Scholar · View at Scopus
  67. S. B. Wu, Y. S. Ma, Y. T. Wu, Y. C. Chen, and Y. H. Wei, “Mitochondrial DNA mutation-elicited oxidative stress, oxidative damage, and altered gene expression in cultured cells of patients with MERRF syndrome,” Molecular Neurobiology, vol. 41, no. 2-3, pp. 256–266, 2010. View at Publisher · View at Google Scholar · View at Scopus
  68. G. Zsurka, M. Baron, J. D. Stewart et al., “Clonally expanded mitochondrial DNA mutations in epileptic individuals with mutated DNA polymerase γ,” Journal of Neuropathology and Experimental Neurology, vol. 67, no. 9, pp. 857–866, 2008. View at Publisher · View at Google Scholar · View at Scopus
  69. G. Zsurka, K. G. Hampel, I. Nelson et al., “Severe epilepsy as the major symptom of new mutations in the mitochondrial tRNAPhe gene,” Neurology, vol. 74, no. 6, pp. 507–512, 2010. View at Publisher · View at Google Scholar · View at Scopus
  70. G. Zsurka and W. S. Kunz, “Mitochondrial dysfunction in neurological disorders with epileptic phenotypes,” Journal of Bioenergetics and Biomembranes, vol. 42, no. 6, pp. 443–448, 2010. View at Publisher · View at Google Scholar · View at Scopus
  71. Y. C. Chuang, S. D. Chen, T. K. Lin et al., “Upregulation of nitric oxide synthase II contributes to apoptotic cell death in the hippocampal CA3 subfield via a cytochrome c/caspase-3 signaling cascade following induction of experimental temporal lobe status epilepticus in the rat,” Neuropharmacology, vol. 52, no. 5, pp. 1263–1273, 2007. View at Publisher · View at Google Scholar · View at Scopus
  72. E. J. Shin, J. H. Jeong, Y. H. Chung et al., “Role of oxidative stress in epileptic seizures,” Neurochemistry International, vol. 59, no. 2, pp. 122–137, 2011. View at Publisher · View at Google Scholar · View at Scopus
  73. S. Waldbaum and M. Patel, “Mitochondrial dysfunction and oxidative stress: a contributing link to acquired epilepsy?” Journal of Bioenergetics and Biomembranes, vol. 42, no. 6, pp. 449–455, 2010. View at Publisher · View at Google Scholar · View at Scopus
  74. J. Folbergrová and W. S. Kunz, “Mitochondrial dysfunction in epilepsy,” Mitochondrion, vol. 12, no. 1, pp. 35–40, 2011. View at Publisher · View at Google Scholar · View at Scopus
  75. M. Milder and J. Patel, “Modulation of oxidative stress and mitochondrial function by the ketogenic diet,” Epilepsy Research, http://dx.doi.org/10.1016/j.eplepsyres.2011.09.021. In press.
  76. S. G. Jarrett, L. P. Liang, J. L. Hellier, K. J. Staley, and M. Patel, “Mitochondrial DNA damage and impaired base excision repair during epileptogenesis,” Neurobiology of Disease, vol. 30, no. 1, pp. 130–138, 2008. View at Publisher · View at Google Scholar · View at Scopus
  77. M. Patel, “Mitochondrial dysfunction and oxidative stress: cause and consequence of epileptic seizures,” Free Radical Biology and Medicine, vol. 37, no. 12, pp. 1951–1962, 2004. View at Publisher · View at Google Scholar · View at Scopus
  78. A. P. Kudin, G. Zsurka, C. E. Elger, and W. S. Kunz, “Mitochondrial involvement in temporal lobe epilepsy,” Experimental Neurology, vol. 218, no. 2, pp. 326–332, 2009. View at Publisher · View at Google Scholar · View at Scopus
  79. D. J. Costello and N. Delanty, “Oxidative injury in epilepsy: potential for antioxidant therapy?” Expert Review of Neurotherapeutics, vol. 4, no. 3, pp. 541–553, 2004. View at Publisher · View at Google Scholar · View at Scopus
  80. F. Azam, M. V. V. Prasad, and N. Thangavel, “Targeting oxidative stress component in the therapeutics of epilepsy,” Current Topics in Medicinal Chemistry, vol. 12, no. 9, pp. 994–1007, 2012. View at Google Scholar · View at Scopus
  81. N. R. Temkin, A. D. Jarell, and G. D. Anderson, “Antiepileptogenic agents: how close are we?” Drugs, vol. 61, no. 8, pp. 1045–1055, 2001. View at Google Scholar · View at Scopus
  82. A. Legido, “Prevention of epilepsy,” Revista de Neurologia, vol. 34, no. 2, pp. 186–195, 2002. View at Google Scholar · View at Scopus
