Table of Contents Author Guidelines Submit a Manuscript
Oxidative Medicine and Cellular Longevity
Volume 2013, Article ID 635831, 14 pages
http://dx.doi.org/10.1155/2013/635831
Review Article

ALS and Oxidative Stress: The Neurovascular Scenario

Neuroscience Research Lab, Department of Neurology, Post Graduate Institute of Medical Education and Research, Sector 12, Chandigarh 160012, India

Received 17 August 2013; Revised 7 October 2013; Accepted 17 October 2013

Academic Editor: Regina Menezes

Copyright © 2013 Akshay Anand et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. M. James, C. Gewolb, and V. L. Bautch, “Neurovascular development uses VEGF-A signaling to regulate blood vessel ingression into the neural tube,” Development, vol. 136, no. 5, pp. 833–841, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. V. L. Bautch and J. M. James, “Neurovascular development: the beginning of a beautiful friendship,” Cell Adhesion and Migration, vol. 3, no. 2, pp. 199–204, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. J. H. McCarty, “Integrin-mediated regulation of neurovascular development, physiology and disease,” Cell Adhesion and Migration, vol. 3, no. 2, pp. 211–215, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. D. Lambrechts and P. Carmeliet, “VEGF at the neurovascular interface: therapeutic implications for motor neuron disease,” Biochimica et Biophysica Acta, vol. 1762, no. 11-12, pp. 1109–1121, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. D. C. Dugdale, D. B. Hoch, and D. Zieve, Amyotrophic Lateral Sclerosis, A.D.A.M. Medical Encyclopedia, 2010.
  6. B. Oosthuyse, L. Moons, E. Storkebaum et al., “Deletion of the hypoxia-response element in the vascular endothelial growth factor promoter causes motor neuron degeneration,” Nature Genetics, vol. 28, no. 2, pp. 131–138, 2001. View at Publisher · View at Google Scholar · View at Scopus
  7. K. R. Mills, “Characteristics of fasciculations in amyotrophic lateral sclerosis and the benign fasciculation syndrome,” Brain, vol. 133, no. 11, pp. 3458–3469, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. G. C. Román, “Neuroepidemiology of amyotrophic lateral sclerosis: clues to aetiology and pathogenesis,” Journal of Neurology Neurosurgery and Psychiatry, vol. 61, no. 2, pp. 131–137, 1996. View at Google Scholar · View at Scopus
  9. D. R. Rosen, T. Siddique, D. Patterson et al., “Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis,” Nature, vol. 362, no. 6415, pp. 59–62, 1993. View at Publisher · View at Google Scholar · View at Scopus
  10. L. E. Cox, L. Ferraiuolo, E. F. Goodall et al., “Mutations in CHMP2B in lower motor neuron predominant amyotrophic lateral sclerosis (ALS),” PLoS ONE, vol. 5, no. 3, article e9872, 2010. View at Google Scholar · View at Scopus
  11. P. F. Chance, B. A. Rabin, S. G. Ryan et al., “Linkage of the gene for an autosomal dominant form of juvenile amyotrophic lateral sclerosis to chromosome 9q34,” The American Journal of Human Genetics, vol. 62, no. 3, pp. 633–640, 1998. View at Google Scholar · View at Scopus
  12. Y. Z. Chen, C. L. Bennett, H. M. Huynh et al., “DNA/RNA helicase gene mutations in a form of juvenile amyotrophic lateral sclerosis (ALS4),” The American Journal of Human Genetics, vol. 74, no. 6, pp. 1128–1135, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. A. L. Nishimura, M. Mitne-Neto, H. C. A. Silva et al., “A mutation in the vesicle-trafficking protein VAPB causes late-onset spinal muscular atrophy and amyotrophic lateral sclerosis,” The American Journal of Human Genetics, vol. 75, no. 5, pp. 822–831, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. I. Puls, C. Jonnakuty, B. H. LaMonte et al., “Mutant dynactin in motor neuron disease,” Nature Genetics, vol. 33, no. 4, pp. 455–456, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. R. Fernández-Santiago, S. Hoenig, P. Lichtner et al., “Identification of novel Angiogenin (ANG) gene missense variants in German patients with amyotrophic lateral sclerosis,” Journal of Neurology, vol. 256, no. 8, pp. 1337–1342, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Cronin, M. J. Greenway, S. Ennis et al., “Elevated serum angiogenin levels in ALS,” Neurology, vol. 67, no. 10, pp. 1833–1836, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. K. Kishimoto, S. Yoshida, S. Ibaragi et al., “Hypoxia-induced up-regulation of angiogenin, besides VEGF, is related to progression of oral cancer,” Oral Oncology, vol. 48, no. 11, pp. 1120–1127, 2012. View at Google Scholar
