Table of Contents Author Guidelines Submit a Manuscript
Oxidative Medicine and Cellular Longevity
Volume 2012, Article ID 907162, 16 pages
http://dx.doi.org/10.1155/2012/907162
Review Article

The Antioxidant Mechanisms Underlying the Aged Garlic Extract- and S-Allylcysteine-Induced Protection

1Laboratorio de Patología Vascular Cerebral, Instituto Nacional de Neurología y Neurocirugía “Manuel Velasco Suárez”, Insurgentes Sur 3877, 14269 México, DF, Mexico
2Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía “Manuel Velasco Suárez”, Insurgentes Sur 3877, 14269 México, DF, Mexico

Received 14 January 2012; Revised 2 March 2012; Accepted 9 March 2012

Academic Editor: Ramatis Birnfeld de Oliveira

Copyright © 2012 Ana L. Colín-González et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. Hahn, “History, folk medicine, and legendary uses of garlic,” in Garlic: The Science and Therapeutic Application of Allium Sativum L and Related Species, H. P. Koch and L. D. Lawson, Eds., pp. 1–24, Williams & Wilkins, Baltimore, Md, USA, 1996. View at Google Scholar
  2. E. Block, “The chemistry of garlic and onions.,” Scientific American, vol. 252, no. 3, pp. 114–119, 1985. View at Google Scholar · View at Scopus
  3. H. D. Reuter, H. P. Koch, and L. D. Lawson, “Therapeutic effects of garlic and its preparations,” in Garlic: The Science and Therapeutic Application of Allium Sativum L and Related Species, H. P. Koch and L. D. Lawson, Eds., pp. 13–162, Williams & Wilkins, London, UK, 1996. View at Google Scholar
  4. L. D. Lawson, “Garlic: a review of its medicinal effects and indicated active compounds,” in Phytomedicines of Europe: Chemistry and Biological Activity, L. D. Lawson and R. Bauer, Eds., ACS Symposium Series 691, pp. 179–209, American Chemical Society, Washington, DC, USA, 1998. View at Google Scholar
  5. L. D. Lawson and C. D. Gardner, “Composition, stability, and bioavailability of garlic products used in a clinical trial,” Journal of Agricultural and Food Chemistry, vol. 53, no. 16, pp. 6254–6261, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. H. Amagase, B. L. Petesch, H. Matsuura, S. Kasuga, and Y. Itakura, “Intake of garlic and its bioactive components,” Journal of Nutrition, vol. 131, supplement 3, pp. 955S–962S, 2001. View at Google Scholar · View at Scopus
  7. Aged Garlic Extract, Research Excerpts from Peer Reviewed Scientific Journals & Scientific Meetings, Wakunaga of America, Mission Viejo, Calif, USA, 2006.
  8. K. Ryu, N. Ide, H. Matsuura, and Y. Itakura, “Nα-(1-deoxy-D-fructos-1-yl)-L-arginine, an antioxidant compound identified in aged garlic extract,” Journal of Nutrition, vol. 131, supplement 3, pp. 972S–976S, 2001. View at Google Scholar · View at Scopus
  9. M. Ichikawa, K. Ryu, J. Yoshida et al., “Antioxidant effects of tetrahydro-β-carboline derivatives identified in aged garlic extract,” BioFactors, vol. 16, no. 3-4, pp. 57–72, 2002. View at Google Scholar · View at Scopus
  10. M. Ichikawa, J. Yoshida, N. Ide, T. Sasaoka, H. Yamaguchi, and K. Ono, “Tetrahydro-β-carboline derivatives in aged garlic extract show antioxidant properties,” Journal of Nutrition, vol. 136, supplement 3, pp. 726S–731S, 2006. View at Google Scholar · View at Scopus
  11. C. Borek, “Antioxidant health effects of aged garlic extract,” Journal of Nutrition, vol. 131, no. 3, pp. 1010S–1015S, 2001. View at Google Scholar · View at Scopus
  12. N. Ide and B. H. S. Lau, “Aged garlic extract attenuates intracellular oxidative stress,” Phytomedicine, vol. 6, no. 2, pp. 125–131, 1999. View at Google Scholar · View at Scopus
  13. N. Ide and B. H. S. Lau, “Garlic compounds minimize intracellular oxidative stress and inhibit nuclear factor-κ b activation,” Journal of Nutrition, vol. 131, supplement 3, pp. 1020S–1026S, 2001. View at Google Scholar · View at Scopus
  14. K. M. Kim, S. B. Chun, M. S. Koo et al., “Differential regulation of NO availability from macrophages and endothelial cells by the garlic component S-allyl cysteine,” Free Radical Biology and Medicine, vol. 30, no. 7, pp. 747–756, 2001. View at Publisher · View at Google Scholar · View at Scopus
  15. N. Morihara, I. Sumioka, T. Moriguchi, N. Uda, and E. Kyo, “Aged garlic extract enhances production of nitric oxide,” Life Sciences, vol. 71, no. 5, pp. 509–517, 2002. View at Publisher · View at Google Scholar · View at Scopus
