Table of Contents Author Guidelines Submit a Manuscript
Oxidative Medicine and Cellular Longevity
Volume 2013, Article ID 387014, 9 pages
http://dx.doi.org/10.1155/2013/387014
Review Article

DNA Damage in Inflammation-Related Carcinogenesis and Cancer Stem Cells

1Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka 513-8670, Mie, Japan
2Faculty of Health Science, Suzuka University of Medical Science, Suzuka 510-0293, Mie, Japan
3Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
4Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
5Liver Fluke and Cholangiocarcinoma Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
6Departments of Pathology and Urology, Theodor Bilharz Research Institute, Giza 12411, Egypt
7Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu 514-8507, Mie, Japan

Received 2 August 2013; Accepted 20 September 2013

Academic Editor: Pavel Rossner Jr.

Copyright © 2013 Shiho Ohnishi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. M. Coussens and Z. Werb, “Inflammation and cancer,” Nature, vol. 420, no. 6917, pp. 860–867, 2002. View at Publisher · View at Google Scholar · View at Scopus
  2. S. Kawanishi and Y. Hiraku, “Oxidative and nitrative DNA damage as biomarker for carcinogenesis with special reference to inflammation,” Antioxidants and Redox Signaling, vol. 8, no. 5-6, pp. 1047–1058, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. M. Murata, R. Thanan, N. Ma, and S. Kawanishi, “Role of nitrative and oxidative DNA damage in inflammation-related carcinogenesis,” Journal of Biomedicine and Biotechnology, vol. 2012, Article ID 623019, 11 pages, 2012. View at Publisher · View at Google Scholar
  4. IARC, “Chronic infectionsin,” in World Cancer Report, B. W. Stewart and P. Kleihues, Eds., pp. 128–135, IARC Press, Lyon, France, 2008. View at Google Scholar
  5. S. P. Hussain and C. C. Harris, “Inflammation and cancer: an ancient link with novel potentials,” International Journal of Cancer, vol. 121, no. 11, pp. 2373–2380, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. A. J. Schetter, N. H. H. Heegaard, and C. C. Harris, “Inflammation and cancer: interweaving microRNA, free radical, cytokine and p53 pathways,” Carcinogenesis, vol. 31, no. 1, Article ID bgp272, pp. 37–49, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. H. Ohshima, M. Tatemichi, and T. Sawa, “Chemical basis of inflammation-induced carcinogenesis,” Archives of Biochemistry and Biophysics, vol. 417, no. 1, pp. 3–11, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Kawanishi, Y. Hiraku, and S. Oikawa, “Mechanism of guanine-specific DNA damage by oxidative stress and its role in carcinogenesis and aging,” Mutation Research, vol. 488, no. 1, pp. 65–76, 2001. View at Publisher · View at Google Scholar · View at Scopus
  9. S. D. Bruner, D. P. G. Norman, and G. L. Verdine, “Structural basis for recognition and repair of the endogenous mutagen 8-oxoguanine in DNA,” Nature, vol. 403, no. 6772, pp. 859–866, 2000. View at Publisher · View at Google Scholar · View at Scopus
  10. N. Ma, R. Thanan, H. Kobayashi et al., “Nitrative DNA damage and Oct3/4 expression in urinary bladder cancer with Schistosomahaematobium infection,” Biochemical and Biophysical Research Communications, vol. 414, no. 2, pp. 344–349, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. R. Thanan, M. Murata, N. Ma et al., “Nuclear localization of COX-2 in relation to the expression of stemness markers in urinary bladder cancer,” Mediators of Inflammation, vol. 2012, Article ID 165879, 8 pages, 2012. View at Publisher · View at Google Scholar
