Table of Contents Author Guidelines Submit a Manuscript
Oxidative Medicine and Cellular Longevity
Volume 2013, Article ID 760629, 9 pages
http://dx.doi.org/10.1155/2013/760629
Review Article

The Benefits of Humanized Yeast Models to Study Parkinson’s Disease

Functional Biology, KU Leuven, Kasteelpark Arenberg 31, 3001 Heverlee, Belgium

Received 8 May 2013; Accepted 18 June 2013

Academic Editor: Paula Ludovico

Copyright © 2013 V. Franssens et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. M. Bekris, I. F. Mata, and C. P. Zabetian, “The genetics of Parkinson disease,” Journal of Geriatric Psychiatry and Neurology, vol. 23, no. 4, pp. 228–242, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. M. H. Polymeropoulos, C. Lavedan, E. Leroy et al., “Mutation in the α-synuclein gene identified in families with Parkinson's disease,” Science, vol. 276, no. 5321, pp. 2045–2047, 1997. View at Publisher · View at Google Scholar · View at Scopus
  3. R. Krüger, W. Kuhn, T. Müller et al., “Ala30Pro mutation in the gene encoding α-synuclein in Parkinson's disease,” Nature Genetics, vol. 18, no. 2, pp. 106–108, 1998. View at Google Scholar · View at Scopus
  4. J. J. Zarranz, J. Alegre, J. C. Gómez-Esteban et al., “The new mutation, E46K, of alpha-synuclein causes Parkinson and Lewy body dementia,” Annals of Neurology, vol. 55, no. 2, pp. 164–173, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. M.-C. Chartier-Harlin, J. Kachergus, C. Roumier et al., “α-synuclein locus duplication as a cause of familial Parkinson's disease,” Lancet, vol. 364, no. 9440, pp. 1167–1169, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. P. Ibáñez, A.-M. Bonnet, B. Débarges et al., “Causal relation between α-synuclein gene duplication and familial Parkinson's disease,” Lancet, vol. 364, no. 9440, pp. 1169–1171, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. A. B. Singleton, M. Farrer, J. Johnson et al., “alpha-Synuclein locus triplication causes Parkinson's disease,” Science, vol. 302, no. 5646, p. 841, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Baba, S. Nakajo, P.-H. Tu et al., “Aggregation of α-synuclein in Lewy bodies of sporadic Parkinson's disease and dementia with Lewy bodies,” American Journal of Pathology, vol. 152, no. 4, pp. 879–884, 1998. View at Google Scholar · View at Scopus
  9. S. Engelender, Z. Kaminsky, G. Xin et al., “Synphilin-1 associates with α-synuclein and promotes the formation of cytosolic inclusions,” Nature Genetics, vol. 22, no. 1, pp. 110–114, 1999. View at Publisher · View at Google Scholar · View at Scopus
  10. K. Wakabayashi, S. Engelender, M. Yoshimoto, S. Tsuji, C. A. Ross, and H. Takahashi, “Synphilin-1 is present in Lewy bodies in Parkinson's disease,” Annals of Neurology, vol. 47, pp. 521–523, 2000. View at Google Scholar
  11. D. Botstein, S. A. Chervitz, and J. M. Cherry, “Yeast as a model organism,” Science, vol. 277, no. 5330, pp. 1259–1260, 1997. View at Publisher · View at Google Scholar · View at Scopus
  12. D. E. Bassett Jr., M. S. Boguski, and P. Hieter, “Yeast genes and human disease,” Nature, vol. 379, no. 6566, pp. 589–590, 1996. View at Publisher · View at Google Scholar · View at Scopus
  13. F. Sherman, “Getting started with yeast,” Methods in Enzymology, vol. 350, pp. 3–41, 2002. View at Publisher · View at Google Scholar · View at Scopus
  14. E. A. Winzeler, D. D. Shoemaker, A. Astromoff et al., “Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis,” Science, vol. 285, no. 5429, pp. 901–906, 1999. View at Publisher · View at Google Scholar · View at Scopus