  16. T. Yamasaki and B. H. Lau, “Garlic compounds protect vascular endothelial cells from oxidant injury,” Nihon Yakurigaku Zasshi, vol. 110, pp. 138P–141P, 1997. View at Google Scholar
  17. S. A. Dillon, G. M. Lowe, D. Billington, and K. Rahman, “Dietary supplementation with aged garlic extract reduces plasma and urine concentrations of 8-iso-prostaglandin F2α in smoking and nonsmoking men and women,” Journal of Nutrition, vol. 132, no. 2, pp. 168–171, 2002. View at Google Scholar · View at Scopus
  18. Y. Kodera, A. Suzuki, O. Imada et al., “Physical, chemical, and biological properties of S-allylcysteine, an amino acid derived from garlic,” Journal of Agricultural and Food Chemistry, vol. 50, no. 3, pp. 622–632, 2002. View at Publisher · View at Google Scholar · View at Scopus
  19. C. K. Yan and F. D. Zeng, “Pharmacokinetics and tissue distribution of S-allylcysteine,” Asian Journal of Drug Metabolism and Pharmacokinetics, vol. 5, no. 1, pp. 61–69, 2005. View at Google Scholar
  20. S. Nagae, M. Ushijima, S. Hatono et al., “Pharmacokinetics of the garlic compound S-allylcysteine,” Planta Medica, vol. 60, no. 3, pp. 214–217, 1994. View at Publisher · View at Google Scholar · View at Scopus
  21. J. Jandke and G. Spiteller, “Unusual conjugates in biological profiles originating from consumption of onions and garlic,” Journal of Chromatography, vol. 421, no. 1, pp. 1–8, 1987. View at Google Scholar · View at Scopus
  22. N. Ide, H. Matsuura, and Y. Itakura, “Scavenging effect of aged garlic extract and its constituents on active oxygen species,” Phytotherapy Research, vol. 10, no. 4, pp. 340–341, 1996. View at Google Scholar
  23. Y. Numagami and S. T. Ohnishi, “S-allylcysteine inhibits free radical production, lipid peroxidation and neuronal damage in rat brain ischemia,” Journal of Nutrition, vol. 131, supplement 3, pp. 1100S–1105S, 2001. View at Google Scholar · View at Scopus
  24. T. Yamasaki, L. Li, and B. H. S. Lau, “Garlic compounds protect vascular endothelial cells from hydrogen peroxide-induced oxidant injury,” Phytotherapy Research, vol. 8, no. 7, pp. 408–412, 1994. View at Publisher · View at Google Scholar · View at Scopus
  25. N. Ide and B. H. S. Lau, “Garlic compounds protect vascular endothelial cells from oxidized low density lipoprotein-induced injury,” Journal of Pharmacy and Pharmacology, vol. 49, no. 9, pp. 908–911, 1997. View at Google Scholar · View at Scopus
  26. J. Imai, N. Ide, S. Nagae, T. Moriguchi, H. Matsuura, and Y. Itakura, “Antioxidant and radical scavenging effects of aged garlic extract and its constituents,” Planta Medica, vol. 60, no. 5, pp. 417–420, 1994. View at Publisher · View at Google Scholar · View at Scopus
  27. P. D. Maldonado, D. Barrera, I. Rivero et al., “Antioxidant S-allylcysteine prevents gentamicin-induced oxidative stress and renal damage,” Free Radical Biology and Medicine, vol. 35, no. 3, pp. 317–324, 2003. View at Publisher · View at Google Scholar · View at Scopus
  28. J. M. Kim, J. C. Lee, N. Chang, H. S. Chun, and W. K. Kim, “S-Allyl-l-cysteine attenuates cerebral ischemic injury by scavenging peroxynitrite and inhibiting the activity of extracellular signal-regulated kinase,” Free Radical Research, vol. 40, no. 8, pp. 827–835, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. O. N. Medina-Campos, D. Barrera, S. Segoviano-Murillo et al., “S-allylcysteine scavenges singlet oxygen and hypochlorous acid and protects LLC-PK1 cells of potassium dichromate-induced toxicity,” Food and Chemical Toxicology, vol. 45, no. 10, pp. 2030–2039, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. N. Ide and B. H. S. Lau, “S-Allylcysteine attenuates oxidative stress in endothelial cells,” Drug Development and Industrial Pharmacy, vol. 25, no. 5, pp. 619–624, 1999. View at Publisher · View at Google Scholar · View at Scopus
  31. S. E. Ho, N. Ide, and B. H. S. Lau, “S-allyl cysteine reduces oxidant load in cells involved in the atherogenic process,” Phytomedicine, vol. 8, no. 1, pp. 39–46, 2001. View at Google Scholar · View at Scopus
  32. L. Y. Chung, “The antioxidant properties of garlic compounds: alyl cysteine, alliin, allicin, and allyl disulfide,” Journal of Medicinal Food, vol. 9, no. 2, pp. 205–213, 2006. View at Publisher · View at Google Scholar · View at Scopus
