Table of Contents Author Guidelines Submit a Manuscript
Oxidative Medicine and Cellular Longevity
Volume 2013 (2013), Article ID 848279, 8 pages
http://dx.doi.org/10.1155/2013/848279
Review Article

The Role of the Keap1/Nrf2 Pathway in the Cellular Response to Methylmercury

1Environmental Biology Section, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
2Doctoral Program in Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan

Received 28 January 2013; Revised 26 May 2013; Accepted 3 June 2013

Academic Editor: Mi-Kyoung Kwak

Copyright © 2013 Yoshito Kumagai et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. B. Simpson, “Association constants of methylmercury with sulfhydryl and other bases,” Journal of the American Chemical Society, vol. 83, no. 23, pp. 4711–4717, 1961. View at Google Scholar · View at Scopus
  2. N. Ballatori, “Transport of toxic metals by molecular mimicry,” Environmental Health Perspectives, vol. 110, supplement 5, pp. 689–694, 2002. View at Google Scholar · View at Scopus
  3. M. S. Madejczyk, D. A. Aremu, T. A. Simmons-Willis, T. W. Clarkson, and N. Ballatori, “Accelerated urinary excretion of methylmercury following administration of its antidote N-acetylcysteine requires Mrp2/Abcc2, the apical multidrug resistance-associated protein,” The Journal of Pharmacology and Experimental Therapeutics, vol. 322, no. 1, pp. 378–384, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. C. C. Bridges, L. Joshee, and R. K. Zalups, “MRP2 and the handling of mercuric ions in rats exposed acutely to inorganic and organic species of mercury,” Toxicology and Applied Pharmacology, vol. 251, no. 1, pp. 50–58, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. T. W. Clarkson, “The pharmacology of mercury compounds,” Annual Review of Pharmacology, vol. 12, pp. 375–406, 1972. View at Google Scholar · View at Scopus
  6. M. Farina, M. Aschner, and J. B. Rocha, “Oxidative stress in MeHg-induced neurotoxicity,” Toxicology and Applied Pharmacology, vol. 256, no. 3, pp. 405–417, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. J. Alam, D. Stewart, C. Touchard, S. Boinapally, A. M. Choi, and J. L. Cook, “Nrf2, a Cap'n'Collar transcription factor, regulates induction of the heme oxygenase-1 gene,” Journal of Biological Chemistry, vol. 274, no. 37, pp. 26071–26078, 1999. View at Publisher · View at Google Scholar · View at Scopus
  8. A. C. Wild, H. R. Moinova, and R. T. Mulcahy, “Regulation of γ-glutamylcysteine synthetase subunit gene expression by the transcription factor Nrf2,” The Journal of Biological Chemistry, vol. 274, no. 47, pp. 33627–33636, 1999. View at Publisher · View at Google Scholar · View at Scopus
  9. J. Y. Chan and M. Kwong, “Impaired expression of glutathione synthetic enzyme genes in mice with targeted deletion of the Nrf2 basic-leucine zipper protein,” Biochimica et Biophysica Acta, vol. 1517, no. 1, pp. 19–26, 2000. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Hayashi, H. Suzuki, K. Itoh, M. Yamamoto, and Y. Sugiyama, “Transcription factor Nrf2 is required for the constitutive and inducible expression of multidrug resistance-associated protein 1 in mouse embryo fibroblasts,” Biochemical and Biophysical Research Communications, vol. 310, no. 3, pp. 824–829, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. V. Vollrath, A. M. Wielandt, M. Iruretagoyena, and J. Chianale, “Role of Nrf2 in the regulation of the Mrp2 (ABCC2) gene,” Biochemical Journal, vol. 395, no. 3, pp. 599–609, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. J. M. Maher, M. Z. Dieter, L. M. Aleksunes et al., “Oxidative and electrophilic stress induces multidrug resistance-associated protein transporters via the nuclear factor-E2-related factor-2 transcriptional pathway,” Hepatology, vol. 46, no. 5, pp. 1597–1610, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Shinyashiki, Y. Kumagai, S. Homma-Takeda et al., “Selective inhibition of the mouse brain Mn-SOD by methylmercury,” Environmental Toxicology and Pharmacology, vol. 2, no. 4, pp. 359–366, 1996. View at Publisher · View at Google Scholar · View at Scopus
