Table of Contents Author Guidelines Submit a Manuscript
Oxidative Medicine and Cellular Longevity
Volume 2013, Article ID 234631, 7 pages
http://dx.doi.org/10.1155/2013/234631
Review Article

Obstructive Sleep Apnea, Oxidative Stress and Cardiovascular Disease: Lessons from Animal Studies

Department of Sleep Medicine, University of Giessen Lung Center, Klinikstrasse 33, 35392 Giessen, Germany

Received 9 December 2012; Accepted 22 January 2013

Academic Editor: Sumitra Miriyala

Copyright © 2013 Rio Dumitrascu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. J. Eckert and A. Malhotra, “Pathophysiology of adult obstructive sleep apnea,” Proceedings of the American Thoracic Society, vol. 5, no. 2, pp. 144–153, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. J. M. Marin, S. J. Carrizo, E. Vicente, and A. G. N. Agusti, “Long-term cardiovascular outcomes in men with obstructive sleep apnoea-hypopnoea with or without treatment with continuous positive airway pressure: an observational study,” The Lancet, vol. 365, no. 9464, pp. 1046–1053, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. E. Shahar, C. W. Whitney, S. Redline et al., “Sleep-disordered breathing and cardiovascular disease: cross-sectional results of the sleep heart health study,” American Journal of Respiratory and Critical Care Medicine, vol. 163, no. 1, pp. 19–25, 2001. View at Google Scholar · View at Scopus
  4. T. Young, L. Finn, P. E. Peppard et al., “Sleep disordered breathing and mortality: eighteen-year follow-up of the wisconsin sleep cohort,” Sleep, vol. 31, no. 8, pp. 1071–1078, 2008. View at Google Scholar · View at Scopus
  5. R. Schulz, W. Seeger, C. Fegbeutel et al., “Changes in extracranial arteries in obstructive sleep apnoea,” European Respiratory Journal, vol. 25, no. 1, pp. 69–74, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. J. T. Carlson, C. Rångemark, and J. A. Hedner, “Attenuated endothelium-dependent vascular relaxation in patients with sleep apnoea,” Journal of Hypertension, vol. 14, no. 5, pp. 577–584, 1996. View at Publisher · View at Google Scholar · View at Scopus
  7. L. Dyugovskaya, P. Lavie, and L. Lavie, “Increased adhesion molecules expression and production of reactive oxygen species in leukocytes of sleep apnea patients,” American Journal of Respiratory and Critical Care Medicine, vol. 165, no. 7, pp. 934–939, 2002. View at Google Scholar · View at Scopus
  8. S. Ryan, C. T. Taylor, and W. T. McNicholas, “Selective activation of inflammatory pathways by intermittent hypoxia in obstructive sleep apnea syndrome,” Circulation, vol. 112, no. 17, pp. 2660–2667, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. R. Schulz, S. Mahmoudi, K. Hattar et al., “Enhanced release of superoxide from polymorphonuclear neutrophils in obstructive sleep apnea: impact of continuous positive airway pressure therapy,” American Journal of Respiratory and Critical Care Medicine, vol. 162, no. 2, part 1, pp. 566–570, 2000. View at Google Scholar · View at Scopus
  10. V. K. Somers, M. E. Dyken, M. P. Clary, and F. M. Abboud, “Sympathetic neural mechanisms in obstructive sleep apnea,” The Journal of Clinical Investigation, vol. 96, no. 4, pp. 1897–1904, 1995. View at Google Scholar · View at Scopus
  11. Y. Tagaito, V. Y. Polotsky, M. J. Campen et al., “A model of sleep-disordered breathing in the C57BL/6J mouse,” Journal of Applied Physiology, vol. 91, no. 6, pp. 2758–2766, 2001. View at Google Scholar · View at Scopus