  33. P. D. Maldonado, J. R. Alvarez-Idaboy, A. Aguilar-González et al., “Role of allyl group in the hydroxyl and peroxyl radical scavenging activity of s-allylcysteine,” The Journal of Physical Chemistry B, vol. 115, no. 45, pp. 13408–13417, 2011. View at Publisher · View at Google Scholar
  34. S. A. Dillon, R. S. Burmi, G. M. Lowe, D. Billington, and K. Rahman, “Antioxidant properties of aged garlic extract: an in vitro study incorporating human low density lipoprotein,” Life Sciences, vol. 72, no. 14, pp. 1583–1594, 2003. View at Publisher · View at Google Scholar · View at Scopus
  35. P. D. Maldonado, D. Barrera, O. N. Medina-Campos, R. Hernández-Pando, M. E. Ibarra-Rubio, and J. Pedraza-Chaverrí, “Aged garlic extract attenuates gentamicin induced renal damage and oxidative stress in rats,” Life Sciences, vol. 73, no. 20, pp. 2543–2556, 2003. View at Publisher · View at Google Scholar · View at Scopus
  36. Z. Wei and B. H. S. Lau, “Garlic inhibits free radical generation and augments antioxidant enzyme activity in vascular endothelial cells,” Nutrition Research, vol. 18, no. 1, pp. 61–70, 1998. View at Publisher · View at Google Scholar · View at Scopus
  37. J. Pedraza-Chaverrí, D. Barrera, P. D. Maldonado et al., “S-allylmercaptocysteine scavenges hydroxyl radical and singlet oxygen in vitro and attenuates gentamicin-induced oxidative and nitrosative stress and renal damage in vivo,” BMC Clinical Pharmacology, vol. 4, article 5, 2004. View at Publisher · View at Google Scholar · View at Scopus
  38. P. N. Kourounakis and E. A. Rekka, “Effect on active oxygen species of alliin and allium sativum (garlic) powder,” Research Communications in Chemical Pathology and Pharmacology, vol. 74, no. 2, pp. 249–252, 1991. View at Google Scholar
  39. N. Ide, B. H. S. Lau, K. Ryu, H. Matsuura, and Y. Itakura, “Antioxidant effects of fructosyl arginine, a maillard reaction product in aged garlic extract,” Journal of Nutritional Biochemistry, vol. 10, no. 6, pp. 372–376, 1999. View at Publisher · View at Google Scholar · View at Scopus
  40. C. C. Hsu, C. N. Huang, Y. C. Hung, and M. C. Yin, “Five cysteine-containing compounds have antioxidative activity in Balb/cA mice,” Journal of Nutrition, vol. 134, no. 1, pp. 149–152, 2004. View at Google Scholar · View at Scopus
  41. A. O. Lawal and E. M. Ellis, “The chemopreventive effects of aged garlic extract against cadmium-induced toxicity,” Environmental Toxicology and Pharmacology, vol. 32, no. 2, pp. 266–274, 2011. View at Google Scholar
  42. S. Kalayarasan, N. Sriram, A. Sureshkumar, and G. Sudhandiran, “Chromium (VI)-induced oxidative stress and apoptosis is reduced by garlic and its derivative S-allylcysteine through the activation of Nrf2 in the hepatocytes of wistar rats,” Journal of Applied Toxicology, vol. 28, no. 7, pp. 908–919, 2008. View at Publisher · View at Google Scholar · View at Scopus
  43. H. Y. Cho and S. R. Kleeberger, “Nrf2 protects against airway disorders,” Toxicology and Applied Pharmacology, vol. 244, no. 1, pp. 43–56, 2009. View at Google Scholar
  44. T. Nguyen, C. S. Yang, and C. B. Pickett, “The pathways and molecular mechanisms regulating Nrf2 activation in response to chemical stress,” Free Radical Biology and Medicine, vol. 37, no. 4, pp. 433–441, 2004. View at Publisher · View at Google Scholar · View at Scopus
  45. F. L. van Muiswinkel and H. B. Kuiperij, “The Nrf2-ARE signalling pathway: promising drug target to combat oxidative stress in neurodegenerative disorders,” Current Drug Targets, vol. 4, no. 3, pp. 267–281, 2005. View at Publisher · View at Google Scholar · View at Scopus
  46. J. M. Lee, M. J. Calkins, K. Chan, Y. W. Kan, and J. A. Johnson, “Identification of the NF-E2-related factor-2-dependent genes conferring protection against oxidative stress in primary cortical astrocytes using oligonucleotide microarray analysis,” Journal of Biological Chemistry, vol. 278, no. 14, pp. 12029–12038, 2003. View at Publisher · View at Google Scholar · View at Scopus
  47. C. Silva-Islas, R. A. Santana, A. L. Colín-González, and P. D. Maldonado, 2012, NrF-2 activation, an innovative therapeutic alternative in cerebral ischemia. Chapter 20.
