Table of Contents Author Guidelines Submit a Manuscript
Oxidative Medicine and Cellular Longevity
Volume 2013 (2013), Article ID 194192, 8 pages
http://dx.doi.org/10.1155/2013/194192
Research Article

Is Oxidative Stress in Mice Brain Regions Diminished by 2-[(2,6-Dichlorobenzylidene)amino]-5,6-dihydro-4H-cyclopenta[b]thiophene-3-carbonitrile?

1Postgraduate Program in Pharmaceutical Sciences, Federal University of PI, 64.049-550 Teresina, Piauí, Brazil
2Department of Pharmacy, Federal University of Piaui, 64.049-550 Teresina, PI, Brazil
3Federal University of Sergipe, Center for Biological and Health Sciences, Department of Morphology, 49.100-000 São Cristovão, SE, Brazil
4Laboratory of Synthesis and Vectorization of Molecules, State University of Paraiba, 58.020-540 João Pessoa, PB, Brazil
5Department of Pharmaceutical Sciences, Federal University of Pernambuco, 50740-520 Recife, PE, Brazil

Received 16 October 2012; Revised 11 January 2013; Accepted 31 January 2013

Academic Editor: Emilio Luiz Streck

Copyright © 2013 A. C. Fortes et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Bouayed and T. Bohn, “Exogenous antioxidants—double-edged swords in cellular redox state: health beneficial effects at physiologic doses versus deleterious effects at high doses,” Oxidative Medicine and Cellular Longevity, vol. 3, no. 4, pp. 228–237, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. F. S. Pala and H. Gürkan, “The role of free radicals in ethiopathogenesis of diseases,” Advances in Molecular Biology, vol. 1, pp. 1–9, 2008. View at Google Scholar
  3. I. M. S. Santos, A. R. Tomé, G. B. Saldanha, P. M. P. Ferreira, G. C. G. Militão, and R. M. De Freitas, “Oxidative stress in the hippocampus during experimental seizures can be ameliorated with the antioxidant ascorbic acid,” Oxidative Medicine and Cellular Longevity, vol. 2, no. 4, pp. 214–221, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. C. Minelli and M. Gögele, “The role of antioxidant gene polymorphisms in modifying the health effects of environmental exposures causing oxidative stress: a public health perspective,” Free Radical Biology and Medicine, vol. 51, no. 5, pp. 925–930, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. O. A. Sedelnikova, C. E. Redon, J. S. Dickey, A. J. Nakamura, A. G. Georgakilas, and W. M. Bonner, “Role of oxidatively induced DNA lesions in human pathogenesis,” Mutation Research, vol. 704, no. 1–3, pp. 152–159, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. C. C. T. Aguiar, A. B. Almeida, P. V. P. Araújo et al., “Oxidative stress and epilepsy: literature review,” Oxidative Medicine and Cellular Longevity, vol. 2012, Article ID 10.1155/2012/795259, 12 pages, 2012. View at Publisher · View at Google Scholar
  7. F. Ng, M. Berk, O. Dean, and A. I. Bush, “Oxidative stress in psychiatric disorders: evidence base and therapeutic implications,” International Journal of Neuropsychopharmacology, vol. 11, no. 6, pp. 851–876, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. C. G. Souza, J. D. Moreira, I. R. Siqueira et al., “Highly palatable diet consumption increases protein oxidation in rat frontal cortex and anxiety-like behavior,” Life Sciences, vol. 81, no. 3, pp. 198–203, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. H. Rammal, J. Bouayed, C. Younos, and R. Soulimani, “Evidence that oxidative stress is linked to anxiety-related behaviour in mice,” Brain, Behavior, and Immunity, vol. 22, no. 8, pp. 1156–1159, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. J. Bouayed, H. Rammal, and R. Soulimani, “Oxidative stress and anxiety,” Oxidative Medicine and Cellular Longevity, vol. 2, no. 2, pp. 63–67, 2009. View at Google Scholar · View at Scopus
  11. S. Salim, N. Sarraj, M. Taneja, K. Saha, M. V. Tejada-Simon, and G. Chugh, “Moderate treadmill exercise prevents oxidative stress-induced anxiety-like behavior in rats,” Behavioural Brain Research, vol. 208, no. 2, pp. 545–552, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Salim, M. Asghar, G. Chugh, M. Taneja, Z. Xia, and K. Saha, “Oxidative stress: a potential recipe for anxiety, hypertension and insulin resistance,” Brain Research, vol. 1359, pp. 178–185, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Salim, M. Asghar, M. Taneja et al., “Potential contribution of oxidative stress and inflammation to anxiety and hypertension,” Brain Research, vol. 1404, pp. 