  12. S. Pinlaor, Y. Hiraku, P. Yongvanit et al., “iNOS-dependent DNA damage via NF-κB expression in hamsters infected with Opisthorchis viverrini and its suppression by the antihelminthic drug praziquantel,” International Journal of Cancer, vol. 119, no. 5, pp. 1067–1072, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Pinlaor, Y. Hiraku, N. Ma et al., “Mechanism of NO-mediated oxidative and nitrative DNA damage in hamsters infected with Opisthorchis viverrini : a model of inflammation-mediated carcinogenesis,” Nitric Oxide, vol. 11, no. 2, pp. 175–183, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Pinlaor, N. Ma, Y. Hiraku et al., “Repeated infection with Opisthorchis viverrini induces accumulation of 8-nitroguanine and 8-oxo-7,8-dihydro-2′-deoxyguanine in the bile duct of hamsters via inducible nitric oxide synthase,” Carcinogenesis, vol. 25, no. 8, pp. 1535–1542, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. S. Pinlaor, P. Yongvanit, Y. Hiraku et al., “8-Nitroguanine formation in the liver of hamsters infected with Opisthorchis viverrini,” Biochemical and Biophysical Research Communications, vol. 309, no. 3, pp. 567–571, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Pinlaor, B. Sripa, N. Ma et al., “Nitrative and oxidative DNA damage in intrahepatic cholangiocarcinoma patients in relation to tumor invasion,” World Journal of Gastroenterology, vol. 11, no. 30, pp. 4644–4649, 2005. View at Google Scholar · View at Scopus
  17. R. Thanan, C. Pairojkul, S. Pinlaor et al., “Inflammation-related DNA damage and expression of CD133 and Oct3/4 in cholangiocarcinoma patients with poor prognosis,” Free Radical Biology & Medicine, 2013. View at Publisher · View at Google Scholar
  18. S. Horiike, S. Kawanishi, M. Kaito et al., “Accumulation of 8-nitroguanine in the liver of patients with chronic hepatitis C,” Journal of Hepatology, vol. 43, no. 3, pp. 403–410, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. N. Ali, H. Allam, R. May et al., “Hepatitis C virus-induced cancer stem cell-like signatures in cell culture and murine tumor xenografts,” Journal of Virology, vol. 85, no. 23, pp. 12292–12303, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. K. Machida, H. Tsukamoto, H. Mkrtchyan et al., “Toll-like receptor 4 mediates synergism between alcohol and HCV in hepatic oncogenesis involving stem cell marker Nanog,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 5, pp. 1548–1553, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. Y. Hiraku, T. Tabata, N. Ma, M. Murata, X. Ding, and S. Kawanishi, “Nitrative and oxidative DNA damage in cervical intraepithelial neoplasia associated with human papilloma virus infection,” Cancer Science, vol. 98, no. 7, pp. 964–972, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. S.-K. Kim, H.-S. Shim, K.-G. Lee, H.-J. An, K.-R. Lee, and N.-H. Cho, “Glassy cell carcinoma predominantly commits to a squamous lineage and is strongly associated with high-risk type human papillomavirus infection,” International Journal of Gynecological Pathology, vol. 28, no. 4, pp. 389–395, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. S. Regauer and O. Reich, “CK17 and p16 expression patterns distinguish (atypical) immature squamous metaplasia from high-grade cervical intraepithelial neoplasia (CIN III),” Histopathology, vol. 50, no. 5, pp. 629–635, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. W.-K. Liu, Y.-L. Chu, F. Zhang et al., “The relationship between HPV16 and expression of CD44v6, nm23H1 in esophageal squamous cell carcinoma,” Archives of Virology, vol. 150, no. 5, pp. 991–1001, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. D. Liu, P. Zhou, L. Zhang et al., “HDAC1/DNMT3A-containing complex is associated with suppression of Oct4 in cervical cancer cells,” Biochemistry, vol. 77, no. 8, pp. 934–940, 2012. View at Publisher · View at Google Scholar