  18. D. Lambrechts, P. Lafuste, P. Carmeliet, and E. M. Conway, “Another angiogenic gene linked to amyotrophic lateral sclerosis,” Trends in Molecular Medicine, vol. 12, no. 8, pp. 345–347, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. L. H. Barbeito, M. Pehar, P. Cassina et al., “A role for astrocytes in motor neuron loss in amyotrophic lateral sclerosis,” Brain Research Reviews, vol. 47, no. 1–3, pp. 263–274, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. A. Plaitakis and J. T. Caroscio, “Abnormal glutamate metabolism in amyotrophic lateral sclerosis,” Annals of Neurology, vol. 22, no. 5, pp. 575–579, 1987. View at Google Scholar · View at Scopus
  21. B. K. Kaspar, J. Lladó, N. Sherkat, J. D. Rothstein, and F. H. Gage, “Retrograde viral delivery of IGF-1 prolongs survival in a mouse ALS model,” Science, vol. 301, article 5634, pp. 839–842, 2003. View at Publisher · View at Google Scholar · View at Scopus
  22. I. Niebroj-Dobosz, Z. Jamrozik, P. Janik, I. Hausmanowa-Petrusewicz, and H. Kwieciński, “Anti-neural antibodies in serum and cerebrospinal fluid of amyotrophic lateral sclerosis (ALS) patients,” Acta Neurologica Scandinavica, vol. 100, no. 4, pp. 238–243, 1999. View at Google Scholar · View at Scopus
  23. S. J. Murch, P. A. Cox, S. A. Banack, J. C. Steele, and O. W. Sacks, “Occurrence of β-methylamino-L-alanine (BMAA) in. ALS/PDC patients from Guam,” Acta Neurologica Scandinavica, vol. 110, no. 4, pp. 267–269, 2004. View at Publisher · View at Google Scholar · View at Scopus
  24. P. J. Shaw and C. J. Eggett, “Molecular factors underlying selective vulnerability of motor neurons to neurodegeneration in amyotrophic lateral sclerosis,” Journal of Neurology, vol. 247, supplement 1, pp. I17–I27, 2000. View at Google Scholar · View at Scopus
  25. G. Bensimon, L. Lacomblez, and V. Meininger, “A controlled trial of riluzole in amyotrophic lateral sclerosis. ALS/Riluzole Study Group,” The New England Journal of Medicine, vol. 330, no. 9, pp. 585–591, 1994. View at Publisher · View at Google Scholar · View at Scopus
  26. L. Lacomblez, G. Bensimon, P. N. Leigh, P. Guillet, and V. Meininger, “Dose-ranging study of riluzole in amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis/Riluzole Study Group II,” The Lancet, vol. 347, no. 9013, pp. 1425–1431, 1996. View at Google Scholar · View at Scopus
  27. M. H. Yoo, H. J. Hyun, J. Y. Koh, and Y. H. Yoon, “Riluzole inhibits VEGF-induced endothelial cell proliferation in vitro and hyperoxia-induced abnormal vessel formation in vivo,” Investigative Ophthalmology and Visual Science, vol. 46, no. 12, pp. 4780–4787, 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. T. P. Obrenovitch, “Amyotrophic lateral sclerosis, excitotoxicity and riluzole,” Trends in Pharmacological Sciences, vol. 19, no. 1, pp. 9–11, 1998. View at Google Scholar · View at Scopus
  29. H. Takahashi and M. Shibuya, “The vascular endothelial growth factor (VEGF)/VEGF receptor system and its role under physiological and pathological conditions,” Clinical Science, vol. 109, no. 3, pp. 227–241, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. F. Shalaby, J. Rossant, T. P. Yamaguchi et al., “Failure of blood-island formation and vasculogenesis in Flk-1 deficient mice,” Nature, vol. 376, no. 6535, pp. 62–66, 1995. View at Google Scholar · View at Scopus
  31. S. Hiratsuka, O. Minowa, J. Kuno, T. Noda, and M. Shibuya, “Flt-1 lacking the tyrosine kinase domain is sufficient for normal development and angiogenesis in mice,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 16, pp. 9349–9354, 1998. View at Publisher · View at Google Scholar · View at Scopus
  32. H. Fujisawa, “Roles of neuropilinneuropilin and plexin in the development of nervous system,” Tanpakushitsu kakusan koso, vol. 42, no. 3, supplement 1, pp. 584–588, 1997. View at Google Scholar · View at Scopus
  33. G. Neufeld, T. Cohen, N. Shraga, T. Lange, O. Kessler, and Y. Herzog, “The neuropilins: multifunctional semaphorin and VEGF receptors that modulate axon guidance and angiogenesis,” Trends in Cardiovascular Medicine, vol. 12, no. 1, pp. 13–19, 2002. View at Publisher · View at Google Scholar · View at Scopus
  34. A.-K. Olsson, A. Dimberg, J. Kreuger, and L. Claesson-Welsh, “VEGF receptor signalling—in control of vascular function,” Nature Reviews Molecular Cell Biology, vol. 7, no. 5, pp. 359–371, 2006. View at Publisher · View at Google Scholar · View at Scopus
  35. S. Raab and K. H. Plate, “Different networks, common growth factors: shared growth factors and receptors of the vascular and the nervous system,” Acta Neuropathologica, vol. 113, no. 6, pp. 607–626, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. F. Lennmyr, K. A. Ata, K. Funa, Y. Olsson, and A. Terént, “Expression of vascular endothelial growth factor (VEGF) and its receptors (Flt-1 and Flk-1) following permanent and transient occlusion of the middle cerebral artery in the rat,” Journal of Neuropathology and Experimental Neurology, vol. 57, no. 9, pp. 874–882, 1998. View at Google Scholar · View at Scopus