  14. Y. Kumagai, S. Homma-Takeda, M. Shinyashiki, and N. Shimojo, “Alterations in superoxide dismutase isozymes by methylmercury,” Applied Organometallic Chemistry, vol. 11, no. 8, pp. 635–643, 1997. View at Google Scholar · View at Scopus
  15. M. Shinyashiki, Y. Kumagai, H. Nakajima et al., “Differential changes in rat brain nitric oxide synthase in vivo and in vitro by methylmercury,” Brain Research, vol. 798, no. 1-2, pp. 147–155, 1998. View at Publisher · View at Google Scholar · View at Scopus
  16. A. Yasutake, A. Nakano, K. Miyamoto, and K. Eto, “Chronic effects of methylmercury in rats. I. biochemical aspects,” The Tohoku Journal of Experimental Medicine, vol. 182, no. 3, pp. 185–196, 1997. View at Publisher · View at Google Scholar · View at Scopus
  17. J. L. Rodrigues, J. M. Serpeloni, B. L. Batista, S. S. Souza, and F. Barbosa Jr., “Identification and distribution of mercury species in rat tissues following administration of thimerosal or methylmercury,” Archives of Toxicology, vol. 84, no. 11, pp. 891–896, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. H. Kanda, D. Sumi, A. Endo et al., “Reduction of arginase I activity and manganese levels in the liver during exposure of rats to methylmercury: a possible mechanism,” Archives of Toxicology, vol. 82, no. 11, pp. 803–808, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. H. Kanda, T. Toyama, A. Shinohara-Kanda et al., “S-mercuration of rat sorbitol dehydrogenase by methylmercury causes its aggregation and the release of the zinc ion from the active site,” Archives of Toxicology, vol. 86, no. 11, pp. 1693–1702, 2012. View at Google Scholar
  20. C. Karlsson, H. Jörnvall, and J. O. Höög, “Sorbitol dehydrogenase: cDNA coding for the rat enzyme. variations within the alcohol dehydrogenase family independent of quaternary structure and metal content,” European Journal of Biochemistry, vol. 198, no. 3, pp. 761–765, 1991. View at Google Scholar · View at Scopus
  21. K. Johansson, M. El-Ahmad, C. Kaiser et al., “Crystal structure of sorbitol dehydrogenase,” Chemico-Biological Interactions, vol. 130–132, no. 1–3, pp. 351–358, 2001. View at Publisher · View at Google Scholar · View at Scopus
  22. J. S. Woods, H. A. Davis, and R. P. Baer, “Enhancement of γ-glutamylcysteine synthetase mRNA in rat kidney by methyl mercury,” Archives of Biochemistry and Biophysics, vol. 296, no. 1, pp. 350–353, 1992. View at Publisher · View at Google Scholar · View at Scopus
  23. A. Yasutake and K. Hirayama, “Acute effects of methylmercury on hepatic and renal glutathione metabolisms in mice,” Archives of Toxicology, vol. 68, no. 8, pp. 512–516, 1994. View at Publisher · View at Google Scholar · View at Scopus
  24. S. Li, S. A. Thompson, and J. S. Woods, “Localization of γ-lutamylcysteine synthetase mRNA expression in mouse brain following methylmercury treatment using reverse transcription in situ PCR amplification,” Toxicology and Applied Pharmacology, vol. 140, no. 1, pp. 180–187, 1996. View at Publisher · View at Google Scholar · View at Scopus
  25. S. A. Thompson, C. C. White, C. M. Krejsa et al., “Induction of glutamate-cysteine ligase (γ-glutamylcysteine synthetase) in the brains of adult female mice subchronically exposed to methylmercury,” Toxicology Letters, vol. 110, no. 1-2, pp. 1–9, 1999. View at Publisher · View at Google Scholar · View at Scopus
  26. S. A. Thompson, C. C. White, C. M. Krejsa, D. L. Eaton, and T. J. Kavanagh, “Modulation of glutathione and glutamate-L-cysteine ligase by methylmercury during mouse development,” Toxicological Sciences, vol. 57, no. 1, pp. 141–146, 2000. View at Google Scholar · View at Scopus
  27. D. Díaz, C. M. Krejsa, C. C. White, C. L. Keener, F. M. Farin, and T. J. Kavanagh, “Tissue specific changes in the expression of glutamate-cysteine ligase mRNAs in mice exposed to methylmercury,” Toxicology Letters, vol. 122, no. 2, pp. 119–129, 2001. View at Publisher · View at Google Scholar · View at Scopus