  26. N. Ma, M. Kawanishi, Y. Hiraku et al., “Reactive nitrogen species-dependent DNA damage in EBV-associated nasopharyngeal carcinoma: the relation to STAT3 activation and EGFR expression,” International Journal of Cancer, vol. 122, no. 11, pp. 2517–2525, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. Q.-L. Kong, L.-J. Hu, J.-Y. Cao et al., “Epstein-barr virus-encoded LMP2A induces an epithelial—mesenchymal transition and increases the number of side population stem-like cancer cells in nasopharyngeal carcinoma,” PLoS Pathogens, vol. 6, no. 6, Article ID e1000940, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. A. Dutton, C. B. Woodman, M. B. Chukwuma et al., “Bmi-1 is induced by the Epstein-Barr virus oncogene LMP1 and regulates the expression of viral target genes in Hodgkin lymphoma cells,” Blood, vol. 109, no. 6, pp. 2597–2603, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. N. Ma, Y. Adachi, Y. Hiraku et al., “Accumulation of 8-nitroguanine in human gastric epithelium induced by Helicobacter pylori infection,” Biochemical and Biophysical Research Communications, vol. 319, no. 2, pp. 506–510, 2004. View at Publisher · View at Google Scholar · View at Scopus
  30. M. Katsurahara, Y. Kobayashi, M. Iwasa et al., “Reactive nitrogen species mediate DNA damage in helicobacter pylori-infected gastric mucosa,” Helicobacter, vol. 14, no. 6, pp. 552–558, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. Y. Fujii, K. Yoshihashi, H. Suzuki et al., “CDX1 confers intestinal phenotype on gastric epithelial cells via induction of stemness-associated reprogramming factors SALL4 and KLF5,” Proceedings of the National Academy of Sciences of USA, vol. 109, no. 50, pp. 20584–10589, 2012. View at Publisher · View at Google Scholar
  32. J. M. Noto, T. Khizanishvili, R. Chaturvedi et al., “Helicobacter pylori promotes the expression of Krüppel-like factor 5, a mediator of carcinogenesis, in vitro and in vivo,” PLoS One, vol. 8, no. 1, Article ID e54344, 2013. View at Publisher · View at Google Scholar
  33. T. Uehara, D. Ma, Y. Yao et al., “H. pylori infection is associated with DNA damage of Lgr5-positive epithelial stem cells in the stomach of patients with gastric cancer,” Digestive Diseases and Sciences, vol. 58, no. 1, pp. 140–149, 2013. View at Publisher · View at Google Scholar
  34. X. Ding, Y. Hiraku, N. Ma et al., “Inducible nitric oxide synthase-dependent DNA damage in mouse model of inflammatory bowel disease,” Cancer Science, vol. 96, no. 3, pp. 157–163, 2005. View at Publisher · View at Google Scholar · View at Scopus
  35. P. Chaiyarit, N. Ma, Y. Hiraku et al., “Nitrative and oxidative DNA damage in oral lichen planus in relation to human oral carcinogenesis,” Cancer Science, vol. 96, no. 9, pp. 553–559, 2005. View at Publisher · View at Google Scholar · View at Scopus
  36. L. Ma, H. Wang, H. Yao, L. Zhu, W. Liu, and Z. Zhou, “Bmi1 expression in oral lichen planus and the risk of progression to oral squamous cell carcinoma,” Annals of Diagnostic Pathology, vol. 17, no. 4, pp. 327–330, 2013. View at Publisher · View at Google Scholar