  37. X. Yang and C. L. Cepko, “Flk-1, a receptor for vascular endothelial growth factor (VEGF), is expressed by retinal progenitor cells,” Journal of Neuroscience, vol. 16, no. 19, pp. 6089–6099, 1996. View at Google Scholar · View at Scopus
  38. J. Iłzecka, “Cerebrospinal fluid vascular endothelial growth factor in patients with amyotrophic lateral sclerosis,” Clinical Neurology and Neurosurgery, vol. 106, no. 4, pp. 289–293, 2004. View at Google Scholar
  39. D. P. McCloskey, T. M. Hintz, and H. E. Scharfman, “Modulation of vascular endothelial growth factor (VEGF) expression in motor neurons and its electrophysiological effects,” Brain Research Bulletin, vol. 76, no. 1-2, pp. 36–44, 2008. View at Publisher · View at Google Scholar · View at Scopus
  40. E. Bogaert, P. van Damme, K. Poesen et al., “VEGF protects motor neurons against excitotoxicity by upregulation of GluR2,” Neurobiology of Aging, vol. 31, no. 12, pp. 2185–2191, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. D. Devos, C. Moreau, P. Lassalle et al., “Low levels of the vascular endothelial growth factor in CSF from early ALS patients,” Neurology, vol. 62, no. 11, pp. 2127–2129, 2004. View at Google Scholar · View at Scopus
  42. C. Moreau, D. Devos, V. Brunaud-Danel et al., “Paradoxical response of VEGF expression to hypoxia in CSF of patients with ALS,” Journal of Neurology, Neurosurgery and Psychiatry, vol. 77, no. 2, pp. 255–257, 2006. View at Publisher · View at Google Scholar · View at Scopus
  43. T. Nagata, I. Nagano, M. Shiote et al., “Elevation of MCP-1 and MCP-1/VEGF ratio in cerebrospinal fluid of amyotrophic lateral sclerosis patients,” Neurological Research, vol. 29, no. 8, pp. 772–776, 2007. View at Publisher · View at Google Scholar · View at Scopus
  44. M. Suzuki, T. Watanabe, H. Mikami et al., “Immunohistochemical studies of vascular endothelial growth factor in skin of patients with amyotrophic lateral sclerosis,” Journal of the Neurological Sciences, vol. 285, no. 1-2, pp. 125–129, 2009. View at Publisher · View at Google Scholar · View at Scopus
  45. P. K. Gupta, S. Prabhakar, C. Abburi, N. K. Sharma, and A. Anand, “Vascular endothelial growth factor-A and chemokine ligand (CCL2) genes are upregulated in peripheral blood mononuclear cells in Indian amyotrophic lateral sclerosis patients,” Journal of Neuroinflammation, vol. 8, article 114, 2011. View at Publisher · View at Google Scholar · View at Scopus
  46. P. K. Gupta, S. Prabhakar, S. Sharma, and A. Anand, “Vascular endothelial growth factor-A (VEGF-A) and chemokine ligand-2 (CCL2) in amyotrophic lateral sclerosis (ALS) patients,” Journal of Neuroinflammation, vol. 8, article 97, 2011. View at Publisher · View at Google Scholar · View at Scopus
  47. P. K. Gupta, S. Prabhakar, S. Sharma, and A. Anand, “A predictive model for amyotrophic lateral sclerosis (ALS) diagnosis,” Journal of the Neurological Sciences, vol. 312, no. 1-2, pp. 68–72, 2012. View at Publisher · View at Google Scholar · View at Scopus
  48. A. Nalini, K. Thennarasu, M. Gourie-Devi, S. Shenoy, and D. Kulshreshtha, “Clinical characteristics and survival pattern of 1,153 patients with amyotrophic lateral sclerosis: experience over 30 years from India,” Journal of the Neurological Sciences, vol. 272, no. 1-2, pp. 60–70, 2008. View at Publisher · View at Google Scholar · View at Scopus
  49. W. G. Bradley, “Commentary on Professor Stephen Hawking's disability advice,” Annals of Neurosciences, vol. 16, pp. 101–102, 2009. View at Google Scholar
  50. A. Anand, P. K. Gupta, N. K. Sharma, and S. Prabhakar, “Soluble VEGFR1 (sVEGFR1) as a novel marker of amyotrophic lateral sclerosis (ALS) in the North Indian ALS patients,” The European Journal of Neurology, vol. 19, no. 5, pp. 788–792, 2012. View at Publisher · View at Google Scholar · View at Scopus
  51. J. H. P. Skene and D. W. Cleveland, “Hypoxia and lou gehrig,” Nature Genetics, vol. 28, no. 2, pp. 107–108, 2001. View at Publisher · View at Google Scholar · View at Scopus
  52. E. Storkebaum, D. Lambrechts, and P. Carmeliet, “VEGF: once regarded as a specific angiogenic factor, now implicated in neuroprotection,” BioEssays, vol. 26, no. 9, pp. 943–954, 2004. View at Publisher · View at Google Scholar · View at Scopus
  53. G. Aliev, M. A. Smith, M. E. Obrenovich, J. C. de la Torre, and G. Perry, “Role of vascular hypoperfusion-induced oxidative stress and mitochondria failure in the pathogenesis of Alzheimer disease,” Neurotoxicity Research, vol. 5, no. 7, pp. 491–504, 2003. View at Publisher · View at Google Scholar · View at Scopus