  83. L. J. Willmore and W. J. Triggs, “Effect of phenytoin and corticosteroids on seizures and lipid peroxidation in experimental posttraumatic epilepsy,” Journal of Neurosurgery, vol. 60, no. 3, pp. 467–472, 1984. View at Google Scholar · View at Scopus
  84. N. R. Temkin, “Antiepileptogenesis and seizure prevention trials with antiepileptic drugs: meta-analysis of controlled trials,” Epilepsia, vol. 42, no. 4, pp. 515–524, 2001. View at Publisher · View at Google Scholar · View at Scopus
  85. S. A. Hamed and M. M. Abdellah, “Trace elements and electrolytes homeostasis and their relation to antioxidant enzyme activity in brain hyperexcitability of epileptic patients,” Journal of Pharmacological Sciences, vol. 96, no. 4, pp. 349–359, 2004. View at Publisher · View at Google Scholar · View at Scopus
  86. W. Löscher and D. Schmidt, “New horizons in the development of antiepileptic drugs,” Epilepsy Research, vol. 50, no. 1-2, pp. 3–16, 2002. View at Publisher · View at Google Scholar · View at Scopus
  87. Y. Rong, S. R. Doctrow, G. Tocco, and M. Baudry, “EUK-134, a synthetic superoxide dismutase and catalase mimetic, prevents oxidative stress and attenuates kainate-induced neuropathology,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 17, pp. 9897–9902, 1999. View at Publisher · View at Google Scholar · View at Scopus
  88. K. Sudha, A. V. Rao, and A. Rao, “Oxidative stress and antioxidants in epilepsy,” Clinica Chimica Acta, vol. 303, no. 1-2, pp. 19–24, 2001. View at Publisher · View at Google Scholar · View at Scopus
  89. K. Wojtal, A. Gniatkowska-Nowakowska, and S. J. Czuczwar, “Is nitric oxide involved in the anticonvulsant action of antiepileptic drugs?” Polish Journal of Pharmacology, vol. 55, no. 4, pp. 535–542, 2003. View at Google Scholar · View at Scopus
  90. W. J. Streit, N. W. Sammons, A. J. Kuhns, and D. L. Sparks, “Dystrophic microglia in the aging human brain,” Glia, vol. 45, no. 2, pp. 208–212, 2004. View at Publisher · View at Google Scholar · View at Scopus
  91. J. A. Sloane, W. Hollander, M. B. Moss, D. L. Rosene, and C. R. Abraham, “Increased microglial activation and protein nitration in white matter of the aging monkey,” Neurobiology of Aging, vol. 20, no. 4, pp. 395–405, 1999. View at Publisher · View at Google Scholar · View at Scopus
  92. K. I. Ogura, M. Ogawa, and M. Yoshida, “Effects of ageing on microglia in the normal rat brain: immunohistochemical observations,” NeuroReport, vol. 5, no. 10, pp. 1224–1226, 1994. View at Google Scholar · View at Scopus
  93. A. M. Bodles and S. W. Barger, “Cytokines and the aging brain—what we don't know might help us,” Trends in Neurosciences, vol. 27, no. 10, pp. 621–626, 2004. View at Publisher · View at Google Scholar · View at Scopus
  94. E. M. Blalock, K. C. Chen, K. Sharrow et al., “Gene microarrays in hippocampal aging: statistical profiling identifies novel processes correlated with cognitive impairment,” Journal of Neuroscience, vol. 23, no. 9, pp. 3807–3819, 2003. View at Google Scholar · View at Scopus
  95. T. Lu, Y. Pan, S. Y. Kao et al., “Gene regulation and DNA damage in the ageing human brain,” Nature, vol. 429, no. 6994, pp. 883–891, 2004. View at Publisher · View at Google Scholar · View at Scopus
  96. A. Terao, A. Apte-Deshpande, L. Dousman et al., “Immune response gene expression increases in the aging murine hippocampus,” Journal of Neuroimmunology, vol. 132, no. 1-2, pp. 99–112, 2002. View at Publisher · View at Google Scholar · View at Scopus
  97. L. Erraji-Benchekroun, M. D. Underwood, V. Arango et al., “Molecular aging in human prefrontal cortex is selective and continuous throughout adult life,” Biological Psychiatry, vol. 57, no. 5, pp. 549–558, 2005. View at Publisher · View at Google Scholar · View at Scopus
  98. W. S. T. Griffin, “Inflammation and neurodegenerative diseases,” American Journal of Clinical Nutrition, vol. 83, supplement 2, pp. 470S–474S, 2006. View at Google Scholar · View at Scopus
  99. A. L. Jefferson, J. M. Massaro, P. A. Wolf et al., “Inflammatory biomarkers are associated with total brain volume: the Framingham Heart study,” Neurology, vol. 68, no. 13, pp. 1032–1038, 2007. View at Publisher · View at Google Scholar · View at Scopus