  15. S. Mnaimneh, A. P. Davierwala, J. Haynes et al., “Exploration of essential gene functions via titratable promoter alleles,” Cell, vol. 118, no. 1, pp. 31–44, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. Y. Hu, A. Rolfs, B. Bhullar et al., “Approaching a complete repository of sequence-verified protein-encoding clones for Saccharomyces cerevisiae,” Genome Research, vol. 17, no. 4, pp. 536–543, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. M. R. Martien, S. M. McCraith, S. L. Spinelli et al., “A biochemical genomics approach for identifying genes by the activity of their products,” Science, vol. 286, no. 5442, pp. 1153–1155, 1999. View at Publisher · View at Google Scholar · View at Scopus
  18. T. F. Outeiro and S. Lindquist, “Yeast cells provide insight into alpha-synuclein biology and pathobiology,” Science, vol. 302, no. 5651, pp. 1772–1775, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. E. Jo, J. McLaurin, C. M. Yip, P. St. George-Hyslop, and P. E. Fraser, “α-Synuclein membrane interactions and lipid specificity,” Journal of Biological Chemistry, vol. 275, no. 44, pp. 34328–34334, 2000. View at Google Scholar · View at Scopus
  20. S. Willingham, T. F. Outeiro, M. J. DeVit, S. L. Lindquist, and P. J. Muchowski, “Yeast genes that enhance the toxicity of a mutant huntingtin fragment or alpha-synuclein,” Science, vol. 302, no. 5651, pp. 1769–1772, 2003. View at Publisher · View at Google Scholar · View at Scopus
  21. J. Liang, C. Clark-Dixon, S. Wang et al., “Novel suppressors of α-synuclein toxicity identified using yeast,” Human Molecular Genetics, vol. 17, no. 23, pp. 3784–3795, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. E. Yeger-Lotem, L. Riva, L. J. Su et al., “Bridging high-throughput genetic and transcriptional data reveals cellular responses to alpha-synuclein toxicity,” Nature Genetics, vol. 41, no. 3, pp. 316–323, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. P. Zabrocki, I. Bastiaens, C. Delay et al., “Phosphorylation, lipid raft interaction and traffic of α-synuclein in a yeast model for Parkinson,” Biochimica et Biophysica Acta, vol. 1783, no. 10, pp. 1767–1780, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. S. Büttner, C. Delay, V. Franssens et al., “Synphilin-1 enhances a-synuclein aggregation in yeast and contributes to cellular stress and cell death in a sir2-dependent manner,” PLoS One, vol. 5, no. 10, Article ID e13700, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. P. Zabrocki, K. Pellens, T. Vanhelmont et al., “Characterization of α-synuclein aggregation and synergistic toxicity with protein tau in yeast,” FEBS Journal, vol. 272, no. 6, pp. 1386–1400, 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. K. S. McNaught and P. Jenner, “Proteasomal function is impaired in substantia nigra in Parkinson's disease,” Neuroscience Letters, vol. 297, no. 3, pp. 191–194, 2001. View at Publisher · View at Google Scholar · View at Scopus
  27. V. Manetto, G. Perry, M. Tabaton et al., “Ubiquitin is associated with abnormal cytoplasmic filaments characteristic of neurodegenerative diseases,” Proceedings of the National Academy of Sciences of the United States of America, vol. 85, no. 12, pp. 4501–4505, 1988. View at Google Scholar · View at Scopus
  28. P. G. Galloway, I. Grundke-Iqbal, K. Iqbal, and G. Perry, “Lewy bodies contain epitopes both shared and distinct from Alzheimer neurofibrillary tangles,” Journal of Neuropathology and Experimental Neurology, vol. 47, no. 6, pp. 654–663, 1988. View at Google Scholar · View at Scopus
  29. Q. Chen, J. Thorpe, and J. N. Keller, “α-synuclein alters proteasome function, protein synthesis, and stationary phase viability,” Journal of Biological Chemistry, vol. 280, no. 34, pp. 30009–30017, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. N. Sharma, K. A. Brandis, S. K. Herrera et al., “α-synuclein budding yeast model: toxicity enhanced by impaired proteasome and oxidative stress,” Journal of Molecular Neuroscience, vol. 28, no. 2, pp. 161–178, 2006. View at Publisher · View at Google Scholar · View at Scopus
