Table of Contents Author Guidelines Submit a Manuscript
Oxidative Medicine and Cellular Longevity
Volume 2013, Article ID 157857, 13 pages
http://dx.doi.org/10.1155/2013/157857
Research Article

NADPH Oxidase and the Degeneration of Dopaminergic Neurons in Parkinsonian Mice

Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, 05508-900 SP, Brazil

Received 9 August 2013; Revised 8 October 2013; Accepted 23 October 2013

Academic Editor: Tiago Fleming Outeiro

Copyright © 2013 Marina S. Hernandes et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. W. Dauer and S. Przedborski, “Parkinson's disease: mechanisms and models,” Neuron, vol. 39, no. 6, pp. 889–909, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. J. T. Greenamyre and T. G. Hastings, “Parkinson's-divergent causes, convergent mechanisms,” Science, vol. 304, no. 5674, pp. 1120–1122, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. P. Jenner, “Oxidative stress in Parkinson's disease,” Annals of Neurology, vol. 53, supplement 3, pp. S26–S38, 2003. View at Publisher · View at Google Scholar
  4. A. Yoritaka, N. Hattori, K. Uchida, M. Tanaka, E. R. Stadtman, and Y. Mizuno, “Immunohistochemical detection of 4-hydroxynonenal protein adducts in Parkinson disease,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 7, pp. 2696–2701, 1996. View at Publisher · View at Google Scholar · View at Scopus
  5. Z. I. Alam, S. E. Daniel, A. J. Lees, D. C. Marsden, P. Jenner, and B. Halliwell, “A generalised increase in protein carbonyls in the brain in Parkinson's but not incidental Lewy body disease,” Journal of Neurochemistry, vol. 69, no. 3, pp. 1326–1329, 1997. View at Google Scholar · View at Scopus
  6. E. Floor and M. G. Wetzel, “Increased protein oxidation in human substantia nigra pars compacta in comparison with basal ganglia and prefrontal cortex measured with an improved dinitrophenylhydrazine assay,” Journal of Neurochemistry, vol. 70, no. 1, pp. 268–275, 1998. View at Google Scholar · View at Scopus
  7. B. I. Giasson, J. E. Duda, I. V. J. Murray et al., “Oxidative damage linked to neurodegeneration by selective α-synuclein nitration in synucleinopathy lesions,” Science, vol. 290, no. 5493, pp. 985–989, 2000. View at Publisher · View at Google Scholar · View at Scopus
  8. P. F. Good, A. Hsu, P. Werner, D. P. Perl, and C. Warren Olanow, “Protein nitration in Parkinson's disease,” Journal of Neuropathology and Experimental Neurology, vol. 57, no. 4, pp. 338–342, 1998. View at Google Scholar · View at Scopus
  9. A. Schober, “Classic toxin-induced animal models of Parkinson's disease: 6-OHDA and MPTP,” Cell and Tissue Research, vol. 318, no. 1, pp. 215–224, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. F. Blandini, M.-T. Armentero, and E. Martignoni, “The 6-hydroxydopamine model: news from the past,” Parkinsonism and Related Disorders, vol. 14, no. 2, pp. S124–S129, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. U. Ungerstedt, “6-hydroxy-dopamine induced degeneration of central monoamine neurons,” European Journal of Pharmacology, vol. 5, no. 1, pp. 107–110, 1968. View at Google Scholar · View at Scopus
  12. J. Rodriguez-Pallares, J. A. Parga, A. Muñoz, P. Rey, M. J. Guerra, and J. L. Labandeira-Garcia, “Mechanism of 6-hydroxydopamine neurotoxicity: the role of NADPH oxidase and microglial activation in 6-hydroxydopamine-induced degeneration of dopaminergic neurons,” Journal of Neurochemistry, vol. 103, no. 1, pp. 145–156, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. D. I. Brown and K. K. Griendling, “Nox proteins in signal transduction,” Free Radical Biology and Medicine, vol. 47, no. 9, pp. 1239–1253, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. A. C. Montezano and R. M. Touyz, “Oxidative stress, noxs, and hypertension: experimental evidence and clinical controversies,” Annals of Medicine, vol. 44, supplement 1, pp. S2–S16, 2012. View at Publisher · View at Google Scholar
  15. T. Kahles and R. P. Brandes, “NADPH oxidases as therapeutic targets in ischemic stroke,” Cellular and Molecular Life Sciences, vol. 69, no. 14, pp. 2345–2363, 2012. View at Publisher · View at Google Scholar
  16. K. Molina-Luna, A. Pekanovic, S. Röhrich et al., “Dopamine in motor cortex is necessary for skill learning and synaptic plasticity,” Plos One, vol. 4, no. 9, Article ID e7082, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. G. Paxinos and K. Franklin, The Mouse Brain in Stereotaxic Coordinates, Academic Press, New York, NY, USA, 2007.
  18. M. R. Zarrindast, F. Sedaghati, and F. Borzouyeh, “Nicotine-induced grooming: a possible dopaminergic and/or cholinergic mechanism,” Journal of Psychopharmacology, vol. 12, no. 4, pp. 375–379, 1998. View at Google Scholar · View at Scopus