  48. H. Motohashi, T. O'Connor, F. Katsuoka, J. D. Engel, and M. Yamamoto, “Integration and diversity of the regulatory network composed of Maf and CNC families of transcription factors,” Gene, vol. 294, no. 1-2, pp. 1–12, 2002. View at Publisher · View at Google Scholar · View at Scopus
  49. P. Moi, K. Chan, I. Asunis, A. Cao, and Y. W. Kan, “Isolation of NF-E2-related factor 2 (Nrf2), a NF-E2-like basic leucine zipper transcriptional activator that binds to the tandem NF-E2/AP1 repeat of the β-globin locus control region,” Proceedings of the National Academy of Sciences of the United States of America, vol. 91, no. 21, pp. 9926–9930, 1994. View at Publisher · View at Google Scholar · View at Scopus
  50. V. Calabrese, C. Mancuso, M. Calvani, E. Rizzarelli, D. A. Butterfield, and A. M. Stella, “Nitric oxide in the central nervous system: neuroprotection versus neurotoxicity,” Nature Reviews Neuroscience, vol. 8, no. 10, pp. 766–775, 2007. View at Publisher · View at Google Scholar · View at Scopus
  51. Y. I. Chirino, M. Orozco-Ibarra, and J. Pedraza-Chaverrí, “Role of peroxynitrite anion in different diseases,” Revista de Investigacion Clinica, vol. 58, no. 4, pp. 350–358, 2006. View at Google Scholar · View at Scopus
  52. Z. Geng, Y. Rong, and B. H. S. Lau, “S-allyl cysteine inhibits activation of nuclear factor κ B in human T cells,” Free Radical Biology and Medicine, vol. 23, no. 2, pp. 345–350, 1997. View at Publisher · View at Google Scholar · View at Scopus
  53. C. A. Pritsos, “Cellular distribution, metabolism and regulation of the xanthine oxidoreductase enzyme system,” Chemico-Biological Interactions, vol. 129, no. 1-2, pp. 195–208, 2000. View at Publisher · View at Google Scholar · View at Scopus
  54. R. Harrison, “Structure and function of xanthine oxidoreductase: where are we now?” Free Radical Biology and Medicine, vol. 33, no. 6, pp. 774–797, 2002. View at Publisher · View at Google Scholar · View at Scopus
  55. E. Demirkaya, A. Avci, V. Kesik et al., “Cardioprotective roles of aged garlic extract, grape seed proanthocyanidin, and hazelnut on doxorubicin-induced cardiotoxicity,” Canadian Journal of Physiology and Pharmacology, vol. 87, no. 8, pp. 633–640, 2009. View at Publisher · View at Google Scholar · View at Scopus
  56. T. Ago, J. Kuroda, M. Kamouchi, J. Sadoshima, and T. Kitazono, “Pathophysiological roles of NADPH oxidase/nox family proteins in the vascular system review and perspective,” Circulation Journal, vol. 75, no. 8, pp. 1791–1800, 2011. View at Publisher · View at Google Scholar · View at Scopus
  57. P. S. Gill and C. S. Wilcox, “NADPH oxidases in the kidney,” Antioxidants and Redox Signaling, vol. 8, no. 9-10, pp. 1597–1607, 2006. View at Publisher · View at Google Scholar · View at Scopus
  58. C. Cruz, R. Correa-Rotter, D. J. Sánchez-González et al., “Renoprotective and antihypertensive effects of S-allylcysteine in 5/6 nephrectomized rats,” American Journal of Physiology, vol. 293, no. 5, pp. F1691–F1698, 2007. View at Publisher · View at Google Scholar · View at Scopus
  59. J. R. Vane, Y. S. Bakhle, and R. M. Botting, “Cyclooxygenases 1 and 2,” Annual Review of Pharmacology and Toxicology, vol. 38, pp. 97–120, 1998. View at Google Scholar · View at Scopus
  60. R. N. Dubois, S. B. Abramson, L. Crofford et al., “Cyclooxygenase in biology and disease,” The FASEB Journal, vol. 12, no. 12, pp. 1063–1073, 1998. View at Google Scholar · View at Scopus
