Table of Contents Author Guidelines Submit a Manuscript
Oxidative Medicine and Cellular Longevity
Volume 2013, Article ID 802870, 10 pages
http://dx.doi.org/10.1155/2013/802870
Research Article

Ethanol and Acetate Acting as Carbon/Energy Sources Negatively Affect Yeast Chronological Aging

1SYSBIO Centre for Systems Biology Milano, Università di Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
2Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy

Received 13 June 2013; Accepted 9 July 2013

Academic Editor: Joris Winderickx

Copyright © 2013 Ivan Orlandi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. Turcotte, X. B. Liang, F. Robert, and N. Soontorngun, “Transcriptional regulation of nonfermentable carbon utilization in budding yeast,” FEMS Yeast Research, vol. 10, no. 1, pp. 2–13, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. V. D. Longo and B. K. Kennedy, “Sirtuins in aging and age-related disease,” Cell, vol. 126, no. 2, pp. 257–268, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. M. MacLean, N. Harris, and P. W. Piper, “Chronological lifespan of stationary phase yeast cells; a model for investigating the factors that might influence the ageing of postmitotic tissues in higher organisms,” Yeast, vol. 18, no. 6, pp. 499–509, 2001. View at Publisher · View at Google Scholar · View at Scopus
  4. K. A. Steinkraus, M. Kaeberlein, and B. K. Kennedy, “Replicative aging in yeast: the means to the end,” Annual Review of Cell and Developmental Biology, vol. 24, pp. 29–54, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. P. Fabrizio and V. D. Longo, “The chronological life span of Saccharomyces cerevisiae,” Aging Cell, vol. 2, no. 2, pp. 73–81, 2003. View at Google Scholar · View at Scopus
  6. P. Fabrizio and V. D. Longo, “The chronological life span of Saccharomyces cerevisiae,” Methods in Molecular Biology, vol. 371, pp. 89–95, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. L. Galdieri, S. Mehrotra, S. Yu, and A. Vancura, “Transcriptional regulation in yeast during diauxic shift and stationary phase,” OMICS, vol. 14, no. 6, pp. 629–638, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. J. V. Gray, G. A. Petsko, G. C. Johnston, D. Ringe, R. A. Singer, and M. Werner-Washburne, “‘Sleeping beauty’: quiescence in Saccharomyces cerevisiae,” Microbiology and Molecular Biology Reviews, vol. 68, no. 2, pp. 187–206, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. B. Smets, R. Ghillebert, P. de Snijder et al., “Life in the midst of scarcity: adaptations to nutrient availability in Saccharomyces cerevisiae,” Current Genetics, vol. 56, no. 1, pp. 1–32, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. L. Fontana, L. Partridge, and V. D. Longo, “Extending healthy life span-from yeast to humans,” Science, vol. 328, no. 5976, pp. 321–326, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Kaeberlein, “Lessons on longevity from budding yeast,” Nature, vol. 464, no. 7288, pp. 513–519, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. W. Mair and A. Dillin, “Aging and survival: the genetics of life span extension by dietary restriction,” Annual Review of Biochemistry, vol. 77, pp. 727–754, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. R. W. Powers III, M. Kaeberlein, S. D. Caldwell, B. K. Kennedy, and S. Fields, “Extension of chronological life span in yeast by decreased TOR pathway signaling,” Genes and Development, vol. 20, no. 2, pp. 174–184, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. P. Fabrizio, F. Pozza, S. D. Pletcher, C. M. Gendron, and V. D. Longo, “Regulation of longevity and stress resistance by Sch9 in yeast,” Science, vol. 292, no. 5515, pp. 288–290, 2001. View at Publisher · View at Google Scholar · View at Scopus