  100. A. Vezzani and T. Granata, “Brain inflammation in epilepsy: experimental and clinical evidence,” Epilepsia, vol. 46, no. 11, pp. 1724–1743, 2005. View at Publisher · View at Google Scholar · View at Scopus
  101. A. Vezzani, “Inflammation and epilepsy,” Epilepsy Currents, vol. 5, pp. 1–6, 2005. View at Google Scholar
  102. J. Peltola, J. Laaksonen, A. M. Haapala, M. Hurme, S. Rainesalo, and T. Keränen, “Indicators of inflammation after recent tonic-clonic epileptic seizures correlate with plasma interleukin-6 levels,” Seizure, vol. 11, no. 1, pp. 44–46, 2002. View at Publisher · View at Google Scholar · View at Scopus
  103. K. A. Lehtimäki, T. Keränen, H. Huhtala et al., “Regulation of IL-6 system in cerebrospinal fluid and serum compartments by seizures: the effect of seizure type and duration,” Journal of Neuroimmunology, vol. 152, no. 1-2, pp. 121–125, 2004. View at Publisher · View at Google Scholar · View at Scopus
  104. A. Verrotti, R. Pascarella, D. Trotta, T. Giuva, G. Morgese, and F. Chiarelli, “Hyperhomocysteinemia in children treated with sodium valproate and carbamazepine,” Epilepsy Research, vol. 41, no. 3, pp. 253–257, 2000. View at Publisher · View at Google Scholar · View at Scopus
  105. S. A. Hamed, E. A. Hamed, R. Hamdy, and T. Nabeshima, “Vascular risk factors and oxidative stress as independent predictors of asymptomatic atherosclerosis in adult patients with epilepsy,” Epilepsy Research, vol. 74, no. 2-3, pp. 183–192, 2007. View at Publisher · View at Google Scholar · View at Scopus
  106. C. T. Ekdahl, J. H. Claasen, S. Bonde, Z. Kokaia, and O. Lindvall, “Inflammation is detrimental for neurogenesis in adult brain,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 23, pp. 13632–13637, 2003. View at Publisher · View at Google Scholar · View at Scopus
  107. E. O. Sanya, “Peculiarity of epilepsy in elderly people: a review,” West African Journal of Medicine, vol. 29, no. 6, pp. 365–372, 2010. View at Google Scholar · View at Scopus
  108. W. A. Hauser, “Seizure disorders: the changes with age,” Epilepsia, vol. 33, supplement 4, pp. S6–S14, 1992. View at Google Scholar · View at Scopus
  109. H. Wallace, S. Shorvon, and R. Tallis, “Age-specific incidence and prevalence rates of treated epilepsy in an unselected population of 2,052,922 and age-specific fertility rates of women with epilepsy,” The Lancet, vol. 352, no. 9145, pp. 1970–1973, 1998. View at Publisher · View at Google Scholar · View at Scopus
  110. E. Olafsson, P. Ludvigsson, G. Gudmundsson, D. Hesdorffer, O. Kjartansson, and W. A. Hauser, “Incidence of unprovoked seizures and epilepsy in Iceland and assessment of the epilepsy syndrome classification: a prospective study,” The Lancet Neurology, vol. 4, no. 10, pp. 627–634, 2005. View at Publisher · View at Google Scholar · View at Scopus
  111. W. A. Hauser, J. F. Annegers, and L. T. Kurland, “Incidence of epilepsy and unprovoked seizures in Rochester, Minnesota: 1935–1984,” Epilepsia, vol. 34, no. 3, pp. 453–468, 1993. View at Google Scholar · View at Scopus
  112. K. J. Werhahn, “Epilepsy in the elderly,” Deutsches Ärzteblatt international, vol. 106, pp. 135–142, 2009. View at Google Scholar
  113. D. A. Sun, S. Sombati, and R. J. DeLorenzo, “Glutamate injury-induced epileptogenesis in hippocampal neurons: an in vitro model of stroke-induced ‘epilepsy’,” Stroke, vol. 32, no. 10, pp. 2344–2350, 2001. View at Google Scholar · View at Scopus
  114. B. Stegmayr, K. Asplund, and P. O. Wester, “Trends in incidence, case-fatality rate, and severity of stroke in Northern Sweden, 1985–1991,” Stroke, vol. 25, no. 9, pp. 1738–1745, 1994. View at Google Scholar · View at Scopus
  115. C. Helmer, K. Pérès, L. Letenneur et al., “Dementia in subjects aged 75 years or over within the PAQUID cohort: prevalence and burden by severity,” Dementia and Geriatric Cognitive Disorders, vol. 22, no. 1, pp. 87–94, 2006. View at Publisher · View at Google Scholar · View at Scopus