  12. V. A. Braga, R. N. Soriano, and B. H. Machado, “Sympathoexcitatory response to peripheral chemoreflex activation is enhanced in juvenile rats exposed to chronic intermittent hypoxia,” Experimental Physiology, vol. 91, no. 6, pp. 1025–1031, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. M. J. Campen, L. A. Shimoda, and C. P. O'Donnell, “Acute and chronic cardiovascular effects of intermittent hypoxia in C57BL/6J mice,” Journal of Applied Physiology, vol. 99, no. 5, pp. 2028–2035, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Dematteis, C. Julien, C. Guillermet et al., “Intermittent hypoxia induces early functional cardiovascular remodeling in mice,” American Journal of Respiratory and Critical Care Medicine, vol. 177, no. 2, pp. 227–235, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. E. C. Fletcher, J. Lesske, J. Culman, C. C. Miller, and T. Unger, “Sympathetic denervation blocks blood pressure elevation in episodic hypoxia,” Hypertension, vol. 20, no. 5, pp. 612–619, 1992. View at Google Scholar · View at Scopus
  16. E. C. Fletcher, J. Lesske, W. Qian et al., “Repetitive, episodic hypoxia causes diurnal elevation of blood pressure in rats,” Hypertension, vol. 19, no. 6, part 1, pp. 555–561, 1992. View at Google Scholar · View at Scopus
  17. D. Gozal, J. M. Daniel, and G. P. Dohanich, “Behavioral and anatomical correlates of chronic episodic hypoxia during sleep in the rat,” Journal of Neuroscience, vol. 21, no. 7, pp. 2442–2450, 2001. View at Google Scholar · View at Scopus
  18. C. Julien, B. Sam, and L. Patrick, “Vascular reactivity to norepinephrine and acetylcholine after chronic intermittent hypoxia in mice,” Respiratory Physiology and Neurobiology, vol. 139, no. 1, pp. 21–32, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. J. B. Klein, M. T. Barati, R. Wu et al., “Akt-mediated valosin-containing protein 97 phosphorylation regulates its association with ubiquitinated proteins,” The Journal of Biological Chemistry, vol. 280, no. 36, pp. 31870–31881, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. V. Y. Polotsky, A. E. Rubin, A. Balbir et al., “Intermittent hypoxia causes REM sleep deficits and decreases EEG delta power in NREM sleep in the C57BL/6J mouse,” Sleep Medicine, vol. 7, no. 1, pp. 7–16, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. D. B. Zoccal, A. E. Simms, L. G. H. Bonagamba et al., “Increased sympathetic outflow in juvenile rats submitted to chronic intermittent hypoxia correlates with enhanced expiratory activity,” Journal of Physiology, vol. 586, no. 13, pp. 3253–3265, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. R. Farré, M. Nácher, A. Serrano-Mollar et al., “Rat model of chronic recurrent airway obstructions to study the sleep apnea syndrome,” Sleep, vol. 30, no. 7, pp. 930–933, 2007. View at Google Scholar · View at Scopus
  23. R. J. Kimoff, H. Makino, R. L. Horner et al., “Canine model of obstructive sleep apnea: model description and preliminary application,” Journal of Applied Physiology, vol. 76, no. 4, pp. 1810–1817, 1994. View at Google Scholar · View at Scopus
  24. M. S. M. Ip, H. F. Tse, B. Lam, K. W. T. Tsang, and W. K. Lam, “Endothelial function in obstructive sleep apnea and response to treatment,” American Journal of Respiratory and Critical Care Medicine, vol. 169, no. 3, pp. 348–353, 2004. View at Google Scholar · View at Scopus
  25. Z. Tahawi, N. Orolinova, I. G. Joshua, M. Bader, and E. C. Fletcher, “Altered vascular reactivity in arterioles of chronic intermittent hypoxic rats,” Journal of Applied Physiology, vol. 90, no. 5, pp. 2007–2013, 2001. View at Google Scholar · View at Scopus