  15. P. Fabrizio, L.-L. Liou, V. N. Moy et al., “SOD2 functions downstream of Sch9 to extend longevity in yeast,” Genetics, vol. 163, no. 1, pp. 35–46, 2003. View at Google Scholar · View at Scopus
  16. M. Wei, P. Fabrizio, J. Hu et al., “Life span extension by calorie restriction depends on Rim15 and transcription factors downstream of Ras/PKA, Tor, and Sch9,” PLoS Genetics, vol. 4, no. 1, article e13, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. E. Cameroni, N. Hulo, J. Roosen, J. Winderickx, and C. de Virgilio, “The novel yeast PAS kinase Rim15 orchestrates G0-associated antioxidant defense mechanisms,” Cell Cycle, vol. 3, no. 4, pp. 462–468, 2004. View at Google Scholar · View at Scopus
  18. P. Fabrizio, S. D. Pletcher, N. Minois, J. W. Vaupel, and V. D. Longo, “Chronological aging-independent replicative life span regulation by Msn2/Msn4 and Sod2 in Saccharomyces cerevisiae,” FEBS Letters, vol. 557, no. 1–3, pp. 136–142, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. I. Pedruzzi, F. Dubouloz, E. Cameroni et al., “TOR and PKA signaling pathways converge on the protein kinase Rim15 to control entry into G0,” Molecular Cell, vol. 12, no. 6, pp. 1607–1613, 2003. View at Publisher · View at Google Scholar · View at Scopus
  20. N. D. Bonawitz, M. Chatenay-Lapointe, Y. Pan, and G. S. Shadel, “Reduced TOR signaling extends chronological life span via increased respiration and upregulation of mitochondrial gene expression,” Cell Metabolism, vol. 5, no. 4, pp. 265–277, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Wei, P. Fabrizio, F. Madia et al., “Tor1/Sch9-regulated carbon source substitution is as effective as calorie restriction in life span extension,” PLoS Genetics, vol. 5, no. 5, Article ID e1000467, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. I. Pedruzzi, N. Bürckert, P. Egger, and C. de Virgilio, “Saccharomyces cerevisiae Ras/cAMP pathway controls post-diauxic shift element-dependent transcription through the zinc finger protein Gis1,” The EMBO Journal, vol. 19, no. 11, pp. 2569–2579, 2000. View at Google Scholar · View at Scopus
  23. J. L. DeRisi, V. R. Iyer, and P. O. Brown, “Exploring the metabolic and genetic control of gene expression on a genomic scale,” Science, vol. 278, no. 5338, pp. 680–686, 1997. View at Publisher · View at Google Scholar · View at Scopus
  24. J. O. Westholm, S. Tronnersjö, N. Nordberg, I. Olsson, J. Komorowski, and H. Ronne, “Gis1 and Rph1 regulate glycerol and acetate metabolism in glucose depleted yeast cells,” PLoS ONE, vol. 7, no. 2, Article ID e31577, 2012. View at Publisher · View at Google Scholar · View at Scopus
  25. P. Fabrizio, C. Gattazzo, L. Battistella et al., “Sir2 blocks extreme life-span extension,” Cell, vol. 123, no. 4, pp. 655–667, 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. N. Casatta, A. Porro, I. Orlandi, L. Brambilla, and M. Vai, “Lack of Sir2 increases acetate consumption and decreases extracellular pro-aging factors,” Biochimica et Biophysica Acta, vol. 1833, no. 3, pp. 593–601, 2013. View at Publisher · View at Google Scholar
  27. C. R. Burtner, C. J. Murakami, B. K. Kennedy, and M. Kaeberlein, “A molecular mechanism of chronological aging in yeast,” Cell Cycle, vol. 8, no. 8, pp. 1256–1270, 2009. View at Google Scholar · View at Scopus