  54. K. Orino, L. Lehman, Y. Tsuji, H. Ayaki, S. V. Torti, and F. M. Torti, “Ferritin and the response to oxidative stress,” Biochemical Journal, vol. 357, no. 1, pp. 241–247, 2001. View at Publisher · View at Google Scholar · View at Scopus
  55. J. Harned, J. Ferrell, M. M. Lall et al., “Altered ferritin subunit composition: change in iron metabolism in lens epithelial cells and downstream effects on glutathione levels and VEGF secretion,” Investigative Ophthalmology and Visual Science, vol. 51, no. 9, pp. 4437–4446, 2010. View at Publisher · View at Google Scholar · View at Scopus
  56. J. S. Henkel, J. I. Engelhardt, S. L. Siklós et al., “Presence of dendritic cells, MCP-1, and activated Microglia/Macrophages in amyotrophic Lateral sclerosis spinal cord tissue,” Annals of Neurology, vol. 55, no. 2, pp. 221–235, 2004. View at Publisher · View at Google Scholar · View at Scopus
  57. C. Maihöfner, S. Probst-Cousin, M. Bergmann, W. Neuhuber, B. Neundörfer, and D. Heuss, “Expression and localization of cyclooxygenase-1 and -2 in human sporadic amyotrophic lateral sclerosis,” The European Journal of Neuroscience, vol. 18, no. 6, pp. 1527–1534, 2003. View at Publisher · View at Google Scholar · View at Scopus
  58. W. G. M. Spliet, E. Aronica, M. Ramkema, J. Aten, and D. Troost, “Increased expression of connective tissue growth factor in amyotrophic lateral sclerosis human spinal cord,” Acta Neuropathologica, vol. 106, no. 5, pp. 449–457, 2003. View at Publisher · View at Google Scholar · View at Scopus
  59. W. G. M. Spliet, E. Aronica, M. Ramkema et al., “Immunohistochemical localization of vascular endothelial growth factor receptors-1, -2 and -3 in human spinal cord: altered expression in amyotrophic lateral sclerosis,” Neuropathology and Applied Neurobiology, vol. 30, no. 4, pp. 351–359, 2004. View at Publisher · View at Google Scholar · View at Scopus
  60. S. Malessa, P. N. Leigh, O. Bertel, E. Sluga, and O. Hornykiewicz, “Amyotrophic lateral sclerosis: glutamate dehydrogenase and transmitter amino acids in the spinal cord,” Journal of Neurology Neurosurgery and Psychiatry, vol. 54, no. 11, pp. 984–988, 1991. View at Google Scholar · View at Scopus
  61. M. V. Sofroniew, “Molecular dissection of reactive astrogliosis and glial scar formation,” Trends in Neurosciences, vol. 32, no. 12, pp. 638–647, 2009. View at Publisher · View at Google Scholar · View at Scopus
  62. B. A. Barres, “The mystery and magic of Glia: a perspective on their roles in health and disease,” Neuron, vol. 60, no. 3, pp. 430–440, 2008. View at Publisher · View at Google Scholar · View at Scopus
  63. M. V. Sofroniew, “Reactive astrocytes in neural repair and protection,” Neuroscientist, vol. 11, no. 5, pp. 400–407, 2005. View at Publisher · View at Google Scholar · View at Scopus
  64. M. Martineau, G. Baux, and J.-P. Mothet, “Gliotransmission at central glutamatergic synapses: D-serine on stage,” Journal of Physiology, vol. 1, pp. 211–217, 2006. View at Publisher · View at Google Scholar · View at Scopus
  65. Q. Zhang and P. G. Haydon, “Roles for gliotransmission in the nervous system,” Journal of Neural Transmission, vol. 112, no. 1, pp. 121–125, 2005. View at Publisher · View at Google Scholar · View at Scopus
  66. P. Li and M. Zhuo, “Cholinergic, noradrenergic, and serotonergic inhibition of fast synaptic transmission in spinal lumbar dorsal horn of rat,” Brain Research Bulletin, vol. 54, no. 6, pp. 639–647, 2001. View at Publisher · View at Google Scholar · View at Scopus
  67. G. Karpati, G. Klassen, and P. Tanser, “The effects of partial chronic denervation on forearm metabolism,” Canadian Journal of Neurological Sciences, vol. 6, no. 2, pp. 105–112, 1979. View at Google Scholar · View at Scopus
  68. T. T. Rissanen, I. Vajanto, M. O. Hiltunen et al., “Expression of vascular endothelial growth factor and vascular endothelial growth factor receptor-2 (KDR/Fik-1) in ischemic skeletal muscle and its regeneration,” The American Journal of Pathology, vol. 160, no. 4, pp. 1393–1403, 2002. View at Google Scholar · View at Scopus
  69. I. Nygren, A. Larsson, A. Johansson, and H. Askmark, “VEGF is increased in serum but not in spinal cord from patients with amyotrophic lateral sclerosis,” NeuroReport, vol. 13, no. 17, pp. 2199–2201, 2002. View at Publisher · View at Google Scholar · View at Scopus
  70. K. Vijayalakshmi, P. A. Alladi, T. N. Sathyaprabha, J. R. Subramaniam, A. Nalini, and T. R. Raju, “Cerebrospinal fluid from sporadic amyotrophic lateral sclerosis patients induces degeneration of a cultured motor neuron cell line,” Brain Research, vol. 1263, pp. 122–133, 2009. View at Publisher · View at Google Scholar · View at Scopus