  31. C. Dixon, N. Mathias, R. M. Zweig, D. A. Davis, and D. S. Gross, “α-Synuclein targets the plasma membrane via the secretory pathway and induces toxicity in yeast,” Genetics, vol. 170, no. 1, pp. 47–59, 2005. View at Publisher · View at Google Scholar · View at Scopus
  32. D. Petroi, B. Popova, N. Taheri-Talesh et al., “Aggregate clearance of alpha-synuclein in Saccharomyces cerevisiae depends more on autophagosome and vacuole function than on the proteasome,” The Journal of Biological Chemistry, vol. 287, pp. 27567–27579, 2012. View at Google Scholar
  33. J. L. Webb, B. Ravikumar, J. Atkins, J. N. Skepper, and D. C. Rubinsztein, “Alpha-Synuclein is degraded by both autophagy and the proteasome,” Journal of Biological Chemistry, vol. 278, no. 27, pp. 25009–25013, 2003. View at Publisher · View at Google Scholar · View at Scopus
  34. T. Pan, S. Kondo, W. Le, and J. Jankovic, “The role of autophagy-lysosome pathway in neurodegeneration associated with Parkinson's disease,” Brain, vol. 131, no. 8, pp. 1969–1978, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. M. Deleidi and W. Maetzler, “Protein clearance mechanisms of alpha-synuclein and amyloid-Beta in lewy body disorders,” International Journal of Alzheimer's Disease, vol. 2012, Article ID 391438, 9 pages, 2012. View at Publisher · View at Google Scholar
  36. A. D. Gitler, A. Chesi, M. L. Geddie et al., “α-Synuclein is part of a diverse and highly conserved interaction network that includes PARK9 and manganese toxicity,” Nature Genetics, vol. 41, no. 3, pp. 308–315, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. T. R. Flower, C. Clark-Dixon, C. Metoyer et al., “YGR198w (YPP1) targets A30P α-synuclein to the vacuole for degradation,” Journal of Cell Biology, vol. 177, no. 6, pp. 1091–1104, 2007. View at Publisher · View at Google Scholar · View at Scopus
  38. R. Betarbet, T. B. Sherer, G. MacKenzie, M. Garcia-Osuna, A. V. Panov, and J. T. Greenamyre, “Chronic systemic pesticide exposure reproduces features of Parkinson's disease,” Nature Neuroscience, vol. 3, no. 12, pp. 1301–1306, 2000. View at Publisher · View at Google Scholar · View at Scopus
  39. J. W. Langston, P. Ballard, J. W. Tetrud, and I. Irwin, “Chronic parkinsonism in humans due to a product of meperidine-analog synthesis,” Science, vol. 219, no. 4587, pp. 979–980, 1983. View at Google Scholar · View at Scopus
  40. H.-H. Liou, M. C. Tsai, C. J. Chen et al., “Environmental risk factors and Parkinson's disease: a case-control study in Taiwan,” Neurology, vol. 48, no. 6, pp. 1583–1588, 1997. View at Google Scholar · View at Scopus
  41. H. Büeler, “Impaired mitochondrial dynamics and function in the pathogenesis of Parkinson's disease,” Experimental Neurology, vol. 218, no. 2, pp. 235–246, 2009. View at Publisher · View at Google Scholar · View at Scopus
  42. G. Griffioen, H. Duhamel, N. Van Damme et al., “A yeast-based model of α-synucleinopathy identifies compounds with therapeutic potential,” Biochimica et Biophysica Acta, vol. 1762, no. 3, pp. 312–318, 2006. View at Publisher · View at Google Scholar · View at Scopus
  43. L. J. Su, P. K. Auluck, T. F. Outeiro et al., “Compounds from an unbiased chemical screen reverse both ER-to-Golgi trafficking defects and mitochondrial dysfunction in Parkinson's disease models,” Disease Models and Mechanisms, vol. 3, no. 3-4, pp. 194–208, 2010. View at Publisher · View at Google Scholar · View at Scopus
  44. S. Büttner, A. Bitto, J. Ring et al., “Functional mitochondria are required for α-synuclein toxicity in aging yeast,” Journal of Biological Chemistry, vol. 283, no. 12, pp. 7554–7560, 2008. View at Publisher · View at Google Scholar · View at Scopus