  61. A. L. Colín-González, A. Ortiz-Plata, J. Villeda-Hernández et al., “Aged garlic extract attenuates cerebral damage and cyclooxygenase-2 induction after ischemia and reperfusion in rats,” Plant Foods for Human Nutrition, vol. 66, no. 4, pp. 348–354, 2011. View at Google Scholar
  62. I. Pelizzoni, R. Macco, D. Zacchetti, F. Grohovaz, and F. Codazzi, “Iron and calcium in the central nervous system: a close relationship in health and sickness,” Biochemical Society Transactions, vol. 36, no. 6, pp. 1309–1312, 2008. View at Publisher · View at Google Scholar · View at Scopus
  63. S. Mandel, T. Amit, L. Reznichenko, O. Weinreb, and M. B. H. Youdim, “Green tea catechins as brain-permeable, natural iron chelators-antioxidants for the treatment of neurodegenerative disorders,” Molecular Nutrition and Food Research, vol. 50, no. 2, pp. 229–234, 2006. View at Publisher · View at Google Scholar · View at Scopus
  64. L. M. Sayre, G. Perry, and M. A. Smith, “Redox metals and neurodegenerative disease,” Current Opinion in Chemical Biology, vol. 3, no. 2, pp. 220–225, 1999. View at Publisher · View at Google Scholar · View at Scopus
  65. M. Valko, H. Morris, and M. T. Cronin, “Metals, toxicity and oxidative stress,” Current Medicinal Chemistry, vol. 12, no. 10, pp. 1161–1208, 2005. View at Publisher · View at Google Scholar · View at Scopus
  66. K. Jomova, D. Vondrakova, M. Lawson, and M. Valko, “Metals, oxidative stress and neurodegenerative disorders,” Molecular and Cellular Biochemistry, vol. 345, no. 1-2, pp. 91–104, 2010. View at Publisher · View at Google Scholar · View at Scopus
  67. S. C. Drew and K. J. Barnham, “The heterogeneous nature of Cu2+ interactions with Alzheimer's amyloid-β peptide,” Accounts of Chemical Research, vol. 44, no. 11, pp. 1146–1155, 2011. View at Google Scholar
  68. K. J. Barnham and A. I. Bush, “Metals in Alzheimer's and Parkinson's Diseases,” Current Opinion in Chemical Biology, vol. 12, no. 2, pp. 222–228, 2008. View at Publisher · View at Google Scholar · View at Scopus
  69. X. Huang, M. P. Cuajungco, M. A. Hartshorn et al., “Cu(II) potentiation of Alzheimer aβ neurotoxicity. Correlation with cell-free hydrogen peroxide production and metal reduction,” Journal of Biological Chemistry, vol. 274, no. 52, pp. 37111–37116, 1999. View at Publisher · View at Google Scholar · View at Scopus
  70. A. Dairam, R. Fogel, S. Daya, and J. L. Limson, “Antioxidant and iron-binding properties of curcumin, capsaicin, and S-allylcysteine reduce oxidative stress in rat brain homogenate,” Journal of Agricultural and Food Chemistry, vol. 56, no. 9, pp. 3350–3356, 2008. View at Publisher · View at Google Scholar · View at Scopus
  71. C. N. Huang, J. S. Horng, and M. C. Yin, “Antioxidative and antiglycative effects of six organosulfur compounds in low-density lipoprotein and plasma,” Journal of Agricultural and Food Chemistry, vol. 52, no. 11, pp. 3674–3678, 2004. View at Publisher · View at Google Scholar · View at Scopus
  72. S. A. Dillon, R. S. Burmi, G. M. Lowe, D. Billington, and K. Rahman, “Antioxidant properties of aged garlic extract: an in vitro study incorporating human low density lipoprotein,” Life Sciences, vol. 72, no. 14, pp. 1583–1594, 2003. View at Publisher · View at Google Scholar · View at Scopus
  73. E. Arias, “United States life tables, 2007,” National Vital Statistics Reports, vol. 59, no. 9, pp. 1–60, 2011. View at Google Scholar · View at Scopus
  74. Access Economics, “Projections of dementia prevalence and incidence in NSW: 2009–2005,” 2009, http://www.health.nsw.gov.au/pubs/2009/adhc_dementia.html.