  71. V. Crugnola, C. Lamperti, V. Lucchini et al., “Mitochondrial respiratory chain dysfunction in muscle from patients with amyotrophic lateral sclerosis,” Archives of Neurology, vol. 67, no. 7, pp. 849–854, 2010. View at Publisher · View at Google Scholar · View at Scopus
  72. S. Vielhaber, D. Kunz, K. Winkler et al., “Mitochondrial DNA abnormalities in skeletal muscle of patients with sporadic amyotrophic lateral sclerosis,” Brain, vol. 123, no. 7, pp. 1339–1348, 2000. View at Google Scholar · View at Scopus
  73. A. Krasnianski, M. Deschauer, S. Neudecker et al., “Mitochondrial changes in skeletal muscle in amyotrophic lateral sclerosis and other neurogenic atrophies,” Brain, vol. 128, no. 8, pp. 1870–1876, 2005. View at Publisher · View at Google Scholar · View at Scopus
  74. B. M. Küst, J. C. W. M. Copray, N. Brouwer, D. Troost, and H. W. G. M. Boddeke, “Elevated levels of neurotrophins in human biceps brachii tissue of amyotrophic lateral sclerosis,” Experimental Neurology, vol. 177, no. 2, pp. 419–427, 2002. View at Publisher · View at Google Scholar · View at Scopus
  75. A. Valavanidis, T. Vlachogianni, and C. Fiotakis, “8-hydroxy-2′ -deoxyguanosine (8-OHdG): a critical biomarker of oxidative stress and carcinogenesis,” Journal of Environmental Science and Health C, vol. 27, no. 2, pp. 120–139, 2009. View at Google Scholar · View at Scopus
  76. S.-K. Chen, W. A. Hsieh, M.-H. Tsai et al., “Age-associated decrease of oxidative repair enzymes, human 8-oxoguanine DNA glycosylases (hOGG1), in human aging,” Journal of Radiation Research, vol. 44, no. 1, pp. 31–35, 2003. View at Publisher · View at Google Scholar · View at Scopus
  77. F. Coppedè, M. Mancuso, A. L. Gerfo et al., “Association of the hOGG1 Ser326Cys polymorphism with sporadic amyotrophic lateral sclerosis,” Neuroscience Letters, vol. 420, no. 2, pp. 163–168, 2007. View at Publisher · View at Google Scholar · View at Scopus
  78. A. Brockington, J. Kirby, D. Eggitt et al., “Screening of the regulatory and coding regions of vascular endothelial growth factor in amyotrophic lateral sclerosis,” Neurogenetics, vol. 6, no. 2, pp. 101–104, 2005. View at Publisher · View at Google Scholar · View at Scopus
  79. F. Gros-Louis, S. Laurent, A. A. S. Lopes et al., “Absence of mutations in the hypoxia response element of VEGF in ALS,” Muscle and Nerve, vol. 28, no. 6, pp. 774–775, 2003. View at Publisher · View at Google Scholar · View at Scopus
  80. W. Chen, M. Saeed, H. Mao et al., “Lack of association of VEGF promoter polymorphisms with sporadic ALS,” Neurology, vol. 67, no. 3, pp. 508–510, 2006. View at Publisher · View at Google Scholar · View at Scopus
  81. P. W. J. van Vught, N. A. Sutedja, J. H. Veldink et al., “Lack of association between VEGF polymorphisms and ALS in a Dutch population,” Neurology, vol. 65, no. 10, pp. 1643–1645, 2005. View at Publisher · View at Google Scholar · View at Scopus
  82. Y. Zhang, H. Zhang, Y. Fu et al., “VEGF C2578A polymorphism does not contribute to amyotrophic lateral sclerosis susceptibility in sporadic Chinese patients,” Amyotrophic Lateral Sclerosis, vol. 7, no. 2, pp. 119–122, 2006. View at Publisher · View at Google Scholar · View at Scopus
  83. D. Lambrechts, K. Poesen, R. Fernández-Santiago et al., “Meta-analysis of vascular endothelial growth factor variations in amyotrophic lateral sclerosis: increased susceptibility in male carriers of the -2578AA genotype,” Journal of Medical Genetics, vol. 46, no. 12, pp. 840–846, 2009. View at Publisher · View at Google Scholar · View at Scopus
  84. R. Fernández-Santiago, M. Sharma, J. C. Mueller et al., “Possible gender-dependent association of vascular endothelial growth factor (VEGF) gene and ALS,” Neurology, vol. 66, no. 12, pp. 1929–1931, 2006. View at Publisher · View at Google Scholar · View at Scopus
  85. N. Oates and R. Pamphlett, “An epigenetic analysis of SOD1 and VEGF in ALS,” Amyotrophic Lateral Sclerosis, vol. 8, no. 2, pp. 83–86, 2007. View at Publisher · View at Google Scholar · View at Scopus
  86. A. Brockington, B. Wokke, H. Nixon, J. A. Hartley, and P. J. Shaw, “Screening of the transcriptional regulatory regions of vascular endothelial growth factor receptor 2 (VEGFR2) in amyotrophic lateral sclerosis,” BMC Medical Genetics, vol. 8, article 23, 2007. View at Publisher · View at Google Scholar · View at Scopus
  87. L. A. Zil'ber, Z. L. Bajdakova, A. N. Gardašjan, N. V. Konovalov, T. L. Bunina, and E. M. Barabadze, “Study of the etiology of amyotrophic lateral sclerosis,” Bulletin of the World Health Organization, vol. 29, no. 4, pp. 449–456, 1963. View at Google Scholar · View at Scopus