  116. H. Ramaroson, C. Helmer, P. Barberger-Gateau, L. Letenneur, and J. F. Dartigues, “Prevalence of dementia and Alzheimer's disease among subjects aged 75 years or over: updated results of the PAQUID cohort,” Revue Neurologique, vol. 159, no. 4, pp. 405–411, 2003. View at Google Scholar · View at Scopus
  117. E. Von Strauss, M. Viitanen, D. De Ronchi, B. Winblad, and L. Fratiglioni, “Aging and the occurrence of dementia: findings from a population-based cohort with a large sample of nonagenarians,” Archives of Neurology, vol. 56, no. 5, pp. 587–592, 1999. View at Publisher · View at Google Scholar · View at Scopus
  118. D. C. Hesdorffer, W. A. Hauser, J. F. Annegers, E. Kokmen, and W. A. Rocca, “Dementia and adult-onset unprovoked seizures,” Neurology, vol. 46, no. 3, pp. 727–730, 1996. View at Google Scholar · View at Scopus
  119. C. Cordonnier, H. Hénon, P. Derambure, F. Pasquier, and D. Leys, “Early epileptic seizures after stroke are associated with increased risk of new-onset dementia,” Journal of Neurology, Neurosurgery and Psychiatry, vol. 78, no. 5, pp. 514–516, 2007. View at Publisher · View at Google Scholar · View at Scopus
  120. C. Cordonnier, H. Hénon, P. Derambure, F. Pasquier, and D. Leys, “Influence of pre-existing dementia on the risk of post-stroke epileptic seizures,” Journal of Neurology, Neurosurgery and Psychiatry, vol. 76, no. 12, pp. 1649–1653, 2005. View at Publisher · View at Google Scholar · View at Scopus
  121. H. Mangge, G. Almer, M. Truschnig-Wilders, A. Schmidt, R. Gasser, and D. Fuchs, “Inflammation, adiponectin, obesity and cardiovascular risk,” Current Medicinal Chemistry, vol. 17, no. 36, pp. 4511–4520, 2010. View at Publisher · View at Google Scholar · View at Scopus
  122. R. M. Adibhatla and J. F. Hatcher, “Altered lipid metabolism in brain injury and disorders,” Sub-Cellular Biochemistry, vol. 49, pp. 241–268, 2008. View at Google Scholar · View at Scopus
  123. R. Muralikrishna Adibhatla, J. F. Hatcher, and R. J. Dempsey, “Phospholipase A2, hydroxyl radicals, and lipid peroxidation in transient cerebral ischemia,” Antioxidants and Redox Signaling, vol. 5, no. 5, pp. 647–654, 2003. View at Google Scholar · View at Scopus
  124. R. M. Adibhatla and J. F. Hatcher, “Phospholipase A2, reactive oxygen species, and lipid peroxidation in CNS pathologies,” Journal of Biochemistry and Molecular Biology, vol. 41, no. 8, pp. 560–567, 2008. View at Google Scholar · View at Scopus
  125. H. Esterbauer, R. J. Schaur, and H. Zollner, “Chemistry and Biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes,” Free Radical Biology and Medicine, vol. 11, no. 1, pp. 81–128, 1991. View at Publisher · View at Google Scholar · View at Scopus
  126. K. Uchida, “4-Hydroxy-2-nonenal: a product and mediator of oxidative stress,” Progress in Lipid Research, vol. 42, no. 4, pp. 318–343, 2003. View at Publisher · View at Google Scholar · View at Scopus
  127. O. Vittos, B. Toana, A. Vittos, and E. Moldoveanu, “Lipoprotein-associated phospholipase A2 (Lp-PLA2): a review of its role and significance as a cardiovascular biomarker,” Biomarkers, vol. 17, no. 4, pp. 289–302, 2012. View at Publisher · View at Google Scholar
  128. T. I. Williams, B. C. Lynn, W. R. Markesbery, and M. A. Lovell, “Increased levels of 4-hydroxynonenal and acrolein, neurotoxic markers of lipid peroxidation, in the brain in mild cognitive impairment and early Alzheimer's disease,” Neurobiology of Aging, vol. 27, no. 8, pp. 1094–1099, 2006. View at Publisher · View at Google Scholar · View at Scopus
  129. C. Papatheodoropoulos, “Age-related changes in excitability and recurrent inhibition in the rat CA1 hippocampal region,” European Journal of Neuroscience, vol. 8, no. 3, pp. 510–520, 1996. View at Publisher · View at Google Scholar · View at Scopus
  130. D. S. Kerr, L. W. Campbell, M. D. Applegate, A. Brodish, and P. W. Landfield, “Chronic stress-induced acceleration of electrophysiologic and morphometric biomarkers of hippocampal aging,” Journal of Neuroscience, vol. 11, no. 5, pp. 1316–1324, 1991. View at Google Scholar · View at Scopus