  26. S. A. Phillips, E. B. Olson, J. H. Lombard, and B. J. Morgan, “Chronic intermittent hypoxia alters NE reactivity and mechanics of skeletal muscle resistance arteries,” Journal of Applied Physiology, vol. 100, no. 4, pp. 1117–1123, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. H. Xie, P. E. Ray, and B. L. Short, “NF-κB activation plays a role in superoxide-mediated cerebral endothelial dysfunction after hypoxia/reoxygenation,” Stroke, vol. 36, no. 5, pp. 1047–1052, 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. K. Liu, X. S. Liu, L. Xiao et al., “NADPH oxidase activation: a mechanism of erectile dysfunction in a rat model of sleep apnea,” Journal of Andrology, vol. 33, no. 6, pp. 1186–1198, 2012. View at Publisher · View at Google Scholar
  29. J. M. Dopp, N. R. Philippi, N. J. Marcus et al., “Xanthine oxidase inhibition attenuates endothelial dysfunction caused by chronic intermittent hypoxia in rats,” Respiration, vol. 82, no. 5, pp. 458–467, 2011. View at Publisher · View at Google Scholar
  30. A. A. El Solh, R. Saliba, T. Bosinski, B. J. B. Grant, E. Berbary, and N. Miller, “Allopurinol improves endothelial function in sleep apnoea: a randomised controlled study,” European Respiratory Journal, vol. 27, no. 5, pp. 997–1002, 2006. View at Publisher · View at Google Scholar · View at Scopus
  31. L. F. Drager, L. A. Bortolotto, M. C. Lorenzi, A. C. Figueiredo, E. M. Krieger, and G. Lorenzi-Filho, “Early signs of atherosclerosis in obstructive sleep apnea,” American Journal of Respiratory and Critical Care Medicine, vol. 172, no. 5, pp. 613–618, 2005. View at Publisher · View at Google Scholar · View at Scopus
  32. T. Altay, E. R. Gonzales, T. S. Park, and J. M. Gidday, “Cerebrovascular inflammation after brief episodic hypoxia: modulation by neuronal and endothelial nitric oxide synthase,” Journal of Applied Physiology, vol. 96, no. 3, pp. 1223–1230, 2004. View at Publisher · View at Google Scholar · View at Scopus
  33. M. Nácher, A. Serrano-Mollar, R. Farré, J. Panés, J. Seguí, and J. M. Montserrat, “Recurrent obstructive apneas trigger early systemic inflammation in a rat model of sleep apnea,” Respiratory Physiology and Neurobiology, vol. 155, no. 1, pp. 93–96, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. H. Greenberg, X. Ye, D. Wilson, A. K. Htoo, T. Hendersen, and S. F. Liu, “Chronic intermittent hypoxia activates nuclear factor-κB in cardiovascular tissues in vivo,” Biochemical and Biophysical Research Communications, vol. 343, no. 2, pp. 591–596, 2006. View at Publisher · View at Google Scholar · View at Scopus
  35. J. Li, V. Savransky, A. Nanayakkara, P. L. Smith, C. P. O'Donnell, and V. Y. Polotsky, “Hyperlipidemia and lipid peroxidation are dependent on the severity of chronic intermittent hypoxia,” Journal of Applied Physiology, vol. 102, no. 2, pp. 557–563, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. V. Savransky, A. Nanayakkara, J. Li et al., “Chronic intermittent hypoxia induces atherosclerosis,” American Journal of Respiratory and Critical Care Medicine, vol. 175, no. 12, pp. 1290–1297, 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. P. E. Peppard, T. Young, M. Palta, and J. Skatrud, “Prospective study of the association between sleep-disordered breathing and hypertension,” The New England Journal of Medicine, vol. 342, no. 19, pp. 1378–1384, 2000. View at Publisher · View at Google Scholar · View at Scopus
  38. G. Bao, P. M. Randhawa, and E. C. Fletcher, “Acute blood pressure elevation during repetitive hypocapnic and eucapnic hypoxia in rats,” Journal of Applied Physiology, vol. 82, no. 4, pp. 1071–1078, 1997. View at Google Scholar · View at Scopus
  39. E. C. Fletcher, J. Lesske, J. Culman, C. C. Miller, and T. Unger, “Sympathetic denervation blocks blood pressure elevation in episodic hypoxia,” Hypertension, vol. 20, no. 5, pp. 612–619, 1992. View at Google Scholar · View at Scopus