  28. D. Díaz, C. M. Krejsa, C. C. White, J. S. Charleston, and T. J. Kavanagh, “Effect of methylmercury on glutamate-cysteine ligase expression in the placenta and yolk sac during mouse development,” Reproductive Toxicology, vol. 19, no. 1, pp. 117–129, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. K. Itoh, T. Chiba, S. Takahashi et al., “An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements,” Biochemical and Biophysical Research Communications, vol. 236, no. 2, pp. 313–322, 1997. View at Publisher · View at Google Scholar · View at Scopus
  30. K. Itoh, N. Wakabayashi, Y. Katoh et al., “Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain,” Genes & Development, vol. 13, no. 1, pp. 76–86, 1999. View at Google Scholar · View at Scopus
  31. A. T. Dinkova-Kostova, W. D. Holtzclaw, R. N. Cole et al., “Direct evidence that sulfhydryl groups of keap1 are the sensors regulating induction of phase 2 enzymes that protect against carcinogens and oxidants,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 18, pp. 11908–11913, 2002. View at Publisher · View at Google Scholar · View at Scopus
  32. D. D. Zhang and M. Hannink, “Distinct cysteine residues in keap1 are required for keap1-dependent ubiquitination of Nrf2 and for stabilization of Nrf2 by chemopreventive agents and oxidative stress,” Molecular and Cellular Biology, vol. 23, no. 22, pp. 8137–8151, 2003. View at Publisher · View at Google Scholar · View at Scopus
  33. A. L. Eggler, G. Liu, J. M. Pezzuto, R. B. Van Breemen, and A. D. Mesecar, “Modifying specific cysteines of the electrophile-sensing human keap1 protein is insufficient to disrupt binding to the Nrf2 domain Neh2,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 29, pp. 10070–10075, 2005. View at Publisher · View at Google Scholar · View at Scopus
  34. F. Hong, K. R. Sekhar, M. L. Freeman, and D. C. Liebler, “Specific patterns of electrophile adduction trigger keap1 ubiquitination and Nrf2 activation,” Journal of Biological Chemistry, vol. 280, no. 36, pp. 31768–31775, 2005. View at Publisher · View at Google Scholar · View at Scopus
  35. T. Yamamoto, T. Suzuki, A. Kobayashi et al., “Physiological significance of reactive cysteine residues of keap1 in determining Nrf2 activity,” Molecular and Cellular Biology, vol. 28, no. 8, pp. 2758–2770, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. M. Kobayashi, L. Li, N. Iwamoto et al., “The antioxidant defense system keap1-Nrf2 comprises a multiple sensing mechanism for responding to a wide range of chemical compounds,” Molecular and Cellular Biology, vol. 29, no. 2, pp. 493–502, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. K. Taguchi, H. Motohashi, and M. Yamamoto, “Molecular mechanisms of the keap1-Nrf2 pathway in stress response and cancer evolution,” Genes to Cells, vol. 16, no. 2, pp. 123–140, 2011. View at Publisher · View at Google Scholar · View at Scopus
  38. Y. Abiko, T. Miura, B. H. Phuc, Y. Shinkai, and Y. Kumagai, “Participation of covalent modification of keap1 in the activation of Nrf2 by tert-butylbenzoquinone, an electrophilic metabolite of butylated hydroxyanisole,” Toxicology and Applied Pharmacology, vol. 255, no. 1, pp. 32–39, 2011. View at Publisher · View at Google Scholar · View at Scopus
  39. T. Miura, Y. Shinkai, H. Y. Jiang et al., “Initial response and cellular protection through the keap1/Nrf2 system during the exposure of primary mouse hepatocytes to 1,2-naphthoquinone,” Chemical Research in Toxicology, vol. 24, no. 4, pp. 559–567, 2011. View at Publisher · View at Google Scholar · View at Scopus
  40. A. L. Levonen, A. Landar, A. Ramachandran et al., “Cellular mechanisms of redox cell signalling: role of cysteine modification in controlling antioxidant defences in response to electrophilic lipid oxidation products,” Biochemical Journal, vol. 378, no. 2, pp. 373–382, 2004. View at Publisher · View at Google Scholar · View at Scopus