  45. Y. Imai and B. Lu, “Mitochondrial dynamics and mitophagy in Parkinson's disease: disordered cellular power plant becomes a big deal in a major movement disorder,” Current Opinion in Neurobiology, vol. 21, no. 6, pp. 935–941, 2011. View at Publisher · View at Google Scholar · View at Scopus
  46. B. Sampaio-Marques, C. Felgueiras, A. Silva et al., “SNCA (alpha-synuclein)-induced toxicity in yeast cells is dependent on sirtuin 2 (Sir2)-mediated mitophagy,” Autophagy, vol. 8, pp. 1494–1509, 2012. View at Google Scholar
  47. S.-I. Imai, C. M. Armstrong, M. Kaeberlein, and L. Guarente, “Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase,” Nature, vol. 403, no. 6771, pp. 795–800, 2000. View at Publisher · View at Google Scholar · View at Scopus
  48. G. Blander and L. Guarente, “The Sir2 family of protein deacetylases,” Annual Review of Biochemistry, vol. 73, pp. 417–435, 2004. View at Publisher · View at Google Scholar · View at Scopus
  49. S.-J. Lin, P.-A. Defossez, and L. Guarente, “Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae,” Science, vol. 289, no. 5487, pp. 2126–2128, 2000. View at Publisher · View at Google Scholar · View at Scopus
  50. H. A. Tissenbaum and L. Guarente, “Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans,” Nature, vol. 410, no. 6825, pp. 227–230, 2001. View at Publisher · View at Google Scholar · View at Scopus
  51. B. Rogina and S. L. Helfand, “Sir2 mediates longevity in the fly through a pathway related to calorie restriction,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 45, pp. 15998–16003, 2004. View at Publisher · View at Google Scholar · View at Scopus
  52. T. Finkel, C.-X. Deng, and R. Mostoslavsky, “Recent progress in the biology and physiology of sirtuins,” Nature, vol. 460, no. 7255, pp. 587–591, 2009. View at Publisher · View at Google Scholar · View at Scopus
  53. J. P. Anderson, D. E. Walker, J. M. Goldstein et al., “Phosphorylation of Ser-129 is the dominant pathological modification of α-synuclein in familial and sporadic lewy body disease,” Journal of Biological Chemistry, vol. 281, no. 40, pp. 29739–29752, 2006. View at Publisher · View at Google Scholar · View at Scopus
  54. X. Chen, M. G. Garelick, H. Wang, V. Li, J. Athos, and D. R. Storm, “PI3 kinase signaling is required for retrieval and extinction of contextual memory,” Nature Neuroscience, vol. 8, no. 7, pp. 925–931, 2005. View at Publisher · View at Google Scholar · View at Scopus
  55. M. Wakamatsu, A. Ishii, Y. Ukai et al., “Accumulation of phosphorylated α-synuclein in dopaminergic neurons of transgenic mice that express human α-synuclein,” Journal of Neuroscience Research, vol. 85, no. 8, pp. 1819–1825, 2007. View at Publisher · View at Google Scholar · View at Scopus
  56. S. A. da Silveira, B. L. Schneider, C. Cifuentes-Diaz et al., “Phosphorylation does not prompt, nor prevent, the formation of α-synuclein toxic species in a rat model of Parkinson's disease,” Human Molecular Genetics, vol. 18, no. 5, pp. 872–887, 2009. View at Publisher · View at Google Scholar · View at Scopus
  57. M. K. Mbefo, K. E. Paleologou, A. Boucharaba et al., “Phosphorylation of synucleins by members of the polo-like kinase family,” Journal of Biological Chemistry, vol. 285, no. 4, pp. 2807–2822, 2010. View at Publisher · View at Google Scholar · View at Scopus
  58. M. Okochi, J. Walter, A. Koyama et al., “Constitutive phosphorylation of the Parkinson's disease associated α-synuclein,” Journal of Biological Chemistry, vol. 275, no. 1, pp. 390–397, 2000. View at Publisher · View at Google Scholar · View at Scopus
  59. H. Qing, W. Wong, E. G. McGeer, and P. L. McGeer, “Lrrk2 phosphorylates alpha synuclein at serine 129: Parkinson disease implications,” Biochemical and Biophysical Research Communications, vol. 387, no. 1, pp. 149–152, 2009. View at Publisher · View at Google Scholar · View at Scopus