  40. E. C. Fletcher, N. Orolinova, and M. Bader, “Blood pressure response to chronic episodic hypoxia: the renin-angiotensin system,” Journal of Applied Physiology, vol. 92, no. 2, pp. 627–633, 2002. View at Google Scholar · View at Scopus
  41. R. Del Rio, E. A. Moya, and R. Iturriaga, “Carotid body and cardiorespiratory alterations in intermittent hypoxia: the oxidative link,” European Respiratory Journal, vol. 36, no. 1, pp. 143–150, 2010. View at Publisher · View at Google Scholar · View at Scopus
  42. C. M. Troncoso Brindeiro, A. Q. da Silva, K. J. Allahdadi, V. Youngblood, and N. L. Kanagy, “Reactive oxygen species contribute to sleep apnea-induced hypertension in rats,” American Journal of Physiology, vol. 293, no. 5, pp. H2971–H2976, 2007. View at Publisher · View at Google Scholar · View at Scopus
  43. G. K. Kumar, V. Rai, S. D. Sharma et al., “Chronic intermittent hypoxia induces hypoxia-evoked catecholamine efflux in adult rat adrenal medulla via oxidative stress,” The Journal of Physiology, vol. 575, part 1, pp. 229–239, 2006. View at Publisher · View at Google Scholar · View at Scopus
  44. G. Murzabekova, H.-J. Eisele, B. Egemnazarov et al., “Arterial hypertension in a murine model of sleep apnea–role of NADPH oxidases,” American Journal of Respiratory and Critical Care Medicine, vol. 181, p. A2480, 2010. View at Google Scholar
  45. S. Y. Lam, Y. Liu, K. M. Ng et al., “Chronic intermittent hypoxia induces local inflammation of the rat carotid body via functional upregulation of proinflammatory cytokine pathways,” Histochemistry and Cell Biology, vol. 137, no. 3, pp. 303–317, 2012. View at Publisher · View at Google Scholar
  46. G. Yuan, S. A. Khan, W. Luo, J. Nanduri, G. L. Semenza, and N. R. Prabhakar, “Hypoxia-inducible factor 1 mediates increased expression of NADPH oxidase-2 in response to intermittent hypoxia,” Journal of Cellular Physiology, vol. 226, no. 11, pp. 2925–2933, 2011. View at Publisher · View at Google Scholar
  47. G. L. Semenza, “Hypoxia-inducible factors in physiology and medicine,” Cell, vol. 148, no. 3, pp. 399–408, 2012. View at Publisher · View at Google Scholar
  48. N. R. Prabhakar, G. K. Kumar, and Y. J. Peng, “Sympatho-adrenal activation by chronic intermittent hypoxia,” Journal of Applied Physiology, vol. 113, no. 8, pp. 1304–1310, 2012. View at Publisher · View at Google Scholar
  49. J. Chen, L. He, B. Dinger, and S. Fidone, “Cellular mechanisms involved in rabbit carotid body excitation elicited by endothelin peptides,” Respiration Physiology, vol. 121, no. 1, pp. 13–23, 2000. View at Publisher · View at Google Scholar · View at Scopus
  50. S. Rey, R. Del Rio, and R. Iturriaga, “Contribution of endothelin-1 to the enhanced carotid body chemosensory responses induced by chronic intermittent hypoxia,” Brain Research, vol. 1086, no. 1, pp. 152–159, 2006. View at Publisher · View at Google Scholar · View at Scopus
  51. E. Belaidi, M. Joyeux-Faure, C. Ribuot, S. H. Launois, P. Levy, and D. Godin-Ribuot, “Major role for hypoxia inducible factor-1 and the endothelin system in promoting myocardial infarction and hypertension in an animal model of obstructive sleep apnea,” Journal of the American College of Cardiology, vol. 53, no. 15, pp. 1309–1317, 2009. View at Publisher · View at Google Scholar · View at Scopus
  52. N. L. Kanagy, B. R. Walker, and L. D. Nelin, “Role of endothelin in intermittent hypoxia-induced hypertension,” Hypertension, vol. 37, no. 2, part 2, pp. 511–515, 2001. View at Google Scholar · View at Scopus
  53. S. Y. Sun, W. Wang, I. H. Zucker, and H. D. Schultz, “Enhanced activity of carotid body chemoreceptors in rabbits with heart failure: role of nitric oxide,” Journal of Applied Physiology, vol. 86, no. 4, pp. 1273–1282, 1999. View at Google Scholar · View at Scopus