  88. R. A. Smith, F. M. Balis, K. H. Ott, D. D. Elsberry, M. R. Sherman, and M. G. P. Saifer, “Pharmacokinetics and tolerability of ventricularly administered superoxide dismutase in monkeys and preliminary clinical observations in familial ALS,” Journal of the Neurological Sciences, vol. 129, supplement 1, pp. 13–18, 1995. View at Publisher · View at Google Scholar · View at Scopus
  89. E. Storkebaum, D. Lambrechts, M. Dewerchin et al., “Treatment of motoneuron degeneration by intracerebroventricular delivery of VEGF in a rat model of ALS,” Nature Neuroscience, vol. 8, no. 1, pp. 85–92, 2005. View at Publisher · View at Google Scholar · View at Scopus
  90. D. H. Hwang, H. J. Lee, I. H. Park et al., “Intrathecal transplantation of human neural stem cells overexpressing VEGF provide behavioral improvement, disease onset delay and survival extension in transgenic ALS mice,” Gene Therapy, vol. 16, no. 10, pp. 1234–1244, 2009. View at Publisher · View at Google Scholar · View at Scopus
  91. D. Lambrechts, E. Storkebaum, M. Morimoto et al., “VEGF is a modifier of amyotrophic lateral sclerosis in mice and humans and protects motoneurons against ischemic death,” Nature Genetics, vol. 34, no. 4, pp. 383–394, 2003. View at Publisher · View at Google Scholar · View at Scopus
  92. Y. Sun, K. Jin, L. Xie et al., “VEGF-induced neuroprotection, neurogenesis, and angiogenesis after focal cerebral ischemia,” Journal of Clinical Investigation, vol. 111, no. 12, pp. 1843–1851, 2003. View at Publisher · View at Google Scholar · View at Scopus
  93. C. Zheng, I. Nennesmo, B. Fadeel, and J. I. Henter, “Vascular endothelial growth factor prolongs survival in a transgenic mouse model of ALS,” Annals of Neurology, vol. 56, no. 4, pp. 564–567, 2004. View at Publisher · View at Google Scholar · View at Scopus
  94. J. Widenfalk, A. Lipson, M. Jubran et al., “Vascular endothelial growth factor improves functional outcome and decreases secondary degeneration in experimental spinal cord contusion injury,” Neuroscience, vol. 120, no. 4, pp. 951–960, 2003. View at Publisher · View at Google Scholar · View at Scopus
  95. M. A. Kliem, B. L. Heeke, C. K. Franz et al., “Intramuscular administration of a VEGF zinc finger transcription factor activator (VEGF-ZFP-TF) improves functional outcomes in SOD1 rats,” Amyotrophic Lateral Sclerosis, vol. 12, no. 5, pp. 331–339, 2011. View at Publisher · View at Google Scholar · View at Scopus
  96. D. F. Silva, D. L. Porto, I. G. A. Araújo et al., “Endothelium-derived nitric oxide is involved in the hypotensive and vasorelaxant effects induced by discretamine in rats,” Pharmazie, vol. 64, no. 5, pp. 327–331, 2009. View at Publisher · View at Google Scholar · View at Scopus
  97. M. Kobari, K. Obara, S. Watanabe, T. Dembo, and Y. Fukuuchi, “Local cerebral blood flow in motor neuron disease: correlation with clinical findings,” Journal of the Neurological Sciences, vol. 144, no. 1-2, pp. 64–69, 1996. View at Publisher · View at Google Scholar · View at Scopus
  98. A. G. Barbeito, L. Martinez-Palma, M. R. Vargas et al., “Lead exposure stimulates VEGF expression in the spinal cord and extends survival in a mouse model of ALS,” Neurobiology of Disease, vol. 37, no. 3, pp. 574–580, 2010. View at Publisher · View at Google Scholar · View at Scopus
  99. M. Azzouz, G. S. Ralph, E. Storkebaum et al., “VEGF delivery with retrogradely transported lentivector prolongs survival in a mouse ALS model,” Nature, vol. 429, article 6990, pp. 413–417, 2004. View at Publisher · View at Google Scholar · View at Scopus
  100. I. Ay, J. W. Francis, and R. H. Brown Jr., “VEGF increases blood-brain barrier permeability to Evans blue dye and tetanus toxin fragment C but not adeno-associated virus in ALS mice,” Brain Research, vol. 1234, pp. 198–205, 2008. View at Publisher · View at Google Scholar · View at Scopus
  101. Z. Zhong, R. Deane, Z. Ali et al., “ALS-causing SOD1 mutants generate vascular changes prior to motor neuron degeneration,” Nature Neuroscience, vol. 11, no. 4, pp. 420–422, 2008. View at Publisher · View at Google Scholar · View at Scopus
  102. V. Silani, M. Braga, A. Ciammola, V. Cardin, and G. Scarlato, “Motor neurones in culture as a model to study ALS,” Journal of Neurology, vol. 247, supplement 1, pp. I28–I36, 2000. View at Google Scholar · View at Scopus
  103. L. Lu, L. Zheng, L. Viera et al., “Mutant Cu/Zn-superoxide dismutase associated with amyotrophic lateral sclerosis destabilizes vascular endothelial growth factor mRNA and downregulates its expression,” Journal of Neuroscience, vol. 27, no. 30, pp. 7929–7938, 2007. View at Publisher · View at Google Scholar · View at Scopus