  60. V. Sancenon, S. A. Lee, C. Patrick et al., “Suppression of alpha-synuclein toxicity and vesicle trafficking defects by phosphorylation at S129 in yeast depends on genetic context,” Human Molecular Genetics, vol. 21, pp. 2432–2449, 2012. View at Google Scholar
  61. S. Wang, B. Xu, L. C. Liou et al., “Alpha-synuclein disrupts stress signaling by inhibiting polo-like kinase Cdc5/Plk2,” Proceedings of the National Academy of Sciences of the United States of America, vol. 109, pp. 16119–16124, 2012. View at Google Scholar
  62. D. E. Levin, “Cell wall integrity signaling in Saccharomyces cerevisiae,” Microbiology and Molecular Biology Reviews, vol. 69, pp. 262–291, 2005. View at Google Scholar
  63. D. J. Surmeier and P. T. Schumacker, “Calcium, bioenergetics, and neuronal vulnerability in Parkinson's disease,” The Journal of Biological Chemistry, vol. 288, pp. 10736–10741, 2013. View at Google Scholar
  64. T. Calì, D. Ottolini, and M. Brini, “Mitochondria, calcium, and endoplasmic reticulum stress in Parkinson's disease,” BioFactors, vol. 37, no. 3, pp. 228–240, 2011. View at Publisher · View at Google Scholar · View at Scopus
  65. N. T. Hettiarachchi, A. Parker, M. L. Dallas et al., “α-Synuclein modulation of Ca2+ signaling in human neuroblastoma (SH-SY5Y) cells,” Journal of Neurochemistry, vol. 111, no. 5, pp. 1192–1201, 2009. View at Publisher · View at Google Scholar · View at Scopus
  66. S. Nath, J. Goodwin, Y. Engelborghs, and D. L. Pountney, “Raised calcium promotes α-synuclein aggregate formation,” Molecular and Cellular Neuroscience, vol. 46, no. 2, pp. 516–526, 2011. View at Publisher · View at Google Scholar · View at Scopus
  67. S. Nath, J. Goodwin, Y. Engelborghs, and D. L. Pountney, “Raised calcium promotes α-synuclein aggregate formation,” Molecular and Cellular Neuroscience, vol. 46, no. 2, pp. 516–526, 2011. View at Publisher · View at Google Scholar · View at Scopus
  68. S. Büttner, L. Faes, W. N. Reichelt et al., “The Ca2+/Mn2+ ion-pump PMR1 links elevation of cytosolic Ca2+ levels to alpha-synuclein toxicity in Parkinson's disease models,” Cell Death & Differentiation, vol. 20, pp. 465–477, 2012. View at Google Scholar
  69. L. Reznichenko, Q. Cheng, K. Nizar et al., “In vivo alterations in calcium buffering capacity in transgenic mouse model of synucleinopathy,” The Journal of Neuroscience, vol. 32, pp. 9992–9998, 2012. View at Google Scholar
  70. C. S. Chan, J. N. Guzman, E. Ilijic et al., “‘Rejuvenation’ protects neurons in mouse models of Parkinson's disease,” Nature, vol. 447, no. 7148, pp. 1081–1086, 2007. View at Publisher · View at Google Scholar · View at Scopus
  71. J. N. Guzman, J. Sanchez-Padilla, D. Wokosin et al., “Oxidant stress evoked by pacemaking in dopaminergic neurons is attenuated by DJ-1,” Nature, vol. 468, no. 7324, pp. 696–700, 2010. View at Publisher · View at Google Scholar · View at Scopus
  72. R. R. Kopito, “Aggresomes, inclusion bodies and protein aggregation,” Trends in Cell Biology, vol. 10, no. 12, pp. 524–530, 2000. View at Publisher · View at Google Scholar · View at Scopus
  73. B. Liu, L. Larsson, A. Caballero et al., “The polarisome is required for segregation and retrograde transport of protein aggregates,” Cell, vol. 140, no. 2, pp. 257–267, 2010. View at Publisher · View at Google Scholar · View at Scopus
  74. B. Liu, L. Larsson, V. Franssens et al., “Segregation of protein aggregates involves actin and the polarity machinery,” Cell, vol. 147, no. 5, pp. 959–961, 2011. View at Publisher · View at Google Scholar · View at Scopus
  75. E. Swinnen, S. Büttner, T. F. Outeiro et al., “Aggresome formation and segregation of inclusions influence toxicity of α-synuclein and synphilin-1 in yeast,” Biochemical Society Transactions, vol. 39, no. 5, pp. 1476–1481, 2011. View at Publisher · View at Google Scholar · View at Scopus