  37. A. Bose, M. T. Teh, I. L. Hutchison, H. Wan, I. M. Leigh, and A. Waseem, “Two mechanisms regulate keratin K15 expression in keratinocytes: role of PKC/AP-1 and FOXM1 mediated signalling,” PLoS One, vol. 7, no. 6, Article ID e38599, 2012. View at Publisher · View at Google Scholar
  38. R. Thanan, N. Ma, K. Iijima et al., “Proton pump inhibitors suppress iNOS-dependent DNA damage in Barrett's esophagus by increasing Mn-SOD expression,” Biochemical and Biophysical Research Communications, vol. 421, no. 2, pp. 280–285, 2012. View at Publisher · View at Google Scholar · View at Scopus
  39. J. Mendelson, S. Song, Y. Li et al., “Dysfunctional transforming growth factor-β signaling with constitutively active notch signaling in Barrett's esophageal adenocarcinoma,” Cancer, vol. 117, no. 16, pp. 3691–3702, 2011. View at Publisher · View at Google Scholar · View at Scopus
  40. J. Ahmad, K. Arthur, P. Maxwell et al., “Re: grotenhuis et al. Barrett's oesophageal adenocarcinoma encompasses tumour-initiating cells that do not express common cancer stem cell markers. J Pathol 2010; 221: 379–389,” Journal of Pathology, vol. 224, no. 1, pp. 143–145, 2011. View at Publisher · View at Google Scholar · View at Scopus
  41. Y. V. Bobryshev, A. K. Freeman, N. K. Botelho, D. Tran, A. J. M. Levert-Mignon, and R. V. N. Lord, “Expression of the putative stem cell marker Musashi-1 in Barrett's esophagus and esophageal adenocarcinoma,” Diseases of the Esophagus, vol. 23, no. 7, pp. 580–589, 2010. View at Publisher · View at Google Scholar · View at Scopus
  42. Y. Hiraku, S. Kawanishi, T. Ichinose, and M. Murata, “The role of iNOS-mediated DNA damage in infection- and asbestos-induced carcinogenesis,” Annals of the New York Academy of Sciences, vol. 1203, pp. 15–22, 2010. View at Publisher · View at Google Scholar · View at Scopus
  43. D. Fukumura, S. Kashiwagi, and R. K. Jain, “The role of nitric oxide in tumour progression,” Nature Reviews Cancer, vol. 6, no. 7, pp. 521–534, 2006. View at Publisher · View at Google Scholar · View at Scopus
  44. P. K. Lala and C. Chakraborty, “Role of nitric oxide in carcinogenesis and tumour progression,” Lancet Oncology, vol. 2, no. 3, pp. 149–156, 2001. View at Publisher · View at Google Scholar · View at Scopus
  45. S. Wang, Z. Liu, L. Wang, and X. Zhang, “NF-κB signaling pathway, inflammation and colorectal cancer,” Chinese Journal of Cellular and Molecular Immunology, vol. 6, no. 5, pp. 327–334, 2009. View at Google Scholar · View at Scopus
  46. V. Yermilov, J. Rubio, M. Becchi, M. D. Friesen, B. Pignatelli, and H. Ohshima, “Formation of 8-nitroguanine by the reaction of guanine with peroxynitrite in vitro,” Carcinogenesis, vol. 16, no. 9, pp. 2045–2050, 1995. View at Google Scholar · View at Scopus
  47. B. Halliwell, “Oxygen and nitrogen are pro-carcinogens. Damage to DNA by reactive oxygen, chlorine and nitrogen species: measurement, mechanism and the effects of nutrition,” Mutation Research, vol. 443, no. 1-2, pp. 37–52, 1999. View at Publisher · View at Google Scholar · View at Scopus
  48. R. S. Sodum and E. S. Fiala, “Analysis of peroxynitrite reactions with guanine, xanthine, and adenine nucleosides by high-pressure liquid chromatography with electrochemical detection: C8-nitration and -oxidation,” Chemical Research in Toxicology, vol. 14, no. 4, pp. 438–450, 2001. View at Publisher · View at Google Scholar · View at Scopus