  75. A. Melo, L. Monteiro, R. M. Lima, D. M. de Oliveira, M. D. de Cerqueira, and R. S. El-Bachá, “Oxidative stress in neurodegenerative diseases: mechanisms and therapeutic perspectives,” Oxidative Medicine and Cellular Longevity, vol. 2011, Article ID 467180, 14 pages, 2011. View at Publisher · View at Google Scholar
  76. Y. Gilgun-Sherki, E. Melamed, and D. Offen, “Oxidative stress induced-neurodegenerative diseases: the need for antioxidants that penetrate the blood brain barrier,” Neuropharmacology, vol. 40, no. 8, pp. 959–975, 2001. View at Publisher · View at Google Scholar · View at Scopus
  77. T. Moriguchi, N. Nishiyama, H. Saito, and H. Katsuki, “Trophic effects of aged garlic extract (AGE) and its fractions on primary cultured hippocampal neurons from fetal rat brain,” Phytotherapy Research, vol. 10, no. 6, pp. 468–472, 1996. View at Google Scholar
  78. S. Sumi, T. Tsuneyoshi, H. Matsuo, and T. Yoshimatsu, “Isolation and characterization of the genes up-regulated in isolated neurons by aged garlic extract (AGE),” Journal of Nutrition, vol. 131, supplement 3, pp. 1096S–1099S, 2001. View at Google Scholar · View at Scopus
  79. C. Cray, “Acute phase proteins in animals,” Progress in Molecular Biology and Translational Science, vol. 105, pp. 113–150, 2012. View at Google Scholar
  80. Y. Numagami, S. Sato, and S. T. Ohnishi, “Attenuation of rat ischemic brain damage by aged garlic extracts: a possible protecting mechanism as antioxidants,” Neurochemistry International, vol. 29, no. 2, pp. 135–143, 1996. View at Publisher · View at Google Scholar · View at Scopus
  81. P. Aguilera, M. E. Chánez-Cárdenas, A. Ortiz-Plata et al., “Aged garlic extract delays the appearance of infarct area in a cerebral ischemia model, an effect likely conditioned by the cellular antioxidant systems,” Phytomedicine, vol. 17, no. 3-4, pp. 241–247, 2010. View at Publisher · View at Google Scholar · View at Scopus
  82. P. Zimniak, “Relationship of electrophilic stress to aging,” Free Radical Biology and Medicine, vol. 51, no. 6, pp. 1087–1105, 2011. View at Publisher · View at Google Scholar · View at Scopus
  83. A. W. Corona, A. M. Fenn, and J. P. Godbout, “Cognitive and behavioral consequences of impaired immunoregulation in aging,” Journal of NeuroImmune Pharmacology, vol. 7, no. 1, pp. 7–23, 2012. View at Google Scholar
  84. T. Takeda, M. Hosokawa, S. Takeshita et al., “A new murine model of accelerated senescence,” Mechanisms of Ageing and Development, vol. 17, no. 2, pp. 183–194, 1981. View at Google Scholar
  85. T. Moriguchi, K. Takashina, P. J. Chu, H. Saito, and N. Nishiyama, “Prolongation of life span and improved learning in the senescence accelerated mouse produced by aged garlic extract,” Biological and Pharmaceutical Bulletin, vol. 17, no. 12, pp. 1589–1594, 1994. View at Google Scholar · View at Scopus
  86. T. Moriguchi, H. Saito, and N. Nishiyama, “Anti-ageing effect of aged garlic extract in the inbred brain atrophy mouse model,” Clinical and Experimental Pharmacology and Physiology, vol. 24, no. 3-4, pp. 235–242, 1997. View at Google Scholar · View at Scopus
  87. N. Nishiyama, T. Moriguchi, and H. Saito, “Beneficial effects of aged garlic extract on learning and memory impairment in the senescence-accelerated mouse,” Experimental Gerontology, vol. 32, no. 1-2, pp. 149–160, 1997. View at Publisher · View at Google Scholar · View at Scopus
  88. Y. Zhang, T. Moriguchi, H. Saito, and N. Nishiyama, “Functional relationship between age-related immunodeficiency and learning deterioration,” European Journal of Neuroscience, vol. 10, no. 12, pp. 3869–3875, 1998. View at Publisher · View at Google Scholar · View at Scopus
  89. D. di Bona, G. Scapagnini, G. Candore et al., “Immune-inflammatory responses and oxidative stress in Alzheimer's disease: therapeutic implications,” Current Pharmaceutical Design, vol. 16, no. 6, pp. 684–691, 2010. View at Publisher · View at Google Scholar · View at Scopus
  90. N. B. Chauhan, “Effect of aged garlic extract on APP processing and tau phosphorylation in Alzheimer's transgenic model Tg2576,” Journal of Ethnopharmacology, vol. 108, no. 3, pp. 385–394, 2006. View at Publisher · View at Google Scholar · View at Scopus
  91. T. Moriguchi, H. Matsuura, Y. Kodera et al., “Neurotrophic activity of organosulfur compounds having a thioallyl group on cultured rat hippocampal neurons,” Neurochemical Research, vol. 22, no. 12, pp. 1449–1452, 1997. View at Publisher · View at Google Scholar · View at Scopus