  41. N. Wakabayashi, A. T. Dinkova-Kostova, W. D. Holtzclaw et al., “Protection against electrophile and oxidant stress by induction of the phase 2 response: fate of cysteines of the keap1 sensor modified by inducers,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 7, pp. 2040–2045, 2004. View at Publisher · View at Google Scholar · View at Scopus
  42. T. Toyama, D. Sumi, Y. Shinkai et al., “Cytoprotective role of Nrf2/Keap1 system in methylmercury toxicity,” Biochemical and Biophysical Research Communications, vol. 363, no. 3, pp. 645–650, 2007. View at Publisher · View at Google Scholar · View at Scopus
  43. L. Wang, H. Jiang, Z. Yin, M. Aschner, and J. Cai, “Methylmercury toxicity and Nrf2-dependent detoxification in astrocytes,” Toxicological Sciences, vol. 107, no. 1, pp. 135–143, 2009. View at Publisher · View at Google Scholar · View at Scopus
  44. V. Lämsä, A. L. Levonen, H. Leinonen, S. Ylä-Herttuala, M. Yamamoto, and J. Hakkola, “Cytochrome P450 2A5 constitutive expression and induction by heavy metals is dependent on redox-sensitive transcription factor nrf2 in liver,” Chemical Research in Toxicology, vol. 23, no. 5, pp. 977–985, 2010. View at Publisher · View at Google Scholar · View at Scopus
  45. M. Ni, X. Li, Z. Yin et al., “Methylmercury induces acute oxidative stress, altering Nrf2 protein level in primary microglial cells,” Toxicological Sciences, vol. 116, no. 2, pp. 590–603, 2010. View at Publisher · View at Google Scholar · View at Scopus
  46. M. Ni, X. Li, Z. Yin et al., “Comparative study on the response of rat primary astrocytes and microglia to methylmercury toxicity,” Glia, vol. 59, no. 5, pp. 810–820, 2011. View at Publisher · View at Google Scholar · View at Scopus
  47. A. Enomoto, K. Itoh, E. Nagayoshi et al., “High sensitivity of Nrf2 knockout mice to acetaminophen hepatotoxicity associated with decreased expression of ARE-regulated drug metabolizing enzymes and antioxidant genes,” Toxicological Sciences, vol. 59, no. 1, pp. 169–177, 2001. View at Publisher · View at Google Scholar · View at Scopus
  48. Y. Aoki, H. Sato, N. Nishimura, S. Takahashi, K. Itoh, and M. Yamamoto, “Accelerated DNA adduct formation in the lung of the Nrf2 knockout mouse exposed to diesel exhaust,” Toxicology and Applied Pharmacology, vol. 173, no. 3, pp. 154–160, 2001. View at Publisher · View at Google Scholar · View at Scopus
  49. C. Xu, M. T. Huang, G. Shen et al., “Inhibition of 7,12-dimethylbenz(a)anthracene-induced skin tumorigenesis in C57BL/6 mice by sulforaphane is mediated by nuclear factor E2-related factor 2,” Cancer Research, vol. 66, no. 16, pp. 8293–8296, 2006. View at Publisher · View at Google Scholar · View at Scopus
  50. A. D. Kraft, J. M. Lee, D. A. Johnson, Y. W. Kan, and J. A. Johnson, “Neuronal sensitivity to kainic acid is dependent on the Nrf2-mediated actions of the antioxidant response element,” Journal of Neurochemistry, vol. 98, no. 6, pp. 1852–1865, 2006. View at Publisher · View at Google Scholar · View at Scopus
  51. T. O. Khor, M. T. Huang, K. H. Kwon, J. Y. Chan, B. S. Reddy, and A. N. Kong, “Nrf2-deficient mice have an increased susceptibility to dextran sulfate sodium-induced colitis,” Cancer Research, vol. 66, no. 24, pp. 11580–11584, 2006. View at Publisher · View at Google Scholar · View at Scopus
  52. Y. Aoki, A. H. Hashimoto, K. Amanuma et al., “Enhanced spontaneous and benzo(a)pyrene-induced mutations in the lung of Nrf2-deficient gpt delta mice,” Cancer Research, vol. 67, no. 12, pp. 5643–5648, 2007. View at Publisher · View at Google Scholar · View at Scopus
  53. T. Toyama, Y. Shinkai, A. Yasutake, K. Uchida, M. Yamamoto, and Y. Kumagai, “Isothiocyanates reduce mercury accumulation via an Nrf2-dependent mechanism during exposure of mice to methylmercury,” Environmental Health Perspectives, vol. 119, no. 8, pp. 1117–1122, 2011. View at Publisher · View at Google Scholar · View at Scopus