  49. T. Akaike, S. Fujii, A. Kato et al., “Viral mutation accelerated by nitric oxide production during infection in vivo,” The FASEB Journal, vol. 14, no. 10, pp. 1447–1454, 2000. View at Google Scholar · View at Scopus
  50. N. Ma, M. Murata, S. Ohnishi, R. Thanan, Y. Hiraku, and S. Kawanishi, “8-Nitroguanine, a potential biomarker to evaluate the risk of inflammation-related carcinogenesis,” in Biomarker, T. K. Kahn, Ed., chapter 10, pp. 201–224, InTech, Rijeka, Croatia, 2012. View at Publisher · View at Google Scholar
  51. V. Yermilov, J. Rubio, and H. Ohshima, “Formation of 8-nitroguanine in DNA treated with peroxynitrite in vitro and its rapid removal from DNA by depurination,” The FEBS Letters, vol. 376, no. 3, pp. 207–210, 1995. View at Publisher · View at Google Scholar · View at Scopus
  52. L. A. Loeb and B. D. Preston, “Mutagenesis by apurinic/apyrimidinic sites,” Annual Review of Genetics, vol. 20, pp. 201–230, 1986. View at Publisher · View at Google Scholar · View at Scopus
  53. S. Boiteux and M. Guillet, “Abasic sites in DNA: repair and biological consequences in Saccharomyces cerevisiae,” DNA Repair, vol. 3, no. 1, pp. 1–12, 2004. View at Publisher · View at Google Scholar · View at Scopus
  54. J. E. Sale, A. R. Lehmann, and R. Woodgate, “Y-family DNA polymerases and their role in tolerance of cellular DNA damage,” Nature Reviews Molecular Cell Biology, vol. 13, no. 3, pp. 141–152, 2012. View at Publisher · View at Google Scholar · View at Scopus
  55. X. Wu, K. Takenaka, E. Sonoda et al., “Critical roles for polymerase ζ in cellular tolerance to nitric oxide-induced DNA damage,” Cancer Research, vol. 66, no. 2, pp. 748–754, 2006. View at Publisher · View at Google Scholar · View at Scopus
  56. N. Suzuki, M. Yasui, N. E. Geacintov, V. Shafirovich, and S. Shibutani, “Miscoding events during DNA synthesis past the nitration-damaged base 8-nitroguanine,” Biochemistry, vol. 44, no. 25, pp. 9238–9245, 2005. View at Publisher · View at Google Scholar · View at Scopus
  57. M. Y. Kim, M. Dong, P. C. Dedon, and G. N. Wogan, “Effects of peroxynitrite dose and dose rate on DNA damage and mutation in the supF shuttle vector,” Chemical Research in Toxicology, vol. 18, no. 1, pp. 76–86, 2005. View at Publisher · View at Google Scholar · View at Scopus
  58. IARC, “Opisthorchis viverrini and clonorchis sinensis,” in A Review of Human CarcInogens: Biological Agents, vol. 100B of IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, pp. 347–376, IARC Press, Lyon, France, 2012. View at Google Scholar
  59. J. P. Eiserich, M. Hristova, C. E. Cross et al., “Formation of nitric oxide-derived inflammatory oxidants by myeloperoxidase in neutrophils,” Nature, vol. 391, no. 6665, pp. 393–397, 1998. View at Publisher · View at Google Scholar · View at Scopus
  60. J. P. Gaut, J. Byun, H. D. Tran et al., “Myeloperoxidase produces nitrating oxidants in vivo,” Journal of Clinical Investigation, vol. 109, no. 10, pp. 1311–1319, 2002. View at Publisher · View at Google Scholar · View at Scopus
  61. S. Tanaka, N. Choe, D. R. Hemenway, S. Zhu, S. Matalon, and E. Kagan, “Asbestos inhalation induces reactive nitrogen species and nitrotyrosine formation in the lungs and pleura of the rat,” Journal of Clinical Investigation, vol. 102, no. 2, pp. 445–454, 1998. View at Google Scholar · View at Scopus