  54. N. J. Marcus, Y. L. Li, C. E. Bird, H. D. Schultz, and B. J. Morgan, “Chronic intermittent hypoxia augments chemoreflex control of sympathetic activity: role of the angiotensin II type 1 receptor,” Respiratory Physiology and Neurobiology, vol. 171, no. 1, pp. 36–45, 2010. View at Publisher · View at Google Scholar · View at Scopus
  55. D. Sajkov and R. D. McEvoy, “Obstructive sleep apnea and pulmonary hypertension,” Progress in Cardiovascular Diseases, vol. 51, no. 5, pp. 363–370, 2009. View at Publisher · View at Google Scholar · View at Scopus
  56. K. A. Fagan, “Selected contribution: pulmonary hypertension in mice following intermittent hypoxia,” Journal of Applied Physiology, vol. 90, no. 6, pp. 2502–2507, 2001. View at Google Scholar · View at Scopus
  57. R. E. Nisbet, A. S. Graves, D. J. Kleinhenz et al., “The role of NADPH oxidase in chronic intermittent hypoxia-induced pulmonary hypertension in mice,” American Journal of Respiratory Cell and Molecular Biology, vol. 40, no. 5, pp. 601–609, 2009. View at Publisher · View at Google Scholar · View at Scopus
  58. C. E. Norton, N. L. Jernigan, N. L. Kanagy, B. R. Walker, and T. C. Resta, “Intermittent hypoxia augments pulmonary vascular smooth muscle reactivity to NO: regulation by reactive oxygen species,” Journal of Applied Physiology, vol. 111, no. 4, pp. 980–988, 2011. View at Publisher · View at Google Scholar
  59. N. Sommer, A. Dietrich, R. T. Schermuly et al., “Regulation of hypoxic pulmonary vasoconstriction: basic mechanisms,” European Respiratory Journal, vol. 32, no. 6, pp. 1639–1651, 2008. View at Publisher · View at Google Scholar · View at Scopus
  60. K. Kee and M. T. Naughton, “Heart failure and sleep-disordered breathing: mechanisms, consequences and treatment,” Current Opinion in Pulmonary Medicine, vol. 15, no. 6, pp. 565–570, 2009. View at Publisher · View at Google Scholar · View at Scopus
  61. J. D. Parker, D. Brooks, L. F. Kozar et al., “Acute and chronic effects of airway obstruction on canine left ventricular performance,” American Journal of Respiratory and Critical Care Medicine, vol. 160, no. 6, pp. 1888–1896, 1999. View at Google Scholar · View at Scopus
  62. L. Chen, E. Einbinder, Q. Zhang, J. Hasday, C. W. Balke, and S. M. Scharf, “Oxidative stress and left ventricular function with chronic intermittent hypoxia in rats,” American Journal of Respiratory and Critical Care Medicine, vol. 172, no. 7, pp. 915–920, 2005. View at Publisher · View at Google Scholar · View at Scopus
  63. T. Hayashi, C. Yamashita, C. Matsumoto et al., “Role of gp91phox-containing NADPH oxidase in left ventricular remodeling induced by intermittent hypoxic stress,” American Journal of Physiology, vol. 294, no. 5, pp. H2197–H2203, 2008. View at Publisher · View at Google Scholar · View at Scopus
  64. A. Ramond, D. Godin-Ribuot, C. Ribuot et al., “Oxidative stress mediates cardiac infarction aggravation induced by intermittent hypoxia,” Fundamental & Clinical Pharmacology, 2011. View at Publisher · View at Google Scholar
  65. W. Zhou, S. Li, N. Wan, Z. Zhang, R. Guo, and B. Chen, “Effects of various degrees of oxidative stress induced by intermittent hypoxia in rat myocardial tissues,” Respirology, vol. 17, no. 5, pp. 821–829, 2012. View at Publisher · View at Google Scholar
  66. A. L. Williams, L. Chen, and S. M. Scharf, “Effects of allopurinol on cardiac function and oxidant stress in chronic intermittent hypoxia,” Sleep and Breathing, vol. 14, no. 1, pp. 51–57, 2010. View at Publisher · View at Google Scholar · View at Scopus