  28. Y.-Y. Lin, J.-Y. Lu, J. Zhang et al., “Protein acetylation microarray reveals that NuA4 controls key metabolic target regulating gluconeogenesis,” Cell, vol. 136, no. 6, pp. 1073–1084, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. I. Orlandi, N. Casatta, and M. Vai, “Lack of Ach1 CoA-transferase triggers apoptosis and decreases chronological lifespan in yeast,” Frontiers in Oncology, vol. 2, article 67, 2012. View at Publisher · View at Google Scholar
  30. M. Matecic, D. L. Smith Jr., X. Pan et al., “A microarray-based genetic screen for yeast chronological aging factors,” PLoS Genetics, vol. 6, no. 4, Article ID e1000921, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. C. J. Kenyon, “The genetics of ageing,” Nature, vol. 464, no. 7288, pp. 504–512, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. M. Weinberger, A. Mesquita, T. Caroll et al., “Growth signaling promotes chronological aging in budding yeast by inducing superoxide anions that inhibit quiescence,” Aging, vol. 2, no. 10, pp. 709–726, 2010. View at Google Scholar · View at Scopus
  33. V. D. Longo, G. S. Shadel, M. Kaeberlein, and B. Kennedy, “Replicative and chronological aging in Saccharomyces cerevisiae,” Cell Metabolism, vol. 16, no. 1, pp. 18–31, 2012. View at Publisher · View at Google Scholar
  34. L. Calzari, I. Orlandi, L. Alberghina, and M. Vai, “The histone deubiquitinating enzyme Ubp10 is involved in rDNA locus control in Saccharomyces cerevisiae by affecting Sir2p association,” Genetics, vol. 174, no. 4, pp. 2249–2254, 2006. View at Publisher · View at Google Scholar · View at Scopus
  35. M. Vanoni, M. Vai, L. Popolo, and L. Alberghina, “Structural heterogeneity in populations of the budding yeast Saccharomyces cerevisiae,” Journal of Bacteriology, vol. 156, no. 3, pp. 1282–1291, 1983. View at Google Scholar · View at Scopus
  36. E. Parrella and V. D. Longo, “The chronological life span of Saccharomyces cerevisiae to study mitochondrial dysfunction and disease,” Methods, vol. 46, no. 4, pp. 256–262, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. M. Casal, S. Paiva, O. Queirós, and I. Soares-Silva, “Transport of carboxylic acids in yeasts,” FEMS Microbiology Reviews, vol. 32, no. 6, pp. 974–994, 2008. View at Publisher · View at Google Scholar · View at Scopus
  38. M. Mollapour and P. W. Piper, “Hog1 mitogen-activated protein kinase phosphorylation targets the yeast Fps1 aquaglyceroporin for endocytosis, thereby rendering cells resistant to acetic acid,” Molecular and Cellular Biology, vol. 27, no. 18, pp. 6446–6456, 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. S. Paiva, F. Devaux, S. Barbosa, C. Jacq, and M. Casal, “Ady2p is essential for the acetate permease activity in the yeast Saccharomyces cerevisiae,” Yeast, vol. 21, no. 3, pp. 201–210, 2004. View at Publisher · View at Google Scholar · View at Scopus
  40. R. P. Andrade, P. Kötter, K.-D. Entian, and M. Casal, “Multiple transcripts regulate glucose-triggered mRNA decay of the lactate transporter JEN1 from Saccharomyces cerevisiae,” Biochemical and Biophysical Research Communications, vol. 332, no. 1, pp. 254–262, 2005. View at Publisher · View at Google Scholar · View at Scopus
  41. A. B. Lourenco, F. C. Roque, M. C. Teixeira, J. R. Ascenso, and I. Sa-Correia, “Quantitative 1H-NMR-metabolomics reveals extensive metabolic reprogramming and the effect of the aquaglyceroporin FPS1 in ethanol-stressed yeast cells,” PLoS ONE, vol. 8, no. 2, Article ID e55439, 2013. View at Publisher · View at Google Scholar