  104. A. B. Scandurro and B. S. Beckman, “Common proteins bind mRNAs encoding erythropoietin, tyrosine hydroxylase, and vascular endothelial growth factor,” Biochemical and Biophysical Research Communications, vol. 246, no. 2, pp. 436–440, 1998. View at Publisher · View at Google Scholar · View at Scopus
  105. B. Li, W. Xu, C. Luo, D. Gozal, and R. Liu, “VEGF-induced activation of the PI3-K/Akt pathway reduces mutant SOD1-mediated motor neuron cell death,” Molecular Brain Research, vol. 111, no. 1-2, pp. 155–164, 2003. View at Publisher · View at Google Scholar · View at Scopus
  106. J. S. Lunn, S. A. Sakowski, B. Kim, A. A. Rosenberg, and E. L. Feldman, “Vascular endothelial growth factor prevents G93A-SOD1-induced motor neuron degeneration,” Developmental Neurobiology, vol. 69, no. 13, pp. 871–884, 2009. View at Publisher · View at Google Scholar · View at Scopus
  107. M. J. During and L. Cao, “VEGF, a mediator of the effect of experience on hippocampal neurogenesis,” Current Alzheimer Research, vol. 3, no. 1, pp. 29–33, 2006. View at Publisher · View at Google Scholar · View at Scopus
  108. H. Meng, Z. Zhang, R. Zhang et al., “Biphasic effects of exogenous VEGF on VEGF expression of adult neural progenitors,” Neuroscience Letters, vol. 393, no. 2-3, pp. 97–101, 2006. View at Publisher · View at Google Scholar · View at Scopus
  109. A. A. Rizvanov, A. P. Kiyasov, I. M. Gaziziov et al., “Human umbilical cord blood cells transfected with VEGF and L1CAM do not differentiate into neurons but transform into vascular endothelial cells and secrete neuro-trophic factors to support neuro-genesis-a novel approach in stem cell therapy,” Neurochemistry International, vol. 53, no. 6–8, pp. 389–394, 2008. View at Publisher · View at Google Scholar · View at Scopus
  110. K. Poesen, D. Lambrechts, P. van Damme et al., “Novel role for vascular endothelial growth factor (VEGF) receptor-1 and its ligand VEGF-B in motor neuron degeneration,” Journal of Neuroscience, vol. 28, no. 42, pp. 10451–10459, 2008. View at Publisher · View at Google Scholar · View at Scopus
  111. Y. Persidsky, S. H. Ramirez, J. Haorah, and G. D. Kanmogne, “Blood-brain barrier: structural components and function under physiologic and pathologic conditions,” Journal of Neuroimmune Pharmacology, vol. 1, no. 3, pp. 223–236, 2006. View at Publisher · View at Google Scholar · View at Scopus
  112. H. J. Schluesener, R. A. Sobel, C. Linington, and H. L. Weiner, “A monoclonal antibody against a myelin oligodendrocyte glycoprotein induces relapses and demyelination in central nervous system autoimmune disease,” Journal of Immunology, vol. 139, no. 12, pp. 4016–4021, 1987. View at Google Scholar · View at Scopus
  113. A. Germanò, M. Caffo, F. F. Angileri et al., “NMDA receptor antagonist felbamate reduces behavioral deficits and blood-brain barrier permeability changes after experimental subarachnoid hemorrhage in the rat,” Journal of Neurotrauma, vol. 24, no. 4, pp. 732–744, 2007. View at Publisher · View at Google Scholar · View at Scopus
  114. D. Graesser, A. Solowiej, M. Bruckner et al., “Altered vascular permeability and early onset of experimental autoimmune encephalomyelitis in PECAM-1-deficient mice,” Journal of Clinical Investigation, vol. 109, no. 3, pp. 383–392, 2002. View at Publisher · View at Google Scholar · View at Scopus
  115. V. Bartanusz, D. Jezova, B. Alajajian, and M. Digicaylioglu, “The blood-spinal cord barrier: morphology and clinical implications,” Annals of Neurology, vol. 70, no. 2, pp. 194–206, 2011. View at Publisher · View at Google Scholar · View at Scopus
  116. S. Garbuzova-Davis, S. Saporta, E. Haller et al., “Evidence of compromised blood-spinal cord barrier in early and late symptomatic SOD1 mice modeling ALS,” PLoS ONE, vol. 2, no. 11, article e1205, 2007. View at Publisher · View at Google Scholar · View at Scopus
  117. H. Wolburg, K. Wolburg-Buchholz, J. Kraus et al., “Localization of claudin-3 in tight junctions of the blood-brain barrier is selectively lost during experimental autoimmune encephalomyelitis and human glioblastoma multiforme,” Acta Neuropathologica, vol. 105, no. 6, pp. 586–592, 2003. View at Google Scholar · View at Scopus
  118. E. Ambrosini, M. E. Remoli, E. Giacomini et al., “Astrocytes produce dendritic cell-attracting chemokines in vitro and in multiple sclerosis lesions,” Journal of Neuropathology and Experimental Neurology, vol. 64, no. 8, pp. 706–715, 2005. View at Google Scholar · View at Scopus
  119. A. T. Argaw, L. Asp, J. Zhang et al., “Astrocyte derived VEGF-A drives blood brain barrier disruption in CNS inflammatory disease,” Journal of Clinical Investigation, vol. 122, no. 7, pp. 2454–2468, 2012. View at Google Scholar