  92. W. R. Markesbery, “Oxidative stress hypothesis in Alzheimer's disease,” Free Radical Biology and Medicine, vol. 23, no. 1, pp. 134–147, 1997. View at Publisher · View at Google Scholar · View at Scopus
  93. Q. Peng, A. R. Buz'Zard, and B. H. Lau, “Neuroprotective effect of garlic compounds in amyloid-β peptide-induced apoptosis in vitro,” Medical Science Monitor, vol. 8, no. 8, pp. BR328–BR337, 2002. View at Google Scholar · View at Scopus
  94. Y. Ito, Y. Kosuge, T. Sakikubo et al., “Protective effect of S-allyl-L-cysteine, a garlic compound, on amyloid β-protein-induced cell death in nerve growth factor-differentiated PC12 cells,” Neuroscience Research, vol. 46, no. 1, pp. 119–125, 2003. View at Publisher · View at Google Scholar · View at Scopus
  95. Y. Ito, M. Ito, N. Takagi, H. Saito, and K. Ishige, “Neurotoxicity induced by amyloid β-peptide and ibotenic acid in organotypic hippocampal cultures: protection by S-allyl-L-cysteine, a garlic compound,” Brain Research, vol. 985, no. 1, pp. 98–107, 2003. View at Publisher · View at Google Scholar · View at Scopus
  96. Y. Kosuge, Y. Koen, K. Ishige et al., “S-allyl-L-cysteine selectively protects cultured rat hippocampal neurons from amyloid β-protein- and tunicamycin-induced neuronal death,” Neuroscience, vol. 122, no. 4, pp. 885–895, 2003. View at Publisher · View at Google Scholar · View at Scopus
  97. K. Ishige, N. Takagi, T. Imai et al., “Role of caspase-12 in amyloid β-peptide-induced toxicity in organotypic hippocampal slices cultured for long periods,” Journal of Pharmacological Sciences, vol. 104, no. 1, pp. 46–55, 2007. View at Publisher · View at Google Scholar · View at Scopus
  98. M. R. Hynd, H. L. Scott, and P. R. Dodd, “Glutamate-mediated excitotoxicity and neurodegeneration in Alzheimer's disease,” Neurochemistry International, vol. 45, no. 5, pp. 583–595, 2004. View at Publisher · View at Google Scholar · View at Scopus
  99. A. Salminen, A. Kauppinen, T. Suuronen, K. Kaarniranta, and J. Ojala, “ER stress in Alzheimer's disease: a novel neuronal trigger for inflammation and Alzheimer's pathology,” Journal of Neuroinflammation, vol. 6, article 41, 2009. View at Publisher · View at Google Scholar · View at Scopus
  100. Y. Kosuge, T. Sakikubo, K. Ishige, and Y. Ito, “Comparative study of endoplasmic reticulum stress-induced neuronal death in rat cultured hippocampal and cerebellar granule neurons,” Neurochemistry International, vol. 49, no. 3, pp. 285–293, 2006. View at Publisher · View at Google Scholar · View at Scopus
  101. T. Imai, Y. Kosuge, K. Ishige, and Y. Ito, “Amyloid β-protein potentiates tunicamycin-induced neuronal death in organotypic hippocampal slice cultures,” Neuroscience, vol. 147, no. 3, pp. 639–651, 2003. View at Google Scholar
  102. V. B. Gupta and K. S. Rao, “Anti-amyloidogenic activity of S-allyl-l-cysteine and its activity to destabilize Alzheimer's β-amyloid fibrils in vitro,” Neuroscience Letters, vol. 429, no. 2-3, pp. 75–80, 2007. View at Publisher · View at Google Scholar · View at Scopus
  103. D. L. King and G. W. Arendash, “Behavioral characterization of the Tg2576 transgenic model of Alzheimer' disease through 19 months,” Physiology & Behavior, vol. 75, no. 5, pp. 627–642, 2002. View at Google Scholar
  104. H. Javed, M. M. Khan, A. Khan et al., “S-allyl cysteine attenuates oxidative stress associated cognitive impairment and neurodegeneration in mouse model of streptozotocin-induced experimental dementia of Alzheimer's type,” Brain Research, vol. 1389, pp. 133–142, 2011. View at Publisher · View at Google Scholar · View at Scopus
  105. S. J. Tsai, C. P. Chiu, H. T. Yang, and M. C. Yin, “S-allyl cysteine, S-ethyl cysteine, and S-propyl cysteine alleviate β-amyloid, glycative, and oxidative injury in brain of mice treated by D-galactose,” Journal of Agricultural and Food Chemistry, vol. 59, no. 11, pp. 6319–6326, 2011. View at Publisher · View at Google Scholar · View at Scopus
  106. H. S. Chun, J. M. Kim, E. H. Choi, and N. Chang, “Neuroprotective effects of several Korean medicinal plants traditionally used for stroke remedy,” Journal of Medicinal Food, vol. 11, no. 2, pp. 246–251, 2008. View at Publisher · View at Google Scholar · View at Scopus
  107. T. Hayakawa, A. G. Waltz, and R. L. Jacobson, “Hypertension and acute focal cerebral ischemia. Infarction and edema after occlusion of a middle cerebral artery in cats,” Stroke, vol. 10, no. 3, pp. 263–267, 1979. View at Google Scholar · View at Scopus