63–71, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. C. Vollert, M. Zagaar, I. Hovatta et al., “Exercise prevents sleep deprivation-associated anxiety-like behavior in rats: potential role of oxidative stress mechanisms,” Behavioural Brain Research, vol. 224, no. 2, pp. 233–240, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. E. Niki, “Assessment of antioxidant capacity in vitro and in vivo,” Free Radical Biology and Medicine, vol. 49, no. 4, pp. 503–515, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. G. C. G. Militão, P. M. P. Ferreira, and R. M. Freitas, “Effects of lipoic acid on oxidative stress in rat striatum after pilocarpine-induced seizures,” Neurochemistry International, vol. 56, no. 1, pp. 16–20, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. D. Vauzour, “Dietary polyphenols as modulators of brain functions: biological actions and molecular mechanisms underpinning their beneficial effects,” Oxidative Medicine and Cellular Longevity, vol. 2012, pp. 1–16, 2012. View at Google Scholar
  18. E. E. Battin and J. L. Brumaghim, “Metal specificity in DNA damage prevention by sulfur antioxidants,” Journal of Inorganic Biochemistry, vol. 102, no. 12, pp. 2036–2042, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. K. A. El-Sharkawy, N. N. E. El-Sayed, and M. Y. Zaki, “Uses of 2-amino-5, 6-dihydro-4H-cyclopenta[b]thiophene-3-carbonitrle in the synthesis of heterocyclic compounds with anticonvulsant, behavioral and CNS antidepressant acticvities,” International Research Journal of Pure & Applied Chemistry, vol. 2, no. 1, pp. 91–104, 2012. View at Google Scholar
  20. A. E.-G. E. Amr, M. H. Sherif, M. G. Assy, M. A. Al-Omar, and I. Ragab, “Antiarrhythmic, serotonin antagonist and antianxiety activities of novel substituted thiophene derivatives synthesized from 2-amino-4,5,6,7-tetrahydro-N- phenylbenzo[b]thiophene-3-carboxamide,” European Journal of Medicinal Chemistry, vol. 45, no. 12, pp. 5935–5942, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. A. A. Abu-Hashem, M. F. El-Shehry, and F. A.-E. Badria, “Design and synthesis of novel thiophenecarbohydrazide, thienopyrazole and thienopyrimidine derivatives as antioxidant and antitumor agents,” Acta Pharmaceutica, vol. 60, no. 3, pp. 311–323, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. F. J. B. Mendonça, R. G. Lima-Neto, T. B. Oliveira et al., “Synthesis and evaluation of the antifungal activity of 2-(substituted-amino)-4,5-dialkyl-thiophene-3-carbonitrile derivatives,” Latin American Journal of Pharmacy, vol. 30, no. 8, pp. 1492–1499, 2011. View at Google Scholar · View at Scopus
  23. A. C. Fortes, A. A. C. Almeida, F. J. B. Mendonça-Júnior, R. M. Freitas, J. L. S. Sobrinho, and M. F. R. Soares, “Anxiolytic properties of new chemical entity, 5TIO1,” Neurochemical Research. In press.
  24. B. Altshuler, “Modeling of dose-response relationships,” Environmental Health Perspectives, vol. 42, pp. 23–27, 1981. View at Google Scholar · View at Scopus
  25. D. M. Bates and D. G. Watts, Nonlinear Regression Analysis and Its Applications, John Wiley & Sons, New York, NY, USA, 1988.
  26. H. H. Draper and M. Hadley, “Malondialdehyde determination as index of lipid peroxidation,” Methods in Enzymology, vol. 186, pp. 421–431, 1990. View at Publisher · View at Google Scholar · View at Scopus
  27. L. C. Green, S. R. Tannenbaum, and P. Goldman, “Nitrate synthesis in the germfree and conventional rat,” Science, vol. 212, no. 4490, pp. 56–58, 1981. View at Google Scholar · View at Scopus
  28. O. H. Lowry, N. J. Rosebrough, A. L. Farr et al., “Protein measurement with the folin phenol reagent,” The Journal of Biological Chemistry, vol. 193, no. 1, pp. 265–275, 1951. View at Google Scholar · View at Scopus
  29. L. Flohé and F. Otting, “Superoxide dismutase assays,” Methods in Enzymology, vol. 105, pp. 93–104, 1984. View at Google Scholar
  30. A. C. Maehly and B. Chance, “The assay of catalases and peroxidases,” Methods of Biochemical Analysis, vol. 1, pp. 357–359, 1954. View at Google Scholar
  31. B. Chance and A. C. Maehly, “Assay of catalases and peroxidases,” Methods in Enzymology, vol. 2, pp. 764–768, 1955. View at Google Scholar
  32. R. M. Adibhatla and J. F. Hatcher, “Altered lipid metabolism in brain injury and disorders,” Sub-Cellular Biochemistry, vol. 49, pp. 241–268, 2008. View at Google Scholar · View at Scopus