  62. A. Van Der Vliet, J. P. Eiserich, M. K. Shigenaga, and C. E. Cross, “Reactive nitrogen species and tyrosine nitration in the respiratory tract: epiphenomena or a pathobiologic mechanism of disease?” American Journal of Respiratory and Critical Care Medicine, vol. 160, no. 1, pp. 1–9, 1999. View at Google Scholar · View at Scopus
  63. A. Haegens, A. Van Der Vliet, K. J. Butnor et al., “Asbestos-induced lung inflammation and epithelial cell proliferation are altered in myeloperoxidase-null mice,” Cancer Research, vol. 65, no. 21, pp. 9670–9677, 2005. View at Publisher · View at Google Scholar · View at Scopus
  64. N. Suzuki, M. Yasui, N. E. Geacintov, V. Shafirovich, and S. Shibutani, “Miscoding events during DNA synthesis past the nitration-damaged base 8-nitroguanine,” Biochemistry, vol. 44, no. 25, pp. 9238–9245, 2005. View at Publisher · View at Google Scholar · View at Scopus
  65. S. Shibutani, M. Takeshita, and A. P. Grollman, “Insertion of specific bases during DNA synthesis past the oxidation-damaged base 8-oxodG,” Nature, vol. 349, no. 6308, pp. 431–434, 1991. View at Publisher · View at Google Scholar · View at Scopus
  66. J. L. Bos, “The ras gene family and human carcinogenesis,” Mutation Research, vol. 195, no. 3, pp. 255–271, 1988. View at Google Scholar · View at Scopus
  67. S. P. Hussain, L. J. Hofseth, and C. C. Harris, “Radical causes of cancer,” Nature Reviews Cancer, vol. 3, no. 4, pp. 276–285, 2003. View at Publisher · View at Google Scholar · View at Scopus
  68. T. Takahashi, M. M. Nau, I. Chiba et al., “p53: a frequent target for genetic abnormalities in lung cancer,” Science, vol. 246, no. 4929, pp. 491–494, 1989. View at Google Scholar · View at Scopus
  69. S. Ohnishi, H. Saito, N. Suzuki et al., “Nitrative and oxidative DNA damage caused by K-ras mutation in mice,” Biochemical and Biophysical Research Communications, vol. 413, no. 2, pp. 236–240, 2011. View at Publisher · View at Google Scholar · View at Scopus
  70. M. Shipitsin and K. Polyak, “The cancer stem cell hypothesis: in search of definitions, markers, and relevance,” Laboratory Investigation, vol. 88, no. 5, pp. 459–463, 2008. View at Publisher · View at Google Scholar · View at Scopus
  71. S. Sell, “Infection, stem cells and cancer signals,” Current Pharmaceutical Biotechnology, vol. 12, no. 2, pp. 182–188, 2011. View at Google Scholar · View at Scopus
  72. S. Reuter, S. C. Gupta, M. M. Chaturvedi, and B. B. Aggarwal, “Oxidative stress, inflammation, and cancer: how are they linked?” Free Radical Biology and Medicine, vol. 49, no. 11, pp. 1603–1616, 2010. View at Publisher · View at Google Scholar · View at Scopus
  73. Y. Jing, Z. Han, Y. Liu et al., “Mesenchymal stem cells in inflammation microenvironment accelerates hepatocellular carcinoma metastasis by inducing epithelial-mesenchymal transition,” PLoS One, vol. 7, no. 8, Article ID e43272, 2012. View at Publisher · View at Google Scholar
  74. N. J. Maitland and A. T. Collins, “Inflammation as the primary aetiological agent of human prostate cancer: a stem cell connection?” Journal of Cellular Biochemistry, vol. 105, no. 4, pp. 931–939, 2008. View at Publisher · View at Google Scholar · View at Scopus
  75. Z. A. Shaker, M. A. Kaddah, S. B. Hanallah, and M. I. El-Khodary, “Production of monoclonal antibodies against target schistosomal antigen secreted in the urine of schistosoma mansoni-infected patients,” International Journal for Parasitology, vol. 28, no. 12, pp. 1893–1901, 1998. View at Publisher · View at Google Scholar · View at Scopus
