Table of Contents Author Guidelines Submit a Manuscript
Oxidative Medicine and Cellular Longevity
Volume 2013, Article ID 821541, 10 pages
http://dx.doi.org/10.1155/2013/821541
Research Article

Skin Injuries Reduce Survival and Modulate Corticosterone, C-Reactive Protein, Complement Component 3, IgM, and Prostaglandin E2 after Whole-Body Reactor-Produced Mixed Field (n + -Photons) Irradiation

1Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Bethesda, MD 20889, USA
2Department of Radiation Biology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
3Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA

Received 22 April 2013; Revised 5 August 2013; Accepted 13 August 2013

Academic Editor: Felipe Dal-Pizzol

Copyright © 2013 Juliann G. Kiang and G. David Ledney. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Skin injuries such as wounds or burns following whole-body -irradiation (radiation combined injury (RCI)) increase mortality more than whole-body -irradiation alone. Wound-induced decreases in survival after irradiation are triggered by sustained activation of inducible nitric oxide synthase pathways, persistent alteration of cytokine homeostasis, and increased susceptibility to systemic bacterial infection. Among these factors, radiation-induced increases in interleukin-6 (IL-6) concentrations in serum were amplified by skin wound trauma. Herein, the IL-6-induced stress proteins including C-reactive protein (CRP), complement 3 (C3), immunoglobulin M (IgM), and prostaglandin E2 (PGE2) were evaluated after skin injuries given following a mixed radiation environment that might be found after a nuclear incident. In this report, mice received 3 Gy of reactor-produced mixed field ( -photons) radiations at 0.38 Gy/min followed by nonlethal skin wounding or burning. Both wounds and burns reduced survival and increased CRP, C3, and PGE2 in serum after radiation. Decreased IgM production along with an early rise in corticosterone followed by a subsequent decrease was noted for each RCI situation. These results suggest that RCI-induced alterations of corticosterone, CRP, C3, IgM, and PGE2 cause homeostatic imbalance and may contribute to reduced survival. Agents inhibiting these responses may prove to be therapeutic for RCI and improve related survival.