  42. M. A. van den Berg, P. de Jong-Gubbels, C. J. Kortland, J. P. van Dijken, J. T. Pronk, and H. Y. Steensma, “The two acetyl-coenzyme A synthetases of Saccharomyces cerevisiae differ with respect to kinetic properties and transcriptional regulation,” The Journal of Biological Chemistry, vol. 271, no. 46, pp. 28953–28959, 1996. View at Publisher · View at Google Scholar · View at Scopus
  43. M. M. dos Santos, A. K. Gombert, B. Christensen, L. Olsson, and J. Nielsen, “Identification of in vivo enzyme activities in the cometabolism of glucose and acetate by Saccharomyces cerevisiae by using 13C-labeled substrates,” Eukaryotic Cell, vol. 2, no. 3, pp. 599–608, 2003. View at Publisher · View at Google Scholar · View at Scopus
  44. C. Wills and D. Hom, “An efficient selection producing structural gene mutants of yeast alcohol dehydrogenase resistant to pyrazole,” Genetics, vol. 119, no. 4, pp. 791–795, 1988. View at Google Scholar · View at Scopus
  45. W. C. Burhans and M. Weinberger, “Acetic acid effects on aging in budding yeast: are they relevant to aging in higher eukaryotes?” Cell Cycle, vol. 8, no. 14, pp. 2300–2302, 2009. View at Google Scholar · View at Scopus
  46. M. Weinberger, L. Feng, A. Paul et al., “DNA replication stress is a determinant of chronological lifespan in budding yeast,” PloS ONE, vol. 2, no. 8, article e748, 2007. View at Publisher · View at Google Scholar · View at Scopus
  47. M. Weinberger, B. Sampaio-Marques, P. Ludovico, and W. C. Burhans, “DNA replication stress-induced loss of reproductive capacity in S. cerevisiae and its inhibition by caloric restriction,” Cell Cycle, vol. 12, no. 8, pp. 1189–1200, 2013. View at Publisher · View at Google Scholar
  48. M. Weinberger, L. Ramachandran, L. Feng et al., “Apoptosis in budding yeast caused by defects in initiation of DNA replication,” Journal of Cell Science, vol. 118, no. 15, pp. 3543–3553, 2005. View at Publisher · View at Google Scholar · View at Scopus
  49. D. Carmona-Gutierrez, T. Eisenberg, S. Büttner, C. Meisinger, G. Kroemer, and F. Madeo, “Apoptosis in yeast: triggers, pathways, subroutines,” Cell Death and Differentiation, vol. 17, no. 5, pp. 763–773, 2010. View at Publisher · View at Google Scholar · View at Scopus
  50. E. Herker, H. Jungwirth, K. A. Lehmann et al., “Chronological aging leads to apoptosis in yeast,” The Journal of Cell Biology, vol. 164, no. 4, pp. 501–507, 2004. View at Publisher · View at Google Scholar · View at Scopus
  51. P. Ludovico, F. Rodrigues, A. Almeida, M. T. Silva, A. Barrientos, and M. Côrte-Real, “Cytochrome c release and mitochondria involvement in programmed cell death induced by acetic acid in Saccharomyces cerevisiae,” Molecular Biology of the Cell, vol. 13, no. 8, pp. 2598–2606, 2002. View at Publisher · View at Google Scholar · View at Scopus
  52. P. Ludovico, M. J. Sousa, M. T. Silva, C. Leão, and M. Côrte-Real, “Saccharomyces cerevisiae commits to a programmed cell death process in response to acetic acid,” Microbiology, vol. 147, no. 9, pp. 2409–2415, 2001. View at Google Scholar · View at Scopus
  53. S. Giannattasio, N. Guaragnella, M. Côrte-Real, S. Passarella, and E. Marra, “Acid stress adaptation protects Saccharomyces cerevisiae from acetic acid-induced programmed cell death,” Gene, vol. 354, no. 1-2, pp. 93–98, 2005. View at Publisher · View at Google Scholar · View at Scopus
  54. C. B. Fleck and M. Brock, “Re-characterisation of Saccharomyces cerevisiae Ach1p: fungal CoA-transferases are involved in acetic acid detoxification,” Fungal Genetics and Biology, vol. 46, no. 6-7, pp. 473–485, 2009. View at Publisher · View at Google Scholar · View at Scopus