  76. IARC, “Schistosoma haematobium,” in A Review of Human CarcInogens: Biological Agents, vol. 100B of IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, pp. 371–384, IARC Press, Lyon, France, 2012. View at Google Scholar
  77. E. I. Salim, K. Morimura, A. Menesi, M. El-Lity, S. Fukushima, and H. Wanibuchi, “Elevated oxidative stress and DNA damage and repair levels in urinary bladder carcinomas associated with schistosomiasis,” International Journal of Cancer, vol. 123, no. 3, pp. 601–608, 2008. View at Publisher · View at Google Scholar · View at Scopus
  78. A. N. Wamachi, J. S. Mayadev, P. L. Mungai et al., “Increased ratio of tumor necrosis factor-α to interleukin-10 production is associated with Schistosoma haematobium-induced urinary-tract morbidity,” Journal of Infectious Diseases, vol. 190, no. 11, pp. 2020–2030, 2004. View at Publisher · View at Google Scholar · View at Scopus
  79. L. H. Looijenga, H. Stoop, H. P. De Leeuw et al., “POU5F1 (OCT3/4) identifies cells with pluripotent potential in human germ cell tumors,” Cancer Research, vol. 63, no. 9, pp. 2244–2250, 2003. View at Google Scholar · View at Scopus
  80. Y.-C. Chen, H.-S. Hsu, Y.-W. Chen et al., “Oct-4 expression maintained cancer stem-like properties in lung cancer-derived CD133-positive cells,” PLoS One, vol. 3, no. 7, Article ID e2637, 2008. View at Publisher · View at Google Scholar · View at Scopus
  81. D. Ponti, A. Costa, N. Zaffaroni et al., “Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties,” Cancer Research, vol. 65, no. 13, pp. 5506–5511, 2005. View at Publisher · View at Google Scholar · View at Scopus
  82. Y. Matsumura and D. Tarin, “Significance of CD44 gene products for cancer diagnosis and disease evaluation,” Lancet, vol. 340, no. 8827, pp. 1053–1058, 1992. View at Publisher · View at Google Scholar · View at Scopus
  83. S. Saito, H. Okabe, M. Watanabe et al., “CD44v6 expression is related to mesenchymal phenotype and poor prognosis in patients with colorectal cancer,” Oncology Reports, vol. 29, no. 4, pp. 1570–1578, 2013. View at Publisher · View at Google Scholar
  84. E. M. Peek, D. R. Li, H. Zhang et al., “Stromal modulation of bladder cancer-initiating cells in a subcutaneous tumor model,” American Journal of Cancer Research, vol. 2, no. 6, pp. 745–751, 2012. View at Google Scholar
  85. J. Kuncová, M. Urban, and V. Mandys, “Expression of CD44s and CD44v6 in transitional cell carcinomas of the urinary bladder: comparison with tumour grade, proliferative activity and p53 immunoreactivity of tumour cells,” APMIS, vol. 115, no. 11, pp. 1194–1205, 2007. View at Publisher · View at Google Scholar · View at Scopus
  86. M. Sugiyama, A. Woodman, T. Sugino et al., “Non-invasive detection of bladder cancer by identification of abnormal CD44 proteins in exfoliated cancer cells in urine,” Journal of Clinical Molecular Pathology, vol. 48, no. 3, pp. M142–M147, 1995. View at Google Scholar · View at Scopus
  87. Y. M. Yang and J. W. Chang, “Bladder cancer initiating cells (BCICs) are among EMA-CD44v6+ subset: novel methods for isolating undetermined cancer stem (initiating) cells,” Cancer Investigation, vol. 26, no. 7, pp. 725–733, 2008. View at Publisher · View at Google Scholar · View at Scopus
  88. R. Thanan, S. Oikawa, P. Yongvanit et al., “Inflammation-induced protein carbonylation contributes to poor prognosis for cholangiocarcinoma,” Free Radical Biology and Medicine, vol. 52, no. 8, pp. 1465–1472, 2012. View at Publisher · View at Google Scholar · View at Scopus