  19. Y. Zhang, M. M. K. Chan, M. C. Andrews et al., “Apocynin but not allopurinol prevents and reverses adrenocorticotropic hormone-induced hypertension in the rat,” American Journal of Hypertension, vol. 18, no. 7, pp. 910–916, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. H. W. Morrison and J. A. Filosa, “A quantitative spatiotemporal analysis of microglia morphology during ischemic stroke and reperfusion,” Journal of Neuroinflammation, vol. 10, no. 4, pp. 10–14, 2013. View at Publisher · View at Google Scholar
  21. M. Montaña, G. G. del Caño, M. L. de Jesús et al., “Cellular neurochemical characterization and subcellular localization of phospholipase C β1 in rat brain,” Neuroscience, vol. 222, pp. 239–268, 2012. View at Publisher · View at Google Scholar
  22. B. M. Babior, “The activity of leukocyte NADPH oxidase: regulation by p47PHOX cysteine and serine residues,” Antioxidants and Redox Signaling, vol. 4, no. 1, pp. 35–38, 2002. View at Google Scholar · View at Scopus
  23. L. M. Sayre, M. A. Smith, and G. Perry, “Chemistry and biochemistry of oxidative stress in neurodegenerative disease,” Current Medicinal Chemistry, vol. 8, no. 7, pp. 721–738, 2001. View at Google Scholar · View at Scopus
  24. M. S. Hernandes and L. R. Britto, “NADPH oxidase and neurodegeneration,” Current Neuropharmacology, vol. 10, no. 4, pp. 321–327, 2012. View at Publisher · View at Google Scholar
  25. D.-C. Wu, P. Teismann, K. Tieu et al., “NADPH oxidase mediates oxidative stress in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson's disease,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 10, pp. 6145–6150, 2003. View at Publisher · View at Google Scholar · View at Scopus
  26. D.-C. Wu, D. B. Ré, M. Nagai, H. Ischiropoulos, and S. Przedborski, “The inflammatory NADPH oxidase enzyme modulates motor neuron degradation in amyotrophic lateral sclerosis mice,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 32, pp. 12132–12137, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. S. Heumüller, S. Wind, E. Barbosa-Sicard et al., “Apocynin is not an inhibitor of vascular NADPH oxidases but an antioxidant,” Hypertension, vol. 51, no. 2, pp. 211–217, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. Q. Wang, R. E. Smith, R. Luchtefeld et al., “Bioavailability of apocynin through its conversion to glycoconjugate but not to diapocynin,” Phytomedicine, vol. 15, no. 6–7, pp. 496–503, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. K. A. Trumbull, D. McAllister, M. M. Gandelman et al., “Diapocynin and apocynin administration fails to significantly extend survival in G93A SOD1 ALS mice,” Neurobiology of Disease, vol. 45, no. 1, pp. 137–144, 2012. View at Publisher · View at Google Scholar · View at Scopus
  30. H.-M. Gao, B. Liu, and J.-S. Hong, “Critical role for microglial NADPH oxidase in rotenone-induced degeneration of dopaminergic neurons,” Journal of Neuroscience, vol. 23, no. 15, pp. 6181–6187, 2003. View at Google Scholar · View at Scopus
  31. H.-M. Gao, B. Liu, W. Zhang, and J.-S. Hong, “Critical role of microglial NADPH oxidase-derived free radicals in the in vitro MPTP model of Parkinson's disease,” The FASEB Journal, vol. 17, no. 13, pp. 1954–1956, 2003. View at Publisher · View at Google Scholar · View at Scopus
  32. R. Iancu, P. Mohapel, P. Brundin, and G. Paul, “Behavioral characterization of a unilateral 6-OHDA-lesion model of Parkinson's disease in mice,” Behavioural Brain Research, vol. 162, no. 1, pp. 1–10, 2005. View at Publisher · View at Google Scholar · View at Scopus
  33. G. T. Liberatore, V. Jackson-Lewis, S. Vukosavic et al., “Inducible nitric oxide synthase stimulates dopaminergic neurodegeneration in the MPTP model of Parkinson disease,” Nature Medicine, vol. 5, no. 12, pp. 1403–1409, 1999. View at Publisher · View at Google Scholar · View at Scopus
  34. R. W. P. Rodrigues, V. C. Gomide, and G. Chadi, “Astroglial and microglial reaction after a partial nigrostriatal degeneration induced by the striatal injection of different doses of 6-hydroxydopamine,” International Journal of Neuroscience, vol. 109, no. 1–2, pp. 91–126, 2001. View at Google Scholar · View at Scopus
  35. D. C. Wu, V. Jackson-Lewis, M. Vila et al., “Blockade of microglial activation is neuroprotective in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson disease,” Journal of Neuroscience, vol. 22, no. 5, pp. 1763–1771, 2002. View at Google Scholar · View at Scopus
  36. H.-M. Gao, J. Jiang, B. Wilson, W. Zhang, J.-S. Hong, and B. Liu, “Microglial activation-mediated delayed and progressive degeneration of rat nigral dopaminergic neurons: relevance to Parkinson's disease,” Journal of Neurochemistry, vol. 81, no. 6, pp. 1285–1297, 2002. View at Publisher · View at Google Scholar · View at Scopus