  108. J. M. Kim, N. Chang, W. K. Kim, and H. S. Chun, “Dietary S-allyl-L-cysteine reduces mortality with decreased incidence of stroke and behavioral changes in stroke-prone spontaneously hypertensive rats,” Bioscience, Biotechnology, and Biochemistry, vol. 70, no. 8, pp. 1969–1971, 2006. View at Google Scholar
  109. F. Atif, S. Yousuf, and S. K. Agrawal, “S-Allyl L-cysteine diminishes cerebral ischemia-induced mitochondrial dysfunctions in hippocampus,” Brain Research C, vol. 1265, pp. 128–137, 2009. View at Publisher · View at Google Scholar · View at Scopus
  110. D. Bano, F. Zanetti, Y. Mende, and P. Nicotera, “Neurodegenerative processes in Huntington's disease,” Cell Death and Disease, vol. 2, article e228, 2011. View at Publisher · View at Google Scholar
  111. M. N. Herrera-Mundo, D. Silva-Adaya, P. D. Maldonado et al., “S-Allylcysteine prevents the rat from 3-nitropropionic acid-induced hyperactivity, early markers of oxidative stress and mitochondrial dysfunction,” Neuroscience Research, vol. 56, no. 1, pp. 39–44, 2006. View at Publisher · View at Google Scholar · View at Scopus
  112. V. P. D. La Cruz, C. González-Cortés, J. Pedraza-Chaverrí, P. D. Maldonado, L. Andrés-Martínez, and A. Santamaría, “Protective effect of S-allylcysteine on 3-nitropropionic acid-induced lipid peroxidation and mitochondrial dysfunction in rat brain synaptosomes,” Brain Research Bulletin, vol. 68, no. 5, pp. 379–383, 2006. View at Publisher · View at Google Scholar · View at Scopus
  113. D. Elinos-Calderón, Y. Robledo-Arratia, V. P. D. La Cruz et al., “Antioxidant strategy to rescue synaptosomes from oxidative damage and energy failure in neurotoxic models in rats: protective role of S-allylcysteine,” Journal of Neural Transmission, vol. 117, no. 1, pp. 35–44, 2010. View at Publisher · View at Google Scholar · View at Scopus
  114. V. P. D. La Cruz, M. Konigsberg, J. Pedraza-Chaverri et al., “Cytoplasmic calcium mediates oxidative damage in an excitotoxic/energetic deficit synergic model in rats,” European Journal of Neuroscience, vol. 27, no. 5, pp. 1075–1085, 2008. View at Publisher · View at Google Scholar · View at Scopus
  115. D. J. Surmeier, J. N. Guzman, J. Sanchez-Padilla, and P. T. Schumacker, “The role of calcium and mitochondrial oxidant stress in the loss of substantia nigra pars compacta dopaminergic neurons in Parkinson's disease,” Neuroscience, vol. 198, pp. 221–231, 2011. View at Google Scholar
  116. P. Rojas, N. Serrano-García, O. N. Medina-Campos, J. Pedraza-Chaverri, P. D. Maldonado, and E. Ruiz-Sánchez, “S-Allylcysteine, a garlic compound, protects against oxidative stress in 1-methyl-4-phenylpyridinium-induced parkinsonism in mice,” The Journal of Nutritional Biochemistry, vol. 22, no. 10, pp. 937–944, 2011. View at Publisher · View at Google Scholar
  117. E. Garcia, D. Limon, V. P. D. La Cruz et al., “Lipid peroxidation, mitochondrial dysfunction and neurochemical and behavioural deficits in different neurotoxic models: protective role of S-allylcysteine,” Free Radical Research, vol. 42, no. 10, pp. 892–902, 2008. View at Publisher · View at Google Scholar · View at Scopus
  118. K. Rahman, “Historical perspective on garlic and cardiovascular disease,” Journal of Nutrition, vol. 131, no. 3, pp. 977S–979S, 2001. View at Google Scholar · View at Scopus
  119. M. J. Budoff, J. Takasu, F. R. Flores et al., “Inhibiting progression of coronary calcification using aged garlic extract in patients receiving statin therapy: a preliminary study,” Preventive Medicine, vol. 39, no. 5, pp. 985–991, 2004. View at Publisher · View at Google Scholar · View at Scopus
  120. J. S. Munday, K. A. James, L. M. Fray, S. W. Kirkwood, and K. G. Thompson, “Daily supplementation with aged garlic extract, but not raw garlic, protects low density lipoprotein against in vitro oxidation,” Atherosclerosis, vol. 143, no. 2, pp. 399–404, 1999. View at Publisher · View at Google Scholar · View at Scopus
  121. I. Durak, B. Aytaç, Y. Atmaca et al., “Effects of garlic extract consumption on plasma and erythrocyte antioxidant parameters in atherosclerotic patients,” Life Sciences, vol. 75, no. 16, pp. 1959–1966, 2004. View at Publisher · View at Google Scholar · View at Scopus
  122. C. Rice-Evans, S. C. Omorphos, and E. Baysal, “Sickle cell membranes and oxidative damage,” Biochemical Journal, vol. 237, no. 1, pp. 265–269, 1986. View at Google Scholar · View at Scopus
  123. J. Takasu, R. Uykimpang, M. Sunga, H. Amagase, and Y. Niihara, “Aged garlic extract therapy for sickle cell anemia patients,” BMC Blood Disorders, vol. 2, article 3, 2002. View at Publisher · View at Google Scholar · View at Scopus