  120. S. Esser, M. G. Lampugnani, M. Corada, E. Dejana, and W. Risau, “Vascular endothelial growth factor induces VE-cadherin tyrosine,” Journal of Cell Science, vol. 111, no. 13, pp. 1853–1865, 1998. View at Google Scholar · View at Scopus
  121. K. Zhang, J. Lu, T. Mori et al., “Baicalin increases VEGF expression and angiogenesis by activating the ERRα/PGC-1α pathway,” Cardiovascular Research, vol. 89, no. 2, pp. 426–435, 2011. View at Google Scholar
  122. R. B. Vega, J. M. Huss, and D. P. Kelly, “The coactivator PGC-1 cooperates with peroxisome proliferator-activated receptor α in transcriptional control of nuclear genes encoding mitochondrial fatty acid oxidation enzymes,” Molecular and Cellular Biology, vol. 20, no. 5, pp. 1868–1876, 2000. View at Publisher · View at Google Scholar · View at Scopus
  123. Z. Arany, “PGC-1 coactivators and skeletal muscle adaptations in health and disease,” Current Opinion in Genetics and Development, vol. 18, no. 5, pp. 426–434, 2008. View at Publisher · View at Google Scholar · View at Scopus
  124. Z. Arany, S. Y. Foo, Y. Ma et al., “HIF-independent regulation of VEGF and angiogenesis by the transcriptional coactivator PGC-1α,” Nature, vol. 451, article 7181, pp. 1008–1012, 2008. View at Publisher · View at Google Scholar · View at Scopus
  125. R. P. Singh, A. K. Tyagi, S. Dhanalakshmi, R. Agarwal, and C. N. Agarwal, “Grape seed extract inhibits advanced human prostate tumor growth and angiogenesis and upregulates insulin-like growth factor binding protein-3,” International Journal of Cancer, vol. 108, no. 5, pp. 733–740, 2004. View at Publisher · View at Google Scholar · View at Scopus
  126. M. Kaur, R. P. Singh, M. Gu, R. Agarwal, and C. Agarwal, “Grape seed extract inhibits in vitro and in vivo growth of human colorectal carcinoma cells,” Clinical Cancer Research, vol. 12, no. 20, pp. 6194–6202, 2006. View at Publisher · View at Google Scholar · View at Scopus
  127. M. Arii, “Chemopreventive effect of grape seed extract on intestinal carcinogenesis in the APCMin mouse,” Proceedings of the American Association for Cancer Research, vol. 39, article 20, 1998. View at Google Scholar
  128. J. Lu, K. Zhang, S. Chen, and W. Wen, “Grape seed extract inhibits VEGF expression via reducing HIF-1α protein expression,” Carcinogenesis, vol. 30, no. 4, pp. 636–644, 2009. View at Publisher · View at Google Scholar · View at Scopus
  129. C. Desnuelle, M. Dib, C. Garrel, and A. Favier, “A double-blind, placeho-controlled randomized clinical trial of α-tocopherol (vitamin E) in the treatment of amyotrophic lateral sclerosis. ALS riluzole-tocopherol Study Group,” Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders, vol. 2, no. 1, pp. 9–18, 2001. View at Publisher · View at Google Scholar · View at Scopus
  130. M. Graf, D. Ecker, R. Horowski et al., “High dose vitamin E therapy in amyotrophic lateral sclerosis as add-on therapy to riluzole: results of a placebo-controlled double-blind study,” Journal of Neural Transmission, vol. 112, no. 5, pp. 649–660, 2005. View at Publisher · View at Google Scholar · View at Scopus
  131. R. W. Orrell, R. J. M. Lane, and M. Ross, “A systematic review of antioxidant treatment for amyotrophic lateral sclerosis/motor neuron disease,” Amyotrophic Lateral Sclerosis, vol. 9, no. 4, pp. 195–211, 2008. View at Publisher · View at Google Scholar · View at Scopus
  132. P. Klivenyi, R. J. Ferrante, R. T. Matthews et al., “Neuroprotective effects of creatine in a transgenic animal model of amyotrophic lateral sclerosis,” Nature Medicine, vol. 5, no. 3, pp. 347–350, 1999. View at Publisher · View at Google Scholar · View at Scopus
  133. G. J. Groeneveld, J. H. Veldink, I. van der Tweel et al., “A randomized sequential trial of creatine in amyotrophic lateral sclerosis,” Annals of Neurology, vol. 53, no. 4, pp. 437–445, 2003. View at Publisher · View at Google Scholar · View at Scopus
  134. C. Raman, S. D. McAllister, G. Rizvi, S. G. Patel, D. H. Moore, and M. E. Abood, “Amyotrophic lateral sclerosis: delayed disease progression in mice by treatment with a cannabinoid,” Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders, vol. 5, no. 1, pp. 33–39, 2004. View at Publisher · View at Google Scholar · View at Scopus
  135. P. Weydt, S. Hong, A. Witting, T. Möller, N. Stella, and M. Kliot, “Cannabinol delays symptom onset in SOD1 (G93A) transgenic mice without affecting survival,” Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders, vol. 6, no. 3, pp. 182–184, 2005. View at Publisher · View at Google Scholar · View at Scopus