  33. A. Gupta, M. L. B. Bhatt, and M. K. Misra, “Lipid peroxidation and antioxidant status in head and neck squamous cell carcinoma patients,” Oxidative Medicine and Cellular Longevity, vol. 2, no. 2, 2009. View at Google Scholar · View at Scopus
  34. T. T. Reed, “Lipid peroxidation and neurodegenerative disease,” Free Radical Biology & Medicine, vol. 51, pp. 1302–1319, 2011. View at Google Scholar
  35. M. Astiz, N. Arnal, M. J. T. Alaniz, and C. A. Marra, “Occupational exposure characterization in professional sprayers: clinical utility of oxidative stress biomarkers,” Environmental Toxicology and Pharmacology, vol. 32, no. 2, pp. 249–258, 2011. View at Publisher · View at Google Scholar · View at Scopus
  36. H. V. Nobre-Júnior, M. M. D. F. Fonteles, and R. M. D. Freitas, “Acute seizure activity promotes lipid peroxidation, increased nitrite levels and adaptive pathways against oxidative stress in the frontal cortex and striatum,” Oxidative Medicine and Cellular Longevity, vol. 2, no. 3, pp. 130–137, 2009. View at Google Scholar · View at Scopus
  37. T. Matsunami, Y. Sato, T. Sato et al., “Antioxidant status and lipid peroxidation in diabetic rats under hyperbaric oxygen exposure,” Physiological Research, vol. 59, no. 1, pp. 97–104, 2010. View at Google Scholar · View at Scopus
  38. J. K. Andersen, “Oxidative stress in neurodegeneration: cause or consequence?” Nature Medicine, vol. 10, supplement, pp. S18–S25, 2004. View at Google Scholar · View at Scopus
  39. K. K. K. Chung and K. K. David, “Emerging roles of nitric oxide in neurodegeneration,” Nitric Oxide, vol. 22, no. 4, pp. 290–295, 2010. View at Publisher · View at Google Scholar · View at Scopus
  40. Y. Sueishi, M. Hori, M. Kita et al., “Nitric oxide (NO) scavenging capacity of natural antioxidants,” Food Chemistry, vol. 129, pp. 866–870, 2011. View at Google Scholar
  41. R. M. Freitas, S. M. M. Vasconcelos, F. C. F. Souza, G. S. B. Viana, and M. M. F. Fonteles, “Oxidative stress in the hippocampus after pilocarpine-induced status epilepticus in Wistar rats,” The FEBS Journal, vol. 272, no. 6, pp. 1307–1312, 2005. View at Publisher · View at Google Scholar · View at Scopus
  42. P. Okunieff, S. Swarts, P. Keng et al., “Antioxidants reduce consequences of radiation exposure,” Advances in Experimental Medicine and Biology, vol. 614, pp. 165–178, 2008. View at Publisher · View at Google Scholar · View at Scopus
  43. R. Mishra, K. K. Jha, S. Kumar et al., “Synthesis, properties and biological activity of thiophene: a review,” Der Pharma Chemica, vol. 3, no. 4, pp. 38–54, 2011. View at Google Scholar · View at Scopus
  44. M. Valko, D. Leibfritz, J. Moncol et al., “Free radicals and antioxidants in normal physiological functions and human disease,” The International Journal of Biochemistry & Cell Biology, vol. 39, no. 1, pp. 44–84, 2007. View at Google Scholar
  45. J. Limón-Pacheco and M. E. Gonsebatt, “The role of antioxidants and antioxidant-related enzymes in protective responses to environmentally induced oxidative stress,” Mutation Research, vol. 674, no. 1-2, pp. 137–147, 2009. View at Publisher · View at Google Scholar · View at Scopus
  46. C. J. Weydert and J. J. Cullen, “Measurement of superoxide dismutase, catalase and glutathione peroxidase in cultured cells and tissue,” Nature Protocols, vol. 5, no. 1, pp. 51–66, 2010. View at Publisher · View at Google Scholar · View at Scopus
  47. J. M. Walker, The Protein Protocols Handbook, Humana Press, Totowa, NJ, USA, 2002.
  48. A. O. Koob, L. Bruns, C. Prassler, E. Masliah, T. Klopstock, and A. Bender, “Protein analysis through Western blot of cells excised individually from human brain and muscle tissue,” Analytical Biochemistry, vol. 425, no. 2, pp. 120–124, 2012. View at Publisher · View at Google Scholar · View at Scopus
  49. F. C. Naso, A. S. Dias, M. Porawski, and N. A. P. Marroni, “Exogenous superoxide dismutase: action on liver oxidative stress in animals with streptozotocin-induced diabetes,” Experimental Diabetes Research, vol. 2011, Article ID 754132, 6 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  50. G. Alper, E. Z. Sözmen, L. Kanit et al., “Age-related alteration in superoxide dismutase and catalase activities in rat brain,” Turkish Journal of Medical Sciences, vol. 28, pp. 491–494, 1998. View at Google Scholar
  51. J. J. Fortunato, G. Feier, A. M. Vitali et al., “Malathion-induced oxidative stress in rat brain regions,” Neurochemical Research, vol. 31, pp. 671–678, 2006. View at Google Scholar