  55. N. D. Bonawitz, M. S. Rodeheffer, and G. S. Shadel, “Defective mitochondrial gene expression results in reactive oxygen species-mediated inhibition of respiration and reduction of yeast life span,” Molecular and Cellular Biology, vol. 26, no. 13, pp. 4818–4829, 2006. View at Publisher · View at Google Scholar · View at Scopus
  56. G. Farrugia and R. Balzan, “Oxidative stress and programmed cell death in yeast,” Frontiers in Oncology, vol. 2, article 64, 2012. View at Publisher · View at Google Scholar
  57. Y. Pan, “Mitochondria, reactive oxygen species, and chronological aging: a message from yeast,” Experimental Gerontology, vol. 46, no. 11, pp. 847–852, 2011. View at Publisher · View at Google Scholar · View at Scopus
  58. L. Shi, B. M. Sutter, X. Ye, and B. P. Tu, “Trehalose is a key determinant of the quiescent metabolic state that fuels cell cycle progression upon return to growth,” Molecular Biology of the Cell, vol. 21, no. 12, pp. 1982–1990, 2010. View at Publisher · View at Google Scholar · View at Scopus
  59. N. Pollak, C. Dölle, and M. Ziegler, “The power to reduce: pyridine nucleotides—small molecules with a multitude of functions,” The Biochemical Journal, vol. 402, no. 2, pp. 205–218, 2007. View at Publisher · View at Google Scholar · View at Scopus
  60. G. G. Zampar, A. Kummel, J. Ewald et al., “Temporal system-level organization of the switch from glycolytic to gluconeogenic operation in yeast,” Molecular Systems Biology, vol. 9, article 651, 2013. View at Publisher · View at Google Scholar
  61. P. W. Piper, N. L. Harris, and M. MacLean, “Preadaptation to efficient respiratory maintenance is essential both for maximal longevity and the retention of replicative potential in chronologically ageing yeast,” Mechanisms of Ageing and Development, vol. 127, no. 9, pp. 733–740, 2006. View at Publisher · View at Google Scholar · View at Scopus
  62. C. J. Murakami, V. Wall, N. Basisty, and M. Kaeberlein, “Composition and acidification of the culture medium influences chronological aging similarly in vineyard and laboratory yeast,” PLoS ONE, vol. 6, no. 9, Article ID e24530, 2011. View at Publisher · View at Google Scholar · View at Scopus
  63. A. Ocampo, J. Liu, E. A. Schroeder, G. S. Shadel, and A. Barrientos, “Mitochondrial respiratory thresholds regulate yeast chronological life span and its extension by caloric restriction,” Cell Metabolism, vol. 16, no. 1, pp. 55–67, 2012. View at Publisher · View at Google Scholar
  64. M. H. Barros, F. M. da Cunha, G. A. Oliveira, E. B. Tahara, and A. J. Kowaltowski, “Yeast as a model to study mitochondrial mechanisms in ageing,” Mechanisms of Ageing and Development, vol. 131, no. 7-8, pp. 494–502, 2010. View at Publisher · View at Google Scholar · View at Scopus
  65. M. Ristow and S. Schmeisser, “Extending life span by increasing oxidative stress,” Free Radical Biology and Medicine, vol. 51, no. 2, pp. 327–336, 2011. View at Publisher · View at Google Scholar · View at Scopus
  66. D. Gems and L. Partridge, “Stress-response hormesis and aging: ‘that which does not kill us makes us stronger’,” Cell Metabolism, vol. 7, no. 3, pp. 200–203, 2008. View at Publisher · View at Google Scholar · View at Scopus
  67. Y. Pan, E. A. Schroeder, A. Ocampo, A. Barrientos, and G. S. Shadel, “Regulation of yeast chronological life span by TORC1 via adaptive mitochondrial ROS signaling,” Cell Metabolism, vol. 13, no. 6, pp. 668–678, 2011. View at Publisher · View at Google